University of Ljubljana, Faculty of Computer and Information Science

Solving linear recurrences with annihilators

Prof Marko Robnik-Šikonja

Analysis of Algorithms and Heuristic Problem Solving Edition 2024

Linear recurrence

- T(n) is a linear combination of (a small number) of nearby values T(n-1), T(n-2),...
- Example: Fibonacci T(n) = T(n-1) + T(n-2) T(0) = 0T(1) = 1
- Solution: in general, a combination of polynomials and exponential functions
- How to solve these equations?

• Jeff Erickson: Models of Computation (Solving Recurrences, Appendix II), 2019 available at <u>http://jeffe.cs.illinois.edu/teaching/algorithms/</u>

Operators

- Operators are higher order functions, taking other functions as their arguments
- For example, integral $\int f(x)dx$ or differential $\frac{df}{dx}$ are operators
- In solving recurrences we need three operators
 - sum (f+g)(n) = f(n) + g(n)
 - scale $(a \cdot f)(n) = a \cdot (f(n))$
 - shift (Ef)(n) = f(n+1)
- Scale and shift are linear (can be distributed over sums)
- We combine operators and get compound operators

Manipulation of operators

 Compound manipulators behave as polynomials over variable E

Operator manipulation

Operator	Definition
addition	(f+g)(n) := f(n) + g(n)
subtraction	(f-g)(n) := f(n) - g(n)
multiplication	$(\alpha \cdot f)(n) := \alpha \cdot (f(n))$
shift	$\boldsymbol{E}f(n) := f(n+1)$
k-fold shift	$\boldsymbol{E}^k f(n) := f(n+k)$
composition	(X+Y)f := Xf + Yf
	(X-Y)f := Xf - Yf
	XYf := X(Yf) = Y(Xf)
distribution	X(f+g) = Xf + Xg

Annihilators

- Annihilator is a nontrivial operator transforming function to zero.
- Multiplication by zero is a trivial operator, which we don't take into account.
- Every compound operator annihilates a specific class of functions
- Every function composed of polynomial and exponential functions has a unique (minimal) annihilator
- The goal: find annihilators from different class of functions.

Annihilator behaviour

Operator	Function annihilated
E-1	α
E-a	αa ⁿ
(E-a)(E-b)	αa ⁿ + βb ⁿ ; if a≠b
(E-a ₀) (E-a ₁)(E-a _k)	$\sum_{i=0}^k lpha_i a_i^n$; if $\mathbf{a_i} eq \mathbf{a_j}$ for all i, j
(E-1) ²	α n + β
(E-a) ²	$(\alpha n + \beta)a^n$
(E-a) ² (E-b)	$(\alpha n + \beta)a^n + \gamma b^n$; if a \neq b
(E-a) ^d	$(\sum_{i=0}^{d-1} \alpha_i n^i) a^n$

- If **X** annihilates *f*, then **X** also annihilates **E** *f*.
- If **X** annihilates both *f* and *g*, then **X** also annihilates *f* ± *g*.
- If **X** annihilates *f*, then **X** also annihilates αf , for any constant α .
- If **X** annihilates f and **Y** annihilates g, then **XY** annihilates f ± g.

Annihilating recurrences

- To solve linear recurrences (remember their solutions are composed of polynomials and exponentials) one has to annihilate them.
 - 1. Write the recurrence in operator form
 - 2. Extract an annihilator for the recurrence
 - 3. Factor the annihilator (if necessary) (and possible)
 - 4. Extract the generic solution from the annihilator
 - 5. Solve for coefficients using base cases (if known)

Generating functions

- Generating functions are a generalization of annihilators.
- General tool for combinatorics and counting.
- Recommended further reading:

Robert Sedgewick and Philippe Flajolet. *An introduction to the analysis of algorithms*. Pearson, 1996.

(also 2nd edition, 2013)