Development of intelligent systems (RInS)

Object detection with Convolutional Neural Networks

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2023/24

Computer vision

Visual information Computer vision tasks

Development of intelligent systems, Object detection with Convolutional Neural Networks

Visual information

Main computer vision tasks

Machine learning in computer vision

Conventional approach

Development of intelligent systems, Object detection with Convolutional Neural Networks

Deep learning in computer vision

Conventional machine learning approach in computer vision

Deep learing approach

Development of intelligent systems, Object detection with Convolutional Neural Networks

Deep learning – the main concept

Sigmoid neurons

Real inputs and outputs from interval [0,1]

Activation function: sigmoid function

• output =
$$\frac{1}{1 + \exp(-\sum_j w_j x_j - b)}$$

Sigmoid neurons

Small changes in weights and biases causes small change in output

Enables learning!

Feedfoward neural networks

Network architecture:

Inference and training

Example code: Feedforward

 Code from <u>http://neuralnetworksanddeeplearning.com/</u> or <u>https://github.com/mnielsen/neural-networks-and-deep-learning</u>

<u>Nielsen, 2015</u>

Out[57]: 7

• or https://github.com/MichalDanielDobrzanski/DeepLearningPython35 (for Python 3)

```
net = network.Network([784, 30, 10])
class Network(object):
                                                  net.SGD(training_data, 5, 10, 3.0, test_data=test_data)
                                                                                In [55]: x,y=test data[0]
    def init (self, sizes):
        self.num_layers = len(sizes)
                                                                                In [56]: net.feedforward(x)
        self.sizes = sizes
                                                                                Out[56]:
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
                                                                                array([[ 1.83408119e-03],
        self.weights = [np.random.randn(y, x)
                                                                                          5.94472468e-08],
                        for x, y in zip(sizes[:-1], sizes[1:])]
                                                                                          1.84785949e-03],
                                                                                          6.85718810e-04],
   def feedforward(self, a):
                                                                                          1.41399919e-05],
       for b, w in zip(self.biases, self.weights):
                                                                                          5.40491233e-06],
           a = sigmoid(np.dot(w, a)+b)
                                                                                          4.74332685e-09],
       return a
                                                                                          9.97920007e-01],
                                                                                          8.19370561e-05],
                                                                                          6.65086583e-05]])
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
                                                                                In [57]: y
```

Loss function

- Loss function: $C(w,b) \equiv rac{1}{2n} \sum_x \|y(x) a\|^2$
 - (mean sqare error quadratic loss function)
- Find weigths w and biases b that for given input x produce output a that minimizes Loss function C

Gradient descend

• Find minimum of $C(v_1, v_2)$

Gradient descend in neural networks

- Loss function C(w, b)
- Update rules:

$$egin{aligned} w_k & o w_k' = w_k - \eta rac{\partial C}{\partial w_k} \ b_l & o b_l' = b_l - \eta rac{\partial C}{\partial b_l} \end{aligned}$$

- Consider all training samples
- Very many parameters
 => computationaly very expensive
- Use Stochastic gradient descend instead

Example code: SGD

```
def SGD(self, training data, epochs, mini batch size, eta):
     n = len(training data)
     for j in xrange(epochs):
         random.shuffle(training data)
         mini batches = [
              training data[k:k+mini batch size]
              for k in xrange(0, n, mini_batch_size)]
         for mini batch in mini batches:
              self.update mini batch(mini_batch, eta)
def update mini batch(self, mini batch, eta):
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini batch:
         delta_nabla_b, delta_nabla_w = self.backprop(x, y)
         nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta nabla b)]
         nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
                                                                                w_k 	o w_k' = w_k - rac{\eta}{m} \sum_i rac{\partial C_{X_j}}{\partial w_k}
    self.weights = [w-(eta/len(mini_batch))*nw
                      for w, nw in zip(self.weights, nabla w)]
    self.biases = [b-(eta/len(mini_batch))*nb
                                                                                 b_l 	o b_l' = b_l - rac{\eta}{m} {\sum_i} rac{\partial C_{X_j}}{\partial b_l},
                     for b, nb in zip(self.biases, nabla b)]
```

Backpropagation

- All we need is gradient of loss function ∇C
 - Rate of change of *C* wrt. to change in any weigt
 - Rate of change of *C* wrt. to change in any bias

$$rac{\partial C}{\partial b_j^l} \qquad \qquad rac{\partial C}{\partial w_{jk}^l}$$

- How to compute gradient?
 - Numericaly
 - Simple, approximate, extremely slow $\ensuremath{\textcircled{\otimes}}$
 - Analyticaly for entire C
 - Fast, exact, nontractable 😕
 - Chain individual parts of network
 - Fast, exact, doable ☺

Backpropagation!

Main principle

- We need the gradient of the Loss function ∇C
- Two phases:
 - Forward pass; propagation: the input sample is propagated through the network and the error at the final layer is obtained

 ∂C

 ∂w^l_{il}

 $rac{\partial C}{\partial b_i^l}$

 Backward pass; weight update: the error is backpropagated to the individual levels, the contribution of the individual neuron to the error is calculated and the weights are updated accordingly

Learning strategy

- To obtain the gradient of the Loss function ∇C : $\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial w_{jk}^l}$
 - For every neuron in the network calculate the error of this neuron

$$\delta^l_j \equiv {\partial C \over \partial z^l_j}$$

- This error propagates through the network causing the final error
- Backpropagate the final error to get all δ_i^l

• Obtain all
$$\frac{\partial C}{\partial b_j^l}$$
 and $\frac{\partial C}{\partial w_{jk}^l}$ from δ_j^l

Equations of backpropagation

• BP1: Error in the output layer:

$$\delta^L_j = rac{\partial C}{\partial a^L_j} \sigma'(z^L_j) \qquad \qquad \delta^L =
abla_a C \odot \sigma'(z^L)$$

• BP2: Error in terms of the error in the next layer:

$$\delta^l_j = \sum_k w^{l+1}_{kj} \delta^{l+1}_k \sigma'(z^l_j) \qquad \qquad \delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

BP3: Rate of change of the cost wrt. to any bias:

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \qquad \qquad \frac{\partial C}{\partial b} = \delta$$

BP4: Rate of change of the cost wrt. to any weight:

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \qquad \qquad rac{\partial C}{\partial w} = a_{
m in} \delta_{
m out} \qquad \bigcirc^{rac{\partial C}{\partial w}} = a_{
m in} \delta_{
m out}$$

20

For a number of **epochs**

Until all training images are used

Select a **mini-batch** of *m* training samples

For each training sample \boldsymbol{x} in the mini-batch

Input: set the corresponding activation $a^{x,1}$

Feedforward: for each
$$l=2,3,\ldots,L$$

compute $z^{x,l}=w^la^{x,l-1}+b^l$ and $a^{x,l}=\sigma(z^{x,l})$

Output error: compute $\delta^{x,L} =
abla_a C_x \odot \sigma'(z^{x,L})$

Backpropagation: for each
$$\ l=L-1,L-2,\ldots,2$$
 compute $\delta^{x,l}=((w^{l+1})^T\delta^{x,l+1})\odot\sigma'(z^{x,l})$

Gradient descend: for each $l = L, L - 1, \dots, 2$ and x update:

$$egin{aligned} &w^l o w^l - rac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T \ &b^l o b^l - rac{\eta}{m} \sum_x \delta^{x,l} \end{aligned}$$

Example code: Backpropagation

```
def backprop(self, x, y):
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
                                                           def cost derivative(self, output activations, y):
            zs.append(z)
                                                               return (output activations-y)
            activation = sigmoid(z)
            activations.append(activation)
       # backward pass
                                                                             def sigmoid(z):
        delta = self.cost_derivative(activations[-1], y) * \
                                                                                 return 1.0/(1.0+np.exp(-z))
            sigmoid prime(zs[-1])
        nabla b[-1] = delta
                                                                        def sigmoid prime(z):
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
                                                                            return sigmoid(z)*(1-sigmoid(z))
        for l in xrange(2, self.num_layers):
            z = zs[-1]
            sp = sigmoid prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla b[-1] = delta
            nabla w[-1] = np.dot(delta, activations[-1-1].transpose())
        return (nabla b, nabla w)
```

Activation function	Loss function
Linear	Quadratic
$a_j^L = z_j^L$	$C(w,b)\equiv rac{1}{2n}\sum_x \ y(x)-a\ ^2$
Sigmoid 1	Cross-entropy
$\sigma(z)\equiv rac{1}{1+e^{-z}}$	$igg C = -rac{1}{n}\sum_x\sum_j \left[y_j\ln a_j^L + (1-y_j)\ln(1-a_j^L) ight]$
Softmax $e^{z_j^L}$	Categorical Cross-entropy
$a_j^L = rac{arsigma}{\sum_k e^{z_k^L}}$	$C=-rac{1}{n}\sum_{x}\sum_{j}y_{j}\ln a_{j}^{L}$
Other	Custom

Activation functions

Method	Papers		
		SELU SELU	178
ReLU	8096	Self-Normalizing Neural Networks	
Sigmoid Activation	5363	PReLU	
GELU	5285	Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification	86
Gaussian Error Linear Units (GELUs)	5205	ReLU6	
Tanh Activation	4936	MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications	58
Leaky ReLU	915	Hard Swish	54
GUU		Searching for MobileNetV3	54
) Language Modeling with Gated Convolutional Networks	372	Maxout	45
Swish	254	☐ Maxout Networks	
Searching for Activation Functions		ELU Numeration	
Softplus	204	Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)	34
WW Mish	183	[https://paperswit	<u>hcode.co</u>

Development of intelligent systems, Object detection with Convolutional Neural Networks

Classification with Feedforward neural networks

Convolutional neural networks

From feedforward fully-connected neural networks ...

... to convolutional neural networks

Convolutional neural networks

- Data in vectors, matrices, tensors
- Neigbourhood, spatial arrangement
- 2D: Images,time-fequency representations

- 1D: sequential signals, text, audio, speech, time series,...
- 3D: volumetric images, video, 3D grids

Development of intelligent systems, Object detection with Convolutional Neural Networks

Convolution layer

Convolution layer

Sparse connectivity

- Local connectivity neurons are only locally connected (receptive field)
 - Reduces memory requirements
 - Improves statistical efficiency
 - Requires fewer operations

from below

from above

The receptive field of the units in the deeper layers is large

=> Indirect connections!

Parameter sharing

Neurons share weights!

- Tied weights
- Every element of the kernel is used at every position of the input
- All the neurons at the same level detect the same feature (everywhere in the input)
- Greatly reduces the number of parameters!
- Equivariance to translation
 - Shift, convolution = convolution, shift
 - Object moves => representation moves

Convolutional neural network

- Hierarchical representation
- Increasingly larger effective receptive field

Development of intelligent systems, Object detection with Convolutional Neural Networks

Stride

Step for convolution filter

Stride=1 Stride=2

- Output size: $\frac{N-F}{S} + 1$
- Example:

Pooling layer

- Downsampling reduces the volume size (width and height)
- Process each activation map independently keeps the volume depth unchanged

- Example with
 - F=2
 - S=2

CNN layers

- Layers used to build ConvNets:
 - INPUT: raw pixel values

- CONV: convolutional layer
- (BN: batch normalisation)
- (ReLU:) introducing nonlinearity
- POOL: downsampling

- FC: for computing class scores
- SoftMax

Typical solution

Korak 1: Zajem podatkov

Network architecture

Example implementation in TensorFlow

Development of intelligent systems, Object detection with Convolutional Neural Networks

Backbone architectures

Development of intelligent systems, Object detection with Convolutional Neural Networks

AlexNet

ReLU, data augmentation, Dropout, Momentum, L2 regularisation

		ConvNet C	onfiguration		
A	A-LRN	B	С	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB image)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
	20	max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
		FC-	4096		
		FC-	4096		
		FC-	1000		
		soft	-max		

- Classical CNN backbone shape
- VGG16, VGG19

VGG

Simonyan & Zisserman, 2014

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

GoogLeNet / Inception

Development of intelligent systems, Object detection with Convolutional Neural Networks

ResNet

- Going deeper!
- Plain deep networks do not work
- Shortcut connections!
 - Figth vanishing gradient problem

2

iter. (1e4)

5

- Learn residual functions $\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}$
- Bottleneck building blocks
- Very deep networks:
 - 152, 101, 50, 34, 18

6

iter. (1e4)

7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64

> 3x3 conv, 64 3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256 ★ 3x3 conv, 256 ↓ 3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256 3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

ConvNext

A ConvNet for the 2020s

ResNet-50/200

Macro Design stage ratio

"patchify" stem

78.8

79.4

79.5

GFLOPs

4.

4.5

- paperswithcode.com
 - Top 20 methods in Convolutional Neural Networks

Method	Year	Papers
 ResNet Deep Residual Learning for Image Recognition 	2015	1461
VGG Very Deep Convolutional Networks for Large-Scale Image Recognition	2014	369
DenseNet	2016	300
AlexNet ImageNet Classification with Deep Convolutional Neural Networks	2012	280
VGG-16 D Very Deep Convolutional Networks for Large-Scale Image Recognition	2014	258
MobileNetV2 MobileNetV2: Inverted Residuals and Linear Bottlenecks	2018	201
 EfficientNet EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 	2019	154
Darknet-53 YOLOv3: An Incremental Improvement	2018	142
ResNeXt Aggregated Residual Transformations for Deep Neural Networks	2016	120
GoogLeNet	2014	119

Xception 2017 94 🗅 Xception: Deep Learning With Depthwise Separable Convolutions 111 SqueezeNet 2016 71 D SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size Inception-v3 2015 67 D Rethinking the Inception Architecture for Computer Vision CSPDarknet53 2020 46 P YOLOv4: Optimal Speed and Accuracy of Object Detection MobileNetV1 44 2017 D MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications LeNet 1998 44 Darknet-19 2016 44 🗅 YOLO9000: Better, Faster, Stronger WideResNet 2016 42 🗅 Wide Residual Networks ShuffleNet 36 2017 D ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices MobileNetV3 2019 34

Searching for MobileNetV3

Development of intelligent systems, Object detection with Convolutional Neural Networks

[paperswithcode.com, 2022]

Pretrained models

```
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet v2 = models.mobilenet v2(pretrained=True)
mobilenet v3 large = models.mobilenet v3 large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50 32x4d = models.resnext50 32x4d(pretrained=True)
wide resnet50 2 = models.wide resnet50 2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
```

Transfer learning

- Train on a large related dataset
- Fine-tune on the target dataset
- Heavily used

Ribani & Marengoni 2019

Development of intelligent systems, Object detection with Convolutional Neural

Regularisation

- How to avoid overfitting:
 - Increase the number of training images ☺
 - Decrease the number of parameters $\boldsymbol{\boldsymbol{\Im}}$
 - Regularization ③
- Data Augmentation
- L1 regularisation
- L2 regularisation
- Dropout
- Batch Normalization
- DropConnect
- Fractional Max Pooling
- Stochastic Depth
- Cutout / Random Crop
- Mixup

Data augmentation

Development of intelligent systems, Object detection with Convolutional Neural Networks

Main computer vision tasks

Classification

• What is depicted in the image?

Categorisation

Recognition/identification of instances

Localisation

Detection

• Where in the image?

Detection

Instance segmentation

Segmentation

• What does every pixel represent?

Semantic segmentation

Panoptic segmentation

Classification

Classification

Image classification: What is in the image?

- Typically Cross entropy loss is used
- Any CNN backbone architecture can be used

7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64

¥

¥

¥

¥

¥

¥·····

Localisation

Localisation

• Object localisation – Where (besides what) in the image (is the only object)?

Regress the bounding box

Detection

Detection

- Object detection detect (localise and categorise) all the objects in the image
 - Unknown (arbitrary) number of objects
- Naive approach: Sliding window + classification
 - Too many locations, scales, aspect ratios!
 - Very expensive!

YOLOv3

- You Only Look Once
- Prediction of bounding boxes on 3 scales
- 3 anchors as prior box shapes
- Prediction of objectness score for each BB
- Multilabel classification of each box
- Non-maxima suppression
- Real-time performance

 $S \times S$ grid on input

YOLOv3

YOLOv3 results

YOLO versions

- YOLOv1 (2016): Introduced the concept of predicting bounding boxes and class probabilities directly from full images in one evaluation.
- YOLOv2 (YOLO9000) (2017): Improved speed and accuracy, introduced anchor boxes to predict more precise bounding boxes.
- YOLOv3 (2018): Featured detection at three different scales and a better backbone for feature extraction, increasing accuracy especially for small objects.
- YOLOv4 (2020): Enhanced speed and accuracy with new features like Weighted-Residual-Connections, Cross-Stage-Partial connections, Mosaic data augmentation.
- YOLOv5 (2020): Focus on simplicity and speed, with PyTorch implementation and scalable to various devices.
- YOLOv6 (2021): Aims to balance the trade-off between accuracy, speed, and model size, enhancing cross-platform flexibility.
- YOLOv7 (2022): Improved upon predecessors with better architecture and training strategies, achieving SOTA performance, additional tasks, such as pose estimation.
- YOLOv8 (2023): Focuses on optimizing model efficiency and deployment, introducing new techniques for faster inference and better accuracy, full range of vision AI tasks, including detection, segmentation, pose estimation, tracking, and classification.
- YOLOv9 (2024): Latest iteration aiming at maximizing real-time performance while maintaining high accuracy, leveraging the latest advancements in deep learning.

YOLOv9

- Programmable Gradient Information (PGI)
- **Generalized Efficient** Layer Aggregation Network (GELAN)

Detection of traffic signs

Development of intelligent systems, Object detection with Convolutional Neural Networks

Data augmentation

- Mask R-CNN +
 - Online hard-example mining
 - Distribution of selected training samples
 - Sample weighting
 - Adjusting region pass-through during detection

Faster R-CNN

- Region Proposal Network
 - Included in the method
 - Anchor boxes
 - Sliding window on feature map
- Two stage method (four losses)
 - Detect region proposals
 - Objectness score RP cls loss (is object?)
 - Object bounds RP BB loss (bb corrections)
 - Classify individual proposals
 - Cls loss (what it is?)
 - BB loss (refine RP BB)
- Alternating / end-to-end learning
- Significantly faster than Fast R-CNN
- SOTA in 2015

Mask R-CNN

- Add segmentation head
 - Additional segmentation loss

Detection of region proposals

Top proposals are very good

Swedish traffic sign dataset

Average	R-CNN 6	FCN [6]	Faster R-CNN	Mask R-CNN (ResNet-50)	
				No adapt.	Adapt. (ours)
Precision	91.2	97.7	95.4	95.3	97.5
Recall	87.2	92.9	94.0	93.6	96.7
F-measure	88.8	95.0	94.6	93.8	97.0
mAP^{50}	/	/	94.3	94.9	95.2

DFG traffic sign dataset

	Faster	Mask R-CNN (ResNet-50)			
	R-CNN		No adapt. With With a adapt. data au		
mAP ⁵⁰	92.4	93.0	95.2	95.5	
mAP ^{50:95}	80.4	82.3	82.0	84.4	
Max recall	93.8	94.6	96.5	96.5	

Development of intelligent systems, Object detection with Convolutional Neural Networks

Experimental results

Development of intelligent systems, Object detection with Convolutional Neural Networks

Experimental results

Experimental results

Traffic sign detection

CeDirNet for object counting and localisation

 Dense Center-Direction Regression for Object Counting and Localization with Point Supervision
<u>Tabernik et. al, 2024</u>

CeDirNet

Ship detection

Face detection

Mask-wearing detection

Grasping Point Localization on Cloths

3DOF object localisation

Detection of grasping points

Tabernik et. al, 2023

Object detection overview

