Topološka analiza podatkov
Tedenski povzetek
-
Lecturer:
- Žiga Virk (ziga.virk@fri.uni-lj.si)
- Aleksandra Franc (aleksandra.franc@fri.uni-lj.si)
- Gregor Jerše (gregor.jerse@fri.uni-lj.si)
-
Introduction. Basic definitions and concepts: metrics, continuous maps, homeomorphisms, homotopy type.
Textbook: Chapter 1
-
-
Triangulations in the plane, Voronoi diagram, Delaunay triangulation.
Textbook: Chapter 2
-
-
Geometric simplicial complexes, Abstract simplicial complexes, Euler characteristic
Textbook: Chapter 3
-
-
Triangulated manifolds, orientation. Classification of surfaces.
Textbook: Chapter 4 -
-
Carve a pumpkin
-
Simplicial complexes on data sets:
- Vietoris Rips complex
- Cech complex
- The nerve construction
- Mapper
Interleaving.
Textbook: Chapter 5
-
Algebraic groups. Intuition and idea of homology.
Textbook: Chapter 6, idea of chapter 7
-
-
Homology groups
Textbook: Chapters 7 and 8.1
-
-
Computing homology
Textbook: Chapters 7 and 8.1
-
-
Persistent homology
Textbook: Chapter 9
-
-
Filtrations, persistence modules, interleavings, Gromov-Hausdorff distance
Textbook: Chapters 9 and 10
-
-
Stability theorem for persistent homology, Wasserstein distance, further developments of persistence, examples of applications
Textbook: Chapter 10
-
-
-
Discrete Morse theory: discrete Morse functions, discrete gradient vector fields
Textbook: Chapter 11 -
-
-