rk4.m
function [x,t]=rk4(fun,x0,t0,tk,n,par) %[x,t]=rk4(fun,x0,t0,tk,n) %izracuna priblizek x za resitev diferencialne enacbe %x'(t)=fun(t,x(t)) %x(t0)=x0 %na intervalu [t0,tk] po metodi Runge-Kutta 4.reda. %n je stevilo korakov d=length(x0);%dimenzija sistema t=linspace(t0,tk,n);%cas h=t(2)-t(1);%korak x=zeros(d,n);%prostor za resitev x(:,1)=x0;%zacetni pogoj for i=1:n-1 k1=h*feval(fun,t(i),x(:,i),par); k2=h*feval(fun,t(i)+h/2,x(:,i)+k1/2,par); k3=h*feval(fun,t(i)+h/2,x(:,i)+k2/2,par); k4=h*feval(fun,t(i)+h,x(:,i)+k3,par); x(:,i+1)=x(:,i)+(k1+2*k2+2*k3+k4)/6; end
Последнее изменение: вторник, 10 января 2017, 15:11