Analysis of Algorithms and Heuristic Problem Solving

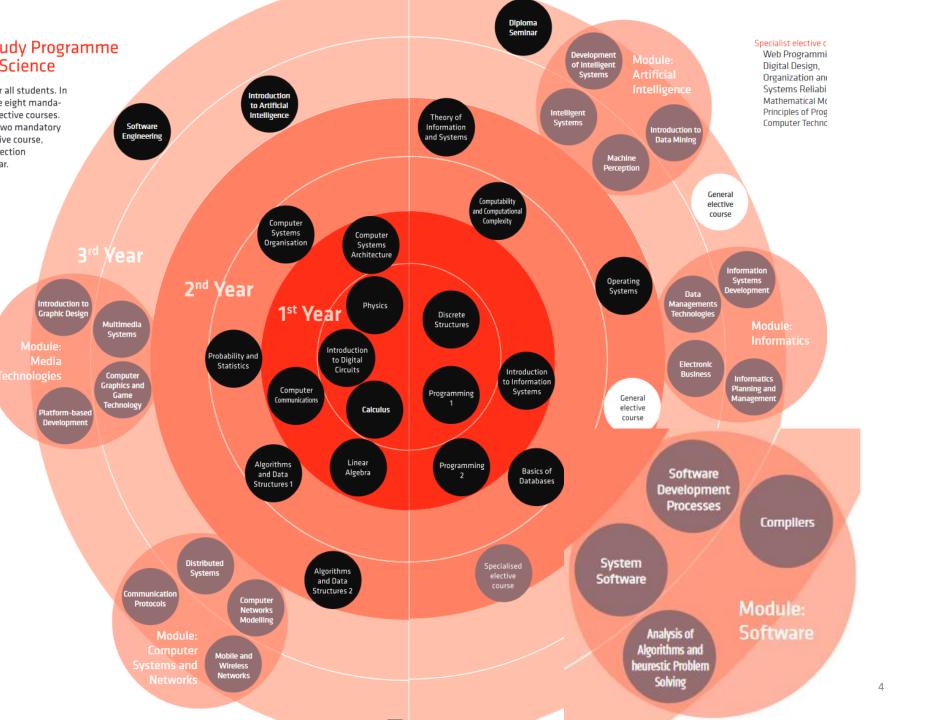
Prof Dr Marko Robnik-Šikonja Ljubljana, Edition 2024

Lecturer

- Prof Dr Marko Robnik-Šikonja
- marko.robnik@fri.uni-lj.si
- FRI, Večna pot 113, room 2.06, 2nd floor, right from the elevator
- (01) 4798 241
- Contact hour (see webpage)
 - currently, Wednesdays, 14:00 15:00 or by arrangement, best to email me
- https://fri.uni-lj.si/en/employees/marko-robnik-sikonja
- Research interests: machine learning, artificial intelligence, natural language processing, network analytics, algorithms and data structures

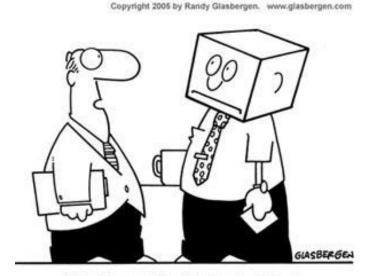
Assistant

- Dr Matej Pičulin <u>matej.piculin@fri.uni-lj.si</u>
- Laboratory for Cognitive Modeling
- tutorials mainly in the form of consultations; please, prepare questions!



Objectives

- Students shall become acquainted with
 - the analysis of algorithms, at foremost computational complexity,
 - techniques for efficient solving of difficult problems, requiring optimization techniques and approximations.
- Practical use of theoretical knowledge on (almost) real-world problems.
- Increase the problem-solving toolbox with
 - new techniques for analysis of algorithms,
 - heuristic optimization algorithms.
- For a given optimization problem, students shall be able to
 - select one of the appropriate methods,
 - construct a solution prototype.



Lectures and tutorials

• Lectures:

- introduction to the topic, discussion,
- some examples,
- broader view of the topic.

• Tutorials:

- exercises,
- assignments motivated by practical use,
- assistant presents the assignments, helps with tips, moderates discussion so...
- ... come prepared and pose questions.
- Introduce some problem solving tools and useful software.

Syllabus

- 1st part:
 - computational complexity,
 - analysis of algorithms,
 - some problems turn out to be too difficult for solving exactly, so we need approximation methods and heuristic approaches,
- 2nd part:
 - heuristic programming,
 - introduction to some heuristic approaches using
 - · operation research approaches,
 - population techniques
 - metaheuristics
 - · machine learning
 - how to approach real-world problems.

More details

Lecture topics:

- Analysis of recursive algorithms: recursive tree method, substitution method, solution for divide and conquer approach, Akra-Bazzi method.
- 2. Probabilistic analysis: definition, analysis of stochastic algorithms.
- 3. Randomization of algorithms.
- 4. Amortized analysis of algorithm complexity.
- 5. Solving linear recurrences.
- 6. Analysis of multithreaded, parallel and distributed algorithms.
- 7. Linear programming for problem solving.
- 8. Combinatorial optimization, local search, simulated annealing.
- 9. Metaheuristics and stochastic search: guided local search, variable neighbourhood search, and tabu search.
- 10. Memetic algorithms, particle swarm optimization, grey wolf, whales, bees, etc.
- 11. Differential evolution.
- 12. Machine learning for combinatorial optimization.
- 13. Many (almost) practical problems interspersed within other topics

Obligations

- 5 quizzes checking continuous work; obtaining at least 50% of points altogether is necessary,
- 5 assignments of different difficulty, practical and theoretical assignments, written reports, one assignment is in the form of competition and public presentation,
- written exam.

Learning materials

- learning materials in the eClassroom http://ucilnica.fri.uni-lj.si
- practical work in open-source system R,
- optionally in Python, java, C/C++

Readings

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: *Introduction to Algorithms*, 4th edition. MIT Press, 2022
- M. Gendreau, J-Y. Potvin (Eds.): *Handbook of Metaheuristics*, 2nd edition. Springer 2010

Further readings:

- R. Sedgewick, P. Flajolet: *An Introduction to the Analysis of Algorithms*. Addison-Wesley, 1995
- scientific papers, some on eClassroom

Review of existing knowledge on computational complexity

Find the computational complexity

```
s=0;
for (i=1; i <= n; i++)
s=s+a[i];</pre>
```

```
s=0;
for (i=1; i <= n; i++)
for (j=1; j <= n; j++)
s = s+t[i][j];</pre>
```

```
s=0;
for (i = 1; i <= n; i += m)
s = s + a[i];</pre>
```

```
for (i=1; i <= n; i++)
  for (j=1; j <= n; j++)
    for (k=1; k <= n; k++)
    if (i + j + k < a)
        G[i][j] = A[i][j]+B[i][k]*C[k][j];</pre>
```

```
for (i=1; i <= n; i++)
  if (i < a)
  for (j=1; j <= n; j++)
    for (k=1; k <= n; k++)
    G[i][j] = A[i][j]+B[i][k]*C[k][j];</pre>
```

```
int i = n;
int r =0;
while (i >1) {
    r = r+1;
    i = i / 2;
}
```

```
public static void loopRek(int m, int n)
{
    if (n == 1)
        System.out.println("+");
    else
    for (int i=0; i < m; i++)
        loopRek(m, n-1);
}</pre>
```

```
struct Node {
                                                               int key;
public static void infix(Node p)
                                                               Node left, right;
                                                        10
  if (p != null) {
     infix(p.left);
     System.out.print(p.key);
                                                             15
     infix(p.right);
                                                   null
                                                             11
```

first determine the parameter of complexity

```
max = a[1];
for (i=2; i <= n; i++)
  if (max < a[i])
    max = a[i];
System.out.print(max);</pre>
```

```
max = a[1];
for (i=2; i <= n; i++)
  if (max < a[i]) {
    max = a[i];
    veryComplexOperation(max)
  }
System.out.print(max);</pre>
```

```
void p(int n, int m) {
  int i,j,k ;
  if (n > 0) {
    for (i=0 ; i < m ; i++)
     for (j=0; j < m; j++)
       if (i < j - a)
         for (k=0; k < m; k++)
            System.out.println(i + j * k);
    p(n/m, m);
```

Analysis of algorithms

- How complex is the algorithm?
- How many resources it requires?
- How much time, memory, etc. will the computer need?
- Resources: time, memory, network accesses, other hardware

A simple model of computer - RAM

- RAM abstract uniprocessor machine with random access to the memory (RAM –Random-Access Machine)
- operations and their price (execution time, memory, etc.):
- typical operations: arithmetical and logical operations, memory operations, control
- each operation uses a constant amount of time
- integers and floating-point numbers
- numbers use a limited amount of memory; for example number n takes at most c log₂(n) bits, where constant c >= 1 (what if it is not constant)
- we assume constant time for some other operations as well, e.g., logarithms, exponents, trigonometrical operations
- we do not consider parallelism, pipelines, memory hierarchies
- RAM is (good enough) approximation for real world computers

Input size

- define for each problem separately
 - size of an input, e.g., array
 - number of bits in input
 - size of graph (nodes, edges)
 - number of steps taken,
 - etc.

Execution time

- number of steps of the abstract machine
- for simpler analysis, we assume that each line of pseudocode requires a constant time (except function calls),
- so line i requires c_i time

An example: insertion sort

- execution time depends on input (number of elements, their initial positions)
- time: number of steps of abstract machine
- for the sake of simplicity, we assume a constant execution time for each line of pseudo-code, i.e., line i takes c_i time, where c_i is constant larger or equal zero
- idea: iteratively increase the sorted part of an array, by inserting unsorted elements into the already sorted part

Pseudocode

```
InsertionSort(A) {
1   for j = 2 to A.length
2   key = A[j];
3   // insert A[j] into sorted array A[1..j-1]
4   i = j-1;
5   while i > 0 and A[i] > key
6     A[i+1] = A[i];
7   i = i -1;
8   A[i+1] = key;
```

Count the operations

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

Sum together

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

number of operations depends on the input

Best case

• the best case is when the array is already sorted, then $t_i = 1$, for j = 2,3,...,n and we get a linear dependency on n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

Worst case

• worst case occurs when the array is sorted in reversed order, then $t_i = j$, for j=2,3,..., n and we get

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8).$$

which can be expressed as a quadratic dependency $T(n) = an^2 + bn + c$

Analysis

- we mostly analyze worst and average case complexities; why?
- we are rarely interested in actual constant and settle for the order of growth,
- in this case only the fastest growing terms are important, others are asymptotically unimportant,
- the worst case for the insertion sort is $\Theta(n^2)$

	n		
	10		
	100		
	1.000		
	10.000		
	100.000		
	1.000.000		

√n	n		
3	10		
10	100		
31	1.000		
100	10.000		
316	100.000		
1.000	1.000.000		

$\log_{10}(\mathbf{n})$	√n	n		
1	3	10		
2	10	100		
3	31	1.000		
4	100	10.000		
5	316	100.000		
6	1.000	1.000.000		

$\log_{10}(\mathbf{n})$	√n	n	n·log ₁₀ (n)		
1	3	10	10		
2	10	100	200		
3	31	1.000	3.000		
4	100	10.000	40.000		
5	316	100.000	500.000		
6	1.000	1.000.000	6.000.000		

$\log_{10}(\mathbf{n})$	√n	n	n·log ₁₀ (n)	n ²	
1	3	10	10	100	
2	10	100	200	10.000	
3	31	1.000	3.000	1.000.000	
4	100	10.000	40.000	108	
5	316	100.000	500.000	10 ¹⁰	
6	1.000	1.000.000	6.000.000	10 ¹²	

$\log_{10}(\mathbf{n})$	√n	n	n·log ₁₀ (n)	\mathbf{n}^2	n ³	
1	3	10	10	100	1000	
2	10	100	200	10.000	1.000.000	
3	31	1.000	3.000	1.000.000	10 ⁹	
4	100	10.000	40.000	108	10 ¹²	
5	316	100.000	500.000	1010	10^{15}	
6	1.000	1.000.000	6.000.000	1012	10 ¹⁸	

log ₁₀ (n)	√n	n	$\mathbf{n} \cdot \mathbf{log}_{10}(\mathbf{n})$	n ²	n ³	2 ⁿ
1	3	10	10	100	1000	1024
2	10	100	200	10.000	1.000.000	1.25· 10 ³⁰
3	31	1.000	3.000	1.000.000	10 ⁹	10^{301}
4	100	10.000	40.000	108	1012	$2 \cdot 10^{3.010}$
5	316	100.000	500.000	10^{10}	10^{15}	10 ^{30.103}
6	1.000	1.000.000	6.000.000	10^{12}	10 ¹⁸	10 ^{301.030}