ANTS: Advanced Topics in Network Science
Topic outline
-
From classical graph theory to social network analysis and modern network science. Graphology and networkology.
Lectures materials:
- Networks introduction and motivation (slides)
- Graph theory and network science (slides)
- Graphology and networkology (slides)
- Networks in modern science (slides)
- Network science journals (handout)
- Network science events (handout)
Book chapters:
- Ch. 1: Introduction & Ch. 2: Graph theory in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 1-5: Introduction etc. & Ch. 6: Mathematics of networks in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 1: Overview & Ch. 2: Graphs in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Barabási, A.-L., The network takeover
, Nat. Phys. 8(1), 14-16 (2012).
- Newman, M.E.J., The physics of networks, Phys. Today 61(11), 33-38 (2008).
- Barabási, A.-L. & Bonabeau, E., Scale-free networks, Sci. Am. 288(5), 50-59 (2003).
- Broder, A., Kumar, R. et al., Graph structure in the Web, Comput. Netw. 33(1-6), 309-320 (2000).
- Newman, M.E.J., Communities, modules and large-scale structure in networks, Nat. Phys. 8(1), 25-31 (2012).
- Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys. 8(1), 32-39 (2012).
- Motter, A.E. & Yang, Y., The unfolding and control of network cascades, Phys. Today 70(1), 33-39 (2017).
- Laurienti, P.J., Joyce, K.E. et al., Universal fractal scaling of self-organized networks, Physica A 390(20), 3608-3613 (2011).
- Ch. 1: Uvod in Šubelj, L., Odkrivanje skupin vozlišč v velikih realnih omrežjih, PhD thesis (University of Ljubljana, 2013).
- Hidalgo, C.A., Disconnected, fragmented, or united? A trans-disciplinary review of network science, Appl. Netw. Sci. 1, 6 (2016).
- Sayama, H., Mapping the curricular structure and contents of network science courses, e-print arXiv:1707.09570v2, pp. 17 (2017).
- Cramer, C., Porter, M.A., at al., Network Literacy: Essential Concepts and Core Ideas (Creative Commons Licence, 2015).
- Networks introduction and motivation (slides)
-
Random graphs and real networks. Degrees of separation in small-world networks, power-law distributions of scale-free networks and mixing in networks.
Lectures materials:
- Random graph models (slides)
- Configuration graph model (slides)
- Exponential random graph model (slides)
- Small-world networks and models (slides)
- Scale-free networks and models (slides)
- Node mixing in networks (slides)
Book chapters:
- Ch. 3: Random networks, Ch. 4-5: Scale-free model etc. & Ch. 7: Correlation etc. in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 8: Large-scale structure etc. & Ch. 12-15: Network models in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 11: Random Models etc. & Ch. 17: Global properties etc. in Estrada, E. & Knight, P.A., A First Course in Network Theory (Oxford University Press, 2015).
- Ch. 18: Power laws etc. & Ch. 20: Small-world etc. in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Erdős, P. & Rényi, A., On random graphs I, Publ. Math. Debrecen 6, 290-297 (1959).
- Newman, M.E.J., Watts, D.J. & Strogatz, S.H., Random graph models of social networks, P. Natl. Acad. Sci. USA 99, 2566-2572 (2002).
- Newman, M.E.J., Strogatz, S.H. & Watts, D.J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64(2), 026118 (2001).
- Milo, R., Kashtan, N. et al., On the uniform generation of random graphs with prescribed degree sequences, e-print arXiv:0312028v2, pp. 4 (2004).
- Carstens, C.J. & Horadam, K.J., Switching edges to randomize networks, J. Complex Netw. 5(3), 337-351 (2017).
- Dorogovtsev, S.N. & Mendes, J.F.F., Evolution of networks, Adv. Phys. 51(4), 1079-1187 (2002).
- Milgram, S., The small world problem, Psychol. Today 1(1), 60-67 (1967).
- Watts, D.J. & Strogatz, S.H., Collective dynamics of 'small-world' networks, Nature 393(6684), 440-442 (1998).
- Dodds, P.S., Muhamad, R. & Watts, D.J., An experimental study of search in global social networks, Science 301(5634), 827-829 (2003).
- Liben-Nowell, D., Novak, J. et al., Geographic routing in social networks, P. Natl. Acad. Sci. USA 102(33), 11623-11628 (2005).
- Backstrom, L., Boldi, P. et al., Four degrees of separation, In: Proceedings of WebSci '12 (Evanston, IL, USA, 2012), pp. 45-54.
- Ugander, J., Karrer, B. et al., The anatomy of the Facebook social graph, e-print arXiv:1111.4503v1, pp. 17 (2011).
- de Solla Price, D.J., Networks of scientific papers, Science 149, 510-515 (1965).
- Barabási, A.-L. & Albert, R., Emergence of scaling in random networks, Science 286(5439), 509-512 (1999).
- Clauset, A., Shalizi, C.R. & Newman, M.E.J., Power-law distributions in empirical data, SIAM Rev. 51, 661-703 (2009).
- Faloutsos, M., Faloutsos, P. & Faloutsos, C., On power-law relationships of the Internet topology, Comput. Commun. Rev. 29(4), 251-262 (1999).
- Golosovsky, M., Preferential attachment mechanism of complex network growth, e-print arXiv:1802.09786v1, pp. 12 (2018).
- Albert, R., Jeong, H. & Barabási, A.-L., Error and attack tolerance of complex networks, Nature 406(6794), 378-382 (2000).
- Albert, R., Jeong, H. & Barabási, A.-L., Diameter of the World Wide Web, Nature 401, 130-131 (1999).
- Broido, A.D. & Clauset, A., Scale-free networks are rare, e-print arXiv:1801.03400v1, pp. 14 (2018).
- Barabási, A.-L., Love is all you need, reply to e-print arXiv:1801.03400v1, pp. 6 (2018).
- Newman, M.E.J., Mixing patterns in networks, Phys. Rev. E 67(2), 026126 (2003).
- Newman, M.E.J., Assortative mixing in networks, Phys. Rev. Lett. 89(20), 208701 (2002).
- Newman, M.E.J. & Park, J., Why social networks are different from other types of networks, Phys. Rev. E 68(3), 036122 (2003).
- Pastor-Satorras, R., Vázquez, A. & Vespignani, A., Dynamical and correlation properties of the Internet, Phys. Rev. Lett. 87(25), 258701 (2001).
- Vázquez, A., Pastor-Satorras, R. & Vespignani, A., Large-scale topological and dynamical properties of the Internet, Phys. Rev. E 65(6), 066130 (2002).
- Xulvi-Brunet, R. & Sokolov, I.M., Changing correlations in networks: Assortativity and dissortativity, Acta Phys. Pol. B 36, 1431-1455 (2005).
- Park, J. & Barabási, A.-L., Distribution of node characteristics in complex networks, P. Natl. Acad. Sci. USA 104(46), 17916-17920 (2007).
- Foster, J.G., Foster, D.V. et al., Edge direction and the structure of networks, P. Natl. Acad. Sci. USA 107(24), 10815-10820 (2010).
- Estrada, E., Combinatorial study of degree assortativity in networks, Phys. Rev. E 84(4), 047101 (2011).
- Random graph models (slides)
-
Network community and core-periphery structure. Graph partitioning, blockmodeling and community detection. Network motifs, graphlets and node orbits.
Lectures materials:
- Weak ties and network community structure (slides)
- Graph partitioning and community detection (slides)
- Blockmodeling and stochastic block models (slides)
- Network motifs, graphlets and node orbits (slides)
Book chapters:
- Ch. 9: Communities in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 7.12-13: Similarity etc. & Ch. 11: Graph partitioning in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 21: Fragments etc. & Ch. 21: Communities etc. in Estrada, E. & Knight, P.A., A First Course in Network Theory (Oxford University Press, 2015).
- Ch. 3: Strong and weak ties in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Granovetter, M.S., The strength of weak ties, Am. J. Sociol. 78(6), 1360-1380 (1973).
- Girvan, M. & Newman, M.E.J., Community structure in social and biological networks, P. Natl. Acad. Sci. USA 99(12), 7821-7826 (2002).
- Ravasz, E., Somera, A.L. et al., Hierarchical organization of modularity in metabolic networks, Science 297(5586), 1551-1555 (2002).
- Newman, M.E.J. & Girvan, M., Mixing patterns and community structure in networks, Phys. Rev. E 67(2), 026126 (2003).
- Fortunato, S. & Barthelemy, M., Resolution limit in community detection, P. Natl. Acad. Sci. USA 104(1), 36-41 (2007).
- Palla, G., Derényi, I. et al., Uncovering the overlapping community structure of complex networks in nature and society, Nature 435(7043), 814-818 (2005).
- Guimera, R., Sales-Pardo, M. & Amaral, L.A.N., Classes of complex networks defined by role-to-role connectivity profiles, Nat. Phys. 3(1), 63-69 (2007).
- Lancichinetti, A., Kivela, M. et al., Characterizing the community structure of complex networks, PLoS ONE 5(8), e11976 (2010).
- Ahn, Y.-Y., Bagrow, J.P. & Lehmann, S., Link communities reveal multiscale complexity in networks, Nature 466(7307), 761-764 (2010).
- Onnela, J.-P., Saramäki, J. et al., Structure and tie strengths in mobile communication networks, P. Natl. Acad. Sci. USA 104(18), 7332-7336 (2007).
- Hric, D., Darst, R.K. & Fortunato, S., Community detection in networks: Structural communities versus ground truth, Phys. Rev. E 90(6), 062805 (2014).
- Schaub, M.T., Delvenne, J.-C. et al., The many facets of community detection in complex networks, Appl. Netw. Sci. 2, 4 (2017).
- Fortunato, S., Community detection in graphs, Phys. Rep. 486(3-5), 75-174 (2010).
- Fortunato, S. & Hric, D., Community detection in networks: A user guide, Phys. Rep. 659, 1-44 (2016).
- Xie, J., Kelley, S. & Szymanski, B.K., Overlapping community detection in networks, ACM Comput. Surv. 45(4), 43 (2013).
- Lancichinetti, A. & Fortunato, S., Community detection algorithms: A comparative analysis, Phys. Rev. E 80(5), 056117 (2009).
- Raghavan, U.N., Albert, R. & Kumara, S., Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E 76(3), 036106 (2007).
- Rosvall, M. & Bergstrom, C.T., Maps of random walks on complex networks reveal community structure, P. Natl. Acad. Sci. USA 105(4), 1118-1123 (2008).
- Blondel, V.D., Guillaume, J.-L. et al., Fast unfolding of communities in large networks, J. Stat. Mech., P10008 (2008).
- Kumpula, J.M., Kivelä, M. et al., Sequential algorithm for fast clique percolation, Phys. Rev. E 78(2), 026109 (2008).
- Šubelj, L. & Bajec, M., Ubiquitousness of link-density and link-pattern communities in real-world networks, Eur. Phys. J. B 85(1), 32 (2012).
- Šubelj, L., Blagus, N. & Bajec, M., Group extraction for real-world networks, In: Proceedings of NetSci '13 (Copenhagen, Denmark, 2013), pp. 2.
- Zhao, Y., Levina, E. & Zhu, J., Community extraction for social networks, P. Natl. Acad. Sci. USA 108(18), 7321-7326 (2011).
- Šubelj, L., Label propagation for clustering in Doreian, P., Batagelj, V. & Ferligoj, A., Advances in Network Clustering and Blockmodeling (Wiley, 2018).
- Reichardt, J. & White, D.R., Role models for complex networks, Eur. Phys. J. B 60(2), 217-224 (2007).
- Holland, P.W., Laskey, K.B. & Leinhardt, S., Stochastic blockmodels: First steps, Soc. Networks 5(2), 109-137 (1983).
- Airoldi, E.M., Blei, D.M. et al., Mixed membership stochastic blockmodels, J. Mach. Learn. Res. 9(9), 1981-2014 (2008)
- Newman, M.E.J. & Leicht, E.A., Mixture models and exploratory analysis in networks, P. Natl. Acad. Sci. USA 104(23), 9564 (2007).
- Karrer, B. & Newman, M.E.J., Stochastic blockmodels and community structure in networks, Phys. Rev. E 83(1), 016107 (2011).
- Peixoto, T., Model selection and hypothesis testing for large-scale network models with overlapping groups, Phys. Rev. X 5(1), 011033 (2015).
- Guimera, R., Sales-Pardo, M. & Amaral, L.A.N., Classes of complex networks defined by role-to-role connectivity profiles, Nat. Phys. 3(1), 63-69 (2007).
- Clauset, A., Moore, C. & Newman, M.E.J., Hierarchical structure and the prediction of missing links in networks, Nature 453(7191), 98-101 (2008).
- Guimera, R. & Sales-Pardo, M., Missing and spurious interactions and the reconstruction of complex networks, P. Natl. Acad. Sci. USA 106(52), 22073-22078 (2009).
- Šubelj, L. & Bajec, M., Group detection in complex networks: An algorithm and comparison of the state of the art, Physica A 397, 144-156 (2014).
- Peixoto, T.P., Bayesian stochastic blockmodeling in Doreian, P., Batagelj, V. & Ferligoj, A., Advances in Network Clustering and Blockmodeling (Wiley, 2018).
- Seidman, S.B., Network structure and minimum degree, Soc. Networks 5(3), 269–287 (1983).
- Borgatti, S.P. & Everett, M.G., Models of core/periphery structures, Soc. Networks 21(4), 375–395 (2000).
- Holme, P., Core-periphery organization of complex networks, Phys. Rev. E 72(4), 46111 (2005).
- Leskovec, J., Lang, K.J. et al., Community structure in large networks, Internet Math. 6(1), 29–123 (2009).
- Batagelj, V. & Zaveršnik, M., An O(m) algorithm for cores decomposition of networks, Adv. Data Anal. Classif. 5(2), 129–145 (2011).
- Csermely, P., London, A. et al., Structure and dynamics of core/periphery networks, J. Complex Netw. 1(2), 93-123 (2013).
- Rombach, M., Porter, M. et al., Core-periphery structure in networks, SIAM J. Appl. Math. 74(1), 167–190 (2014).
- Zhang, X., Martin, T. & Newman, M.E.J., Identification of core-periphery structure in networks, Phys. Rev. E 91(3), 32803 (2015).
- Jeub, L.G.S., Balachandran, P. et al., Think locally, act locally, Phys. Rev. E 91(1), 12821 (2015).
- Ma, A. & Mondragón, R.J., Rich-cores in networks, PLoS ONE 10(3), e0119678 (2015).
- Milo, R., Shen-Orr, S. et al., Network motifs: Simple building blocks of complex networks, Science 298(5594), 824-827 (2002).
- Milo, R., Itzkovitz, S. et al., Superfamilies of evolved and designed networks, Science 303(5663), 1538-1542 (2004).
- Valverde, S. & Solé, R.V., Network motifs in computational graphs: A case study in software architecture, Phys. Rev. E 72(2), 026107 (2005).
- Davies, T. & Marchione, E., Event networks and the identification of crime pattern motifs, PLoS ONE 10(11), e0143638 (2015).
- Benson, A.R., Gleich, D.F. & Leskovec, J., Higher-order organization of complex networks, Science 353(6295), 163-166 (2016).
- Pržulj, N., Corneil, D.G. & Jurisica, I., Modeling interactome: Scale-free or geometric?, Bioinformatics 20(18), 3508-3515 (2004).
- Pržulj, N., Biological network comparison using graphlet degree distribution, Bioinformatics 23(2), e177-e183 (2007).
- Yaveroğlu, Ö.N., Malod-Dognin, N. et al., Revealing the hidden language of complex networks, Sci. Rep. 4, 4547 (2014).
- Hočevar, T. & Demšar, J., A combinatorial approach to graphlet counting, Bioinformatics 30(4), 559-565 (2014).
- Soufiani, H.A. & Airoldi, E.M., Graphlet decomposition of a weighted network, J. Mach. Learn. Res. 22, 54-63 (2012).
- Sarajlić, A., Malod-Dognin, N. et al., Predictive functional connectivity of real-world systems, e-print arXiv:1603.05470v1, pp. 17 (2016).
- Peel, L., Delvenne, J.-C., & Lambiotte, R., Multiscale mixing patterns in networks, P. Natl. Acad. Sci. USA 115(16), 4057-4062 (2018).
- Sanchez-Garcia, R.J., Exploiting symmetry in network analysis, e-print arXiv:1803.06915v1, pp. 7 (2018).
- Weak ties and network community structure (slides)
-
Measures of node position and centrality, measures of link importance and bridging, and link analysis algorithms. Node similarity and equivalence.
Lectures materials:
- Measures of node centrality (slides)
- Node similarity and equivalence (slides)
- Measures of link bridging (slides)
- Link analysis algorithms (slides)
Book chapters:
- Ch. 7: Measures and metrics in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 14: Link analysis and web search in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
- Ch. 14: Classical node centrality & Ch. 15: Spectral etc. in Estrada, E. & Knight, P.A., A First Course in Network Theory (Oxford University Press, 2015).
Course readings:
- Katz, L., A new status index derived from sociometric analysis, Psychometrika 18(1), 39-43 (1953).
- Freeman, L.C., A set of measures of centrality based on betweenness, Sociometry 40(1), 35-41 (1977).
- Freeman, L.C., Centrality in social networks: Conceptual clarification, Soc. Networks 1(3), 215-239 (1979).
- Bonacich, P., Power and centrality: A family of measures, Am. J. Sociology 92(5), 1170-1182 (1987).
- Brandes, U., A faster algorithm for betweenness centrality, J. Math. Sociol. 25(2), 163-177 (2001).
- Jeong, H., Mason, S.P., et al., Lethality and centrality in protein networks, Nature 411, 41-42 (2001).
- Soffer, S.N. & Vázquez, A., Network clustering coefficient without degree-correlation biases, Phys. Rev. E 71(5), 057101 (2005).
- Newman, M.E.J., A measure of betweenness centrality based on random walks, Soc. Networks 27(1), 39-54 (2005).
- Jensen, P., Morini, M., et al., Detecting global bridges in networks, J. Complex Netw., 1-15 (2015), under review.
- Everett, M.G. & Valente, T.W., Bridging, brokerage and betweenness, Soc. Networks 44, 202-208 (2016).
- Franceschet, M. & Bozzo, E., A theory on power in networks, e-print arXiv:1510.08332v2, pp. 19 (2016).
- Agneessens, F., Borgatti, S.P. & Everett, M.G., Geodesic based centrality, Soc. Networks 49, 12-26 (2017).
- Wu, A.-K., Tian, L. & Liu, Y.-Y., Bridges in complex networks, Phys. Rev. E 97(1), 012307 (2018).
- Lorrain, F. & White, H.C., Structural equivalence of individuals in social networks, J. Math. Sociol. 1(1), 49-80 (1971).
- White, D.R., & Reitz, K.P., Graph and semigroup homomorphisms on networks of relations, Soc. Networks 5(2), 193-234 (1983).
- Leicht, E.A., Holme, P. & Newman, M.E.J., Vertex similarity in networks, Phys. Rev. E 73(2), 026120 (2006).
- Onnela, J.-P., Saramäki, J., et al., Structure and tie strengths in mobile communication networks, P. Natl. Acad. Sci. USA 104(18), 7332-7336 (2007).
- Liben‐Nowell, D. & Kleinberg, J., The link‐prediction problem for social networks, J. Am. Soc. Inf. Sci. Tec. 58(7), 1019-1031 (2007).
- Zhou, T., Lü, L. & Zhang, Y.-C., Predicting missing links via local information, Eur. Phys. J. B 71(4), 623-630 (2009).
- Kleinberg, J., Authoritative sources in a hyperlinked environment, J. ACM 46(5), 604-632 (1999).
- Brin, S. & Page, L., The anatomy of a large-scale hypertextual Web search engine, Comput. Networks ISDN 30(1-7), 107-117 (1998).
- Lempel, R. & Moran, S., SALSA: The stochastic approach for link-structure analysis, ACM Trans. Inf. Syst. 19(2), 131–160 (2001).
- Haveliwala, T.H., Topic-sensitive PageRank, In: Proceedings of WWW ’02 (Honolulu, HI, USA, 2002), pp. 517-526.
- Jeh, G. & Widom, J., SimRank: A measure of structural-context similarity, In: Proceedings of KDD ’02 (Edmonton, Canada, 2002), pp. 538–543.
- Gyongyi, Z., Garcia-Molina, H. & Pedersen, J., Combating web spam with TrustRank, In: Proceedings of VLDB ’04 (Toronto, Canada, 2004), pp. 576-587.
- Tong, H., Faloutsos, C. & Pan, J.-Y., Fast random walk with restart and its applications, In: Proceedings of ICDM ’06 (Washington, DC, USA, 2006), pp. 613-622.
- Berkhin, P., A survey on PageRank computing, Internet Math. 2(1), 73-120 (2005).
- Fabrikant, A., Mahdian, M. & Tomkins, A., SCRank, e-print arXiv:1802.08204v1, pp. 10 (2018).
-
Generative models of network evolution and link copying models. Network optimization models and random geometric graphs.
Lectures materials:
- Models of network evolution (see below)
- Network optimization models (slides)
Book chapters:
- Ch. 5: Barabási-Albert model in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 14: Models of network formation in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
Course readings:
- Kleinberg, J.M., Kumar, R. et al., The web as a graph, In: Proceedings of COCOON ’99 (Tokyo, Japan, 1999), pp. 1–17.
- Dorogovtsev, S.N., Mendes, J.F.F. & Samukhin, A.N., Structure of growing networks with preferential linking, Phys. Rev. Lett. 85(21), 4633 (2000).
- Bianconi, G. & Barabási, A.-L., Competition and multiscaling in evolving networks, Europhys. Lett. 54(4), 436-442 (2001).
- Krapivsky, P.L. & Redner, S., Organization of growing random networks, Phys. Rev. E 63(6), 066123 (2001).
- Dorogovtsev, S.N. & Mendes, J.F.F., Evolution of networks, Adv. Phys. 51(4), 1079–1187 (2002).
- Vázquez, A., Growing network with local rules, Phys. Rev. E 67(5), 056104 (2003).
- Krapivsky, P.L. & Redner, S., Network growth by copying, Phys. Rev. E 71(3), 036118 (2005).
- Leskovec, J., Kleinberg, J. & Faloutsos, C., Graph evolution, ACM Trans. Knowl. Discov. Data 1(1), 1–41 (2007).
- Hébert-Dufresne, L., Allard, A. et al., Structural preferential attachment, Phys. Rev. Lett. 107(15), 158702 (2011).
- Hébert-Dufresne, L., Allard, A. et al., Structural preferential attachment, Phys. Rev. E 85(2), 026108 (2012).
- D'Souza, R.M., Borgs, C. et al., Emergence of tempered preferential attachment from optimization, P. Natl. Acad. Sci. USA 104(15), 6112-6117 (2007).
- Fabrikant, A., Koutsoupias, E. & Papadimitriou, C., Heuristically optimized trade-offs, In: Proceedings of ICALP ’02 (Malaga, Spain, 2002), pp. 110-122.
- Pržulj, N., Corneil, D.G. & Jurisica, I., Modeling interactome: Scale-free or geometric?, Bioinformatics 20(18), 3508–3515 (2004).
- Ferrer i Cancho, R. & Solé, R.V., Optimization in complex networks, e-print arXiv:cond-mat/0111222v1, pp. 4 (2006).
- Gastner, M.T. & Newman, M.E.J., Optimal design of spatial distribution networks, Phys. Rev. E 74(1), 016117 (2006).
- Papadopoulos, F., Kitsak, M. et al., Popularity versus similarity in growing networks, Nature 489(7417), 537-540 (2012).
- Models of network evolution (see below)
-
Network inference and link prediction methods. Network-based clustering, classification and regression. Network influence maximization and outbreak detection.
Lectures materials:
- Network inference and link prediction (slides)
- Network-based clustering and classification (slides)
- Network influence maximization (video)
- Network outbreak detection (video)
Course readings:
- Liben‐Nowell, D. & Kleinberg, J., The link‐prediction problem for social networks, J. Am. Soc. Inf. Sci. Tec. 58(7), 1019-1031 (2007).
- Clauset, A., Moore, C. & Newman, M.E.J., Hierarchical structure and the prediction of missing links in networks, Nature 453(7191), 98-101 (2008).
- Guimera, R. & Sales-Pardo, M., Missing and spurious interactions and the reconstruction of complex networks, P. Natl. Acad. Sci. USA 106(52), 22073-22078 (2009).
- Gomez-Rodriguez, M., Leskovec, J. & Krause, A., Inferring networks of diffusion and influence, ACM Trans. Knowl. Discov. Data 5(4), 21:1-37 (2012).
- Martin, T., Ball, B. & Newman, M.E.J., Structural inference for uncertain networks, Phys. Rev. E 93(1), 012306 (2016).
- Zhou, T., Lü, L. & Zhang, Y.-C., Predicting missing links via local information, Eur. Phys. J. B 71(4), 623-630 (2009).
- Backstrom, L. & Leskovec, J., Supervised random walks, In: Proceedings of WSDM '11 (Hong Kong, China, 2011), pp. 635-644.
- Yan, B. & Gregory, S., Finding missing edges in networks based on their community structure, Phys. Rev. E 85(5), 056112 (2012).
- Li, Z., Fang, X. & Sheng, O., A survey of link recommendation for social networks, e-print arXiv:1511.01868v1, pp. 34 (2015).
- Lü, L. & Zhou, T., Link prediction in complex networks: A survey, Physica A 390(6), 1150-1170 (2011).
- Getoor, L. & Diehl, C.P., Link mining: A survey, SIGKDD Explor. 7(2), 3–12 (2005).
- Getoor, L., Friedman, N. et al., Learning probabilistic models of link structure, J. Mach. Learn. Res. 3, 679–707 (2002).
- Neville, J. & Jensen, D., Iterative classification in relational data, In: Proceedings of SRL ’00 (Austin, TX, USA, 2000), pp. 13–20.
- Macskassy, S.A. & Provost, F., Classification in networked data: A toolkit and a univariate case study, J. Mach. Learn. Res. 8, 935-983 (2007).
- Bhattacharya, I. & Getoor, L., Collective entity resolution in relational data, ACM Trans. Knowl. Discov. Data 1(1), 5:1-9 (2007).
- Bhagat, S., Cormode, G. & Muthukrishnan, S., Node classification in social networks, e-print arXiv:1101.3291v1, pp. 37 (2011).
- McAuley, J.J. & Leskovec, J., Learning to discover social circles in ego networks, In: Proceedings of NIPS ’12 (Lake Tahoe, NV, USA, 2012), pp. 548-556.
- Hric, D., Darst, R.K. & Fortunato, S., Structural communities versus ground truth, Phys. Rev. E 90(6), 062805 (2014).
- Šubelj, L., Exploratory and predictive tasks of network community detection, In: Proceedings of NetSci '15 (Zaragoza, Spain, 2015), p. 1.
- Hric, D., Peixoto, T.P. & Fortunato, S., Network structure, metadata and the prediction of missing nodes, e-print arXiv:1604.00255v1, pp. 13 (2016).
- Zanin, M., Papo, D. et al., Combining complex networks and data mining: Why and how, e-print arXiv:1604.08816, pp. 58 (2016).
- Perozzi, B., Al-Rfou, R. & Skiena, S., DeepWalk, In: Proceedings of KDD ’14 (New York, NY, USA, 2014), pp. 701-710.
- Grover, A. & Leskovec, J., node2vec, In: Proceedings of KDD ’16 (San Francisco, CA, USA, 2016), pp. 855-864.
- Figueiredo, D.R., Ribeiro, L.F.R. & Saverese, P.H.P., struc2vec, In: Proceedings of KDD ’17 (Halifax, Canada, 2017), pp. 1–9.
- Peel, L., Graph-based semi-supervised learning for relational networks, In: Proceedings of SDM ’17 (Houston, TX, USA, 2017), pp. 1-11.
- Network inference and link prediction (slides)
-
Fractal networks and self-similarity, network sampling, backbones and skeletons. Network comparison by fragments and statistical comparison of network metrics.
Lectures materials:
- Network self-similarity and sampling (slides)
- Network backbones and skeletons (slides)
- Structural network comparison (slides)
Book chapters:
- Ch. 3.7: Snowball sampling etc. in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
Course readings:
- Song, C., Havlin, S. & Makse, H.A., Self-similarity of complex networks, Nature 433(7024), 392-395 (2005).
- Lee, S.H., Kim, P.-J. & Jeong, H., Statistical properties of sampled networks, Phys. Rev. E 73(1), 016102 (2006).
- Leskovec, J. & Faloutsos, C., Sampling from large graphs, In: Proceedings of KDD '06 (Philadelphia, PA, USA, 2006), pp. 631-636.
- Furuya, S. & Yakubo, K., Multifractality of complex networks, Phys. Rev. E 84(3), 036118 (2011).
- Laurienti, P.J., Joyce, K.E. et al., Universal fractal scaling of self-organized networks, Physica A 390(20), 3608–3613 (2011).
- Blagus, N., Šubelj, L. & Bajec, M., Self-similar scaling of density in complex real-world networks, Physica A 391(8), 2794-2802 (2012).
- Schneider, C.M., Kesselring, T.A. et al., Box-covering algorithm for fractal dimension of complex networks, Phys. Rev. E 86(1), 016707 (2012).
- Guimerà, R., Danon, L. et al., Self-similar community structure in a network of human interactions, Phys. Rev. E 68(6), 065103 (2003).
- Blagus, N., Šubelj, L. et al., Sampling promotes community structure in social and information networks, Physica A 432, 206-215 (2015).
- Blagus, N., Šubelj, L. & Bajec, M., Assessing the effectiveness of real-world network simplification, Physica A 413, 134-146 (2014).
- Grady, D., Thiemann, C. & Brockmann, D., Robust classification of salient links in complex networks, Nat. Commun. 3, 864 (2012).
- van den Heuvel, M.P., Kahn, R.S. et al., High-cost, high-capacity backbone for global brain communication, P. Natl. Acad. Sci. USA 109(28), 11372–11377 (2012).
- Ruan, N., Jin, R. et al., Network backbone discovery using edge clustering, e-print arXiv:1202.1842v2, pp. 14 (2012).
- Hamann, M., Lindner, G. et al., Structure-preserving sparsification methods for social networks, Soc. Netw. Anal. Min. 6(1), 22 (2016).
- Coscia, M. & Neffke, F., Network backboning with noisy data, In: Proceedings of ICDE '17 (San Diego, CA, USA, 2017), pp. 425–436.
- Šubelj, L., Convex skeletons of complex networks, e-print arXiv:1709.00255v2, pp. 11 (2017).
- Milo, R., Itzkovitz, S. et al., Superfamilies of evolved and designed networks, Science 303(5663), 1538-1542 (2004).
- Pržulj, N., Biological network comparison using graphlet degree distribution, Bioinformatics 23(2), e177-e183 (2007).
- Cooper, K. & Barahona, M., Role-similarity based comparison of directed networks, e-print arXiv:1103.5582v1, pp. 6 (2011).
- Bagrow, J.P. & Bollt, E.M., An information-theoretic, all-scales approach to comparing networks, e-print arXiv:1804.03665v1, pp. 18 (2018).
- Šubelj, L., Fiala, D. & Bajec, M., Network-based statistical comparison of bibliographic databases, Sci. Rep. 4, 6496 (2014).
- Yaveroğlu, Ö.N., Malod-Dognin, N. et al., Revealing the hidden language of complex networks, Sci. Rep. 4, 4547 (2014).
- Aparício, D., Ribeiro, P. & Silva, F., Network comparison using directed graphlets, e-print arXiv:1511.01964v1, pp. 9 (2015).
- Schieber, T. A., Carpi, L. et al., Quantification of network structural dissimilarities, Nat. Commun. 8, 13928 (2017).
- Network self-similarity and sampling (slides)
-
Decentralized search and network navigation. Percolation theory and network robustness. Spreading and diffusion on networks. Game theory and networks.
Lectures materials:
- Percolation and network robustness (slides)
- Epidemic spreading on networks (slides)
- Network diffusion and contagion (video)
- Search and network navigation (video)
- Game theory and networks (skipped)
Book chapters:
- Ch. 8: Network robustness & Ch. 10: Spreading phenomena in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 16: Percolation etc. & Ch. 17: Epidemics on networks in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 6-9: Game theory etc. in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys. 8(1), 32–39 (2012).
- Molloy, M. & Reed, B., A critical point for random graphs with a given degree sequence, Random Struct. Algor. 6(2-3), 161–180 (1995).
- Albert, R., Jeong, H. & Barabási, A.-L., Error and attack tolerance of complex networks, Nature 406(6794), 378–382 (2000).
- Callaway, D.S., Newman, M.E.J. et al., Network robustness and fragility, Phys. Rev. Lett. 85(25), 5468–5471 (2000).
- Cohen, R., Erez, K. et al., Resilience of the Internet to random breakdowns, Phys. Rev. Lett. 85(21), 4626 (2000).
- Cohen, R., Erez, K. et al., Breakdown of the Internet under intentional attack, Phys. Rev. Lett. 86(16), 3682–3685 (2001).
- Bollobás, B. & Riordan, O., Robustness and vulnerability of scale-free random graphs, Internet Math. 1(1), 1–35 (2003).
- Pastor-Satorras, R. & Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86(14), 3200–3203 (2001).
- Pastor-Satorras, R. & Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63(6), 066117 (2001).
- Colizza, V., Barrat, A. et al., Role of airline transportation network in global epidemics, P. Natl. Acad. Sci. USA 103(7), 2015-2020 (2006).
- González, M.C., Hidalgo, C.A. & Barabási, A.-L., Understanding individual human mobility patterns, Nature 453, 779-782 (2008).
- Castellano, C. & Pastor-Satorras, R., Thresholds for epidemic spreading in networks, Phys. Rev. Lett. 105(21), 218701 (2010).
- Karrer, B. & Newman, M.E.J., Message passing approach for general epidemic models, Phys. Rev. E 82(1), 016101 (2010).
- Karrer, B. & Newman, M.E.J., Competing epidemics on complex networks, Phys. Rev. E 84(3), 036106 (2011).
- Barabási, A.-L., The origin of bursts and heavy tails in human dynamics, Nature 435, 207-211 (2005).
-
Attributed, valued and signed networks. Multi-relational, multilayer and higher-order networks. Temporal and spatial networks.
Lectures materials:
- Attributed, valued and signed networks (see above)
- Multi-relational and multilayer networks (skipped)
- Higher-order dependencies in networks (skipped)
- Temporal and spatial networks (skipped)
Book chapters:
- Ch. 5: Negative relationship etc. in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Cartwright, D. & Harary, F., Structural balance: A generalization of Heider's theory, Psychol. Rev. 63(5), 277-293 (1956).
- Davis, J.A., Structural balance, mechanical solidarity, and interpersonal relations, Am. J. Sociol. 68(4), 444-462 (1963).
- Antal, T., Krapivsky, P.L. & Redner, S., Dynamics of social balance on networks, Phys. Rev. E 72(3), 036121 (2005).
- Marvel, S.A., Strogatz, S. & Kleinberg, J., Energy landscape of social balance, Phys. Rev. Lett. 103(19), 198701 (2009).
- Leskovec, J., Huttenlocher, D. & Kleinberg, J., Signed networks in social media, In: Proceedings of CHI ’10 (Atlanta, GA, USA, 2010), pp. 1361-1370.
- Leskovec, J., Huttenlocher, D. & Kleinberg, J., Predicting positive and negative links in online social networks, In: Proceedings of WWW ’10 (Raleigh, NC, USA, 2010), pp. 641-650.
- Facchetti, G., Iacono, G. & Altafini, C., Computing global structural balance in large-scale signed social networks, P. Natl. Acad. Sci. USA 108(52), 20953–20958 (2011).
- Marvel, S.A., Kleinberg, J. et al., Continuous-time model of structural balance, P. Natl. Acad. Sci. USA 108(5), 1771-1776 (2011).
- Barthelemy, M., Spatial networks, Phys. Rep. 499(1-3), 1–101 (2011).
- Holme, P. & Saramäki, J., Temporal networks, Phys. Rep. 519(3), 97–125 (2012).
- Kivelä, M., Arenas, A. et al., Multilayer networks, J. Complex Netw. 2(3), 203-271 (2014).
- Boccaletti, S., Bianconi, G. et al., The structure and dynamics of multilayer networks, Phys. Rep. 544(1), 1–122 (2014).
- De Domenico, M., Granell, C. et al., The physics of multilayer networks, e-print arXiv:1604.02021v1, pp. 22 (2016).
- Holme, P., Modern temporal network theory: A colloquium, Eur. Phys. J. B 88(9), 234 (2015).
- Attributed, valued and signed networks (see above)
-
Network representations, data structures, fundamental algorithms, programming libraries and software. Node layout and network visualization.
Lectures materials:
- Network representations and data structures (slides)
- Fundamental network analysis algorithms (slides)
- Node layout and network visualization (slides)
- Network libraries and software (handout)
Book chapters:
- Ch. 4.8: Generating networks etc. in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 9-11.1: Network algorithms etc. in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
Course readings:
- Brandes, U., A faster algorithm for betweenness centrality, J. Math. Sociol. 25(2), 163-177 (2001).
- Batagelj, V. & Brandes, U., Efficient generation of large random networks, Phys. Rev. E 71(3), 036113 (2005).
- Sanders, P. & Schulz, C., Scalable generation of scale-free graphs, e-print arXiv:1602.07106v1, pp. 6 (2016).
- Clauset, A., Shalizi, C.R. & Newman, M.E.J., Power-law distributions in empirical data, SIAM Rev. 51, 661-703 (2009).
- Hočevar, T. & Demšar, J., A combinatorial approach to graphlet counting, Bioinformatics 30(4), 559-565 (2014).
- Ahmed, N.K., Neville, J. et al., Graphlet decomposition, e-print arXiv:1506.04322v2, pp. 32 (2016).
- Fortunato, S., Community detection in graphs, Phys. Rep. 486(3-5), 75-174 (2010).
- Berkhin, P., A survey on PageRank computing, Internet Math. 2(1), 73-120 (2005).
- Eades, P., A heuristic for graph drawing, Congressus Numerantium 42, 146-160 (1984).
- Kamada, T. & Kawai, S., An algorithm for drawing general undirected graphs, Inform. Process. Lett. 31(1), 7-15 (1989).
- Fruchterman, T.M.J. & Reingold, E.M., Graph drawing by force-directed placement, Softw: Pract. Exper. 21(11), 1129-1164 (1991).
- Rodrigues, J., Tong, H. et al., GMine, In: Proceedings of VLDB ’06 (Seoul, South Korea, 2006), pp. 1195-1198.
- Rodrigues, J., Traina, A. et al., Supergraph visualization, In: Proceedings of ISM ’06 (San Diego, CA, USA, 2006), pp. 227-234.
- Kobourov, S.G., Spring embedders and force directed graph drawing algorithms, e-print arXiv:1201.3011v1, pp. 23 (2012).
- Gibson, H., Faith, J. & Vickers, P., A survey of two-dimensional graph layout techniques, Infor. Visual. 12(3-4), 324-357 (2013).
- Ma, K.-L. & Muelder, C.W., Large-scale graph visualization and analytics, Computer 46(7), 39-46 (2013).
- Network representations and data structures (slides)
-
Comparing bibliographic databases, clustering and modeling scientific publications, and analyzing scientific coauthorships. Mining software dependency networks. Detecting automobile insurance fraudsters.
Lectures materials:
- Comparing databases (see above)
- Clustering scientific publications (slides)
- Modeling scientific publications (slides)
- Analyzing scientific coauthorships (skipped)
- Software dependency networks (slides)
- Insurance fraud detection (slides)
Further readings:
- Šubelj, L., Fiala, D. & Bajec, M., Network-based statistical comparison of bibliographic databases, Sci. Rep. 4, 6496 (2014).
- Šubelj, L., Bajec, M. et al., Quantifying the consistency of scientific databases, PLoS ONE 10(5), e0127390 (2015).
- Newman, M.E.J., The structure of scientific collaboration networks, P. Natl. Acad. Sci. USA 98(2), 404–409 (2001).
- Perc, M., Growth and structure of Slovenia’s scientific collaboration network, J. Infometrics 4(4), 475–482 (2010).
- Waltman, L. & Van Eck, N.J., Constructing a publication-level classification system of science, J. Am. Soc. Inf. Sci. Tec. 63(12), 2378-2392 (2012).
- Van Eck, N.J. & Waltman, L., CitNetExplorer: A new software tool for analyzing and visualizing citation networks, J. Infometr. 8(4), 802–823 (2014).
- Šubelj, L., Van Eck, N.J. & Waltman, L., Comparison of methods for clustering citation networks, In: Proceedings of NetSci-X ’16 (Wroclaw, Poland, 2016), p. 1.
- Šubelj, L., Van Eck, N.J. & Waltman, L., Clustering scientific publications based on citation relations, PLoS ONE 11(4), e0154404 (2016).
- Simkin, M.V. & Roychowdhury, V.P., Read before you cite!, Compl. Syst. 14(3), 269–274 (2003).
- Menczer, F., Evolution of document networks, P. Natl. Acad. Sci. USA 101(1), 5261–5265 (2004).
- Hajra, K.B. & Sen, P., Modeling aging characteristics in citation networks, Physica A 368(2), 575–582 (2005).
- Simkin, M.V. & Roychowdhury, V.P., Copied citations create renowned papers?, Annals Improb. Res. 11(1), 24–27 (2005).
- Wu, Z.-X. & Holme, P., Modeling scientific-citation patterns and other triangle-rich acyclic networks, Phys. Rev. E 80(3), 037101 (2009).
- Ren, F.-X., Cheng, X.-Q. & Shen, H.-W., Modeling the clustering in citation networks, Physica A 391(12), 3533–3539 (2012).
- Šubelj, L. & Bajec, M., Model of complex networks based on citation dynamics, In: Proceedings of LSNA ’13 (Rio de Janeiro, Brazil, 2013), pp. 527–530.
- Šubelj, L., Žitnik, S. & Bajec, M., Who reads and who cites?, In: Proceedings of NetSci ’14 (Berkeley, CA, USA, 2014), p. 1.
- Xie, Z., Ouyang, Z. et al., A geometric graph model for citation networks of exponentially growing scientific papers, Physica A 456, 167-175 (2016).
- Clough, J.R. & Evans, T.S., What is the dimension of citation space?, Physica A 448, 235–247 (2016).
- Myers, C.R., Software systems as complex networks, Phys. Rev. E 68(2), 046116 (2003).
- Valverde, S. & Solé, R.V., Logarithmic growth dynamics in software networks, Europhys. Lett. 72(5), 858-864 (2005).
- Valverde, S. & Solé, R.V., Network motifs in computational graphs, Phys. Rev. E 72(2), 026107 (2005).
- Kohring, G.A., Complex dependencies in large software systems, Advs. Complex Syst. 12(6), 565–581 (2009).
- Šubelj, L. & Bajec, M., Community structure of complex software systems, Physica A 390(16), 2968–2975 (2011).
- Fortuna, M.A., Bonachela, J.A. & Levin, S.A., Evolution of a modular software network, P. Natl. Acad. Sci. USA 108(50), 19985–19989 (2011).
- Šubelj, L., Žitnik, S. et al., Node mixing and group structure of complex software networks, Advs. Complex Syst. 17(7-8), 1450022 (2014).
- Šubelj, L. & Bajec, M., Software systems through complex networks science, In: Proceedings of SoftMine ’12 (Beijing, China, 2012), pp. 9–16.
- Derrig, R.A., Insurance fraud, J. Risk Insur. 69(3), 271–287 (2002).
- Viaene, S., Derrig, R.A. et al., A comparison of state-of-the-art classification techniques for insurance claim fraud detection, J. Risk Insur. 69(3), 373–421 (2002).
- Šubelj, L., Furlan, Š. & Bajec, M., An expert system for detecting automobile insurance fraud using social network analysis, Expert Syst. Appl. 38(1), 1039–1052 (2011).
- Furlan, Š. & Bajec, M., Holistic approach to fraud management in health insurance, J. Inf. Organ. Sci. 32(2), 99-114 (2008).
- Comparing databases (see above)