Перейти к основному содержанию
Učilnica FRI 23/24
  • В начало
  • Дополнительно
Закрыть
Изменить данные поисковой строки
Русский ‎(ru)‎
English ‎(en)‎ Slovenščina ‎(sl)‎ Македонски ‎(mk)‎ Русский ‎(ru)‎ 한국어 ‎(ko)‎
Вы используете гостевой доступ
Вход
В начало
Course Activities
Задания Планирования встреч Ресурсы Тесты Форумы
Recent Courses
You are not enrolled in any courses
  1. IntSys
  2. Literature and readings

Literature and readings

The main literature for machine learning:
  • James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J., 2023. An Introduction to Statistical Learning: With Applications in Python. New York: Springer. Freely available at https://www.statlearning.com/  (the same book exists for R)

Further readings:

  • Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer, Berlin. (freely available)
  • Yuxi Li (2018). Deep reinforcement learning, https://arxiv.org/abs/1810.06339
  • Yoav Shoham, Kevin Leyton-Brown: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 200, freely available
  • Jurafsky, Daniel and James, Martin (2019): Speech and Language Processing, 3rd edition in progres, freely available
  • Richard S. Sutton and Andrew G. Barto: Reinforcement Learning, An Introduction, 2nd edition, MIT press, 2018, freely available

  • Kononenko, I., Robnik-Šikonja, M.: Inteligentni sistemi. Založba FE in FRI, 2010 (in Slovene, mostly outdated, available in the bookshop at the entrance)


◄ Some recordings of the partially outdated lectures are available in MS Teams, UL FRI Intelligent systems team, use the code 6zwq5bg for access.
Samples of written exams ►
Вы используете гостевой доступ (Вход)
Скачать мобильное приложение Obvestilo o avtorskih pravicah
На платформе Moodle