NumPy Reference
Release 1.23.0

Written by the NumPy community

June 22, 2022

CONTENTS

1 Array objects 3
1.1 The N-dimensional array (Nndarray)« . v v v v v i v vt i e e e e e e e e e e e 3
1.2 Scalars e e e e e e e e e e e e 59
1.3 Datatype objects (ALYPE) . « v v v v i i e e e e e e 74
1.4 IndeXing rOUtiNeS v v v v v i i e 94
1.5 Tterating Over AITays v v v i et e e e e e e e e e e e e e e e e e e 147
1.6 Standard array subclasses L e e 160
1.7 Masked arrays 286
1.8 The array interface protocol L L e e 486
1.9 Datetimes and Timedeltas e 491
2 Array API Standard Compatibility 499
2.1 Table of Differences between numpy.array_apiandnumpy 499
3 Constants 511
4 Universal functions (ufunc) 519
41 ULUNC . L o e e e e e e e e 519
4.2 Available ufuncs L e e e e e e e e e e 535
5 Routines 541
5.1 Array creation roUtiNeS v v v vttt e e e e e e e e e e e e e e e e e 541
5.2 Array manipulation Toutineso oLl e 596
53 Binary operationso i e e e e e e e e e e 651
54 String Operations v vt i e 664
5.5 C-Types Foreign Function Interface (numpy.ctypeslib)o v v v v oo .. 722
5.6 Datetime Support Functions L e e e e e 724
57 Datatype routineSt eee ee e e e e e eee 732
5.8 Optionally SciPy-accelerated routines (numpy .dual) o 753
5.9 Mathematical functions with automatic domain Lo 754
5.10 Floating pointerror handling L e e e e 761
5.11 Discrete Fourier Transform (numpy . ££t) e 769
5.12 Functional programmingt e e e e e e e 798
5.13 NumPy-specific help functions o L 807
5.14 Inputand output L e 809
5.15 Linear algebra (numpy.1inalg) . . . v v v v v v i i e e e e e e e e e e e e e 848
5.16 Logic functions o o i e e e e e e e e e e e e e e e 902
5.17 Mathematical functions L e e e e e e e e e 932
5.18 Matrix library (numpy .matlib) oL e e 1056
5.19 Miscellaneous routineS v v v v v v e 1063

5.20 Paddin@ ATrays v v e 1075

5.21 Polynomials L e e e e e e e e e e e e e 1079
5.22 Random sampling (numpy . random)t e e e e e e e e e e e e e 1366
523 SEtroutines v v vt e e e e e e e e e e e e e e e 1638
5.24 Sorting, searching, and countingl e e e e e 1645
525 SatiStiCs o o e e e e e e e e e e e e 1665
5.26 Test Support (Nnumpy .testing) v v v v v i i e e e e e e e e e e e 1716
5.27 Window functions L L e e e e e e e e e e e e 1746
6 Typing (numpy.typing) 1759
6.1 Mypy plugin o e e e e e e e e e 1759
6.2 Differences from the runtime NumPy API 1760
6.3 APL . 1762
7 Global State 1765
7.1 Performance-Related Options e 1765
7.2 Interoperability-Related Options L 1765
7.3 Debugging-Related Options 1766
8 Packaging (numpy .distutils) 1767
8.1 Modules in numpy .distutils o .. e e e e e 1767
8.2 Configuration class e e e e e 1789
8.3 Building Installable C libraries 0 e e e e e e e 1798
84 Conversionof .srcfiles o L e 1800
9 NumPy Distutils - Users Guide 1801
0.1 SciPystructure e e e e e e 1801
9.2 Requirements for SciPy packages L e e e 1801
9.3 Thesetup.pyfile e 1802
94 The __init__ _.pyfile 1809
9.5 Extrafeatures in NumPy Distutils L 1809
10 Status of numpy .distutils and migration advice 1811
10.1 Migrationadvice L L e 1811
10.2 Interaction of numpy .disutils with setuptools 1813
11 NumPy C-API 1815
11.1 Python Types and C-Structures o o v it ittt e e e e e e e e e 1815
11.2 System configurationo e e e e e e e e e 1833
11.3 DataType APL e e e e e e 1835
11.4 Array APL e 1841
11.5 Array Iterator APT o o o e 1885
11.6 UFunc API e e 1902
11.7 Generalized Universal Function APT 1908
11.8 NumPy core libraries o ot e e e e e e e e e e e e e 1911
11.9 C APIDeprecations v v v v v v vt it e et e e e e e e e e e e e e e e e e 1918
11.10 Memory managementin NumPy oL 1918
12 CPU/SIMD Optimizations 1921
12.1 CPUbuild options 0 it e e e e e e e e e e e e e 1921
12.2 How does the CPU dispatcher work? 1931
13 NumPy and SWIG 1937
13.1 Testing the numpy.i Typemaps o i i e e e e e e e e 1953

14 Acknowledgements
Bibliography
Python Module Index

Index

1957

1959

1971

1973

NumPy Reference, Release 1.23.0

Release
1.23
Date
June 22, 2022

This reference manual details functions, modules, and objects included in NumPy, describing what they are and what they
do. For learning how to use NumPy, see the complete documentation.

CONTENTS 1

NumPy Reference, Release 1.23.0

2 CONTENTS

CHAPTER
ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogeneous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, efc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array scalar
types built in NumPy. The array scalars allow easy manipulation of also more complicated arrangements of data.

[gad | |
,.| data-type J = array

"-

header see ‘ ‘

ndarray

Fig. 1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to describe the
data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size element of
the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number of
dimensions and items in an array is defined by its shape, which is a tuple of N non-negative integers that specify the
sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of which is
associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray.

https://docs.python.org/3/library/stdtypes.html#tuple

NumPy Reference, Release 1.23.0

Different nda rrays can share the same data, so that changes made in one ndarray may be visible in another. That is,
an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the ‘base” ndarray. ndarrays
can also be views to memory owned by Python st rings or objects implementing the buf fer or array interfaces.

Example

A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array ([[1, 2, 31, [4, 5, 6]], np.int32)
>>> type (x)

<class 'numpy.ndarray'>

>>> x.shape

(2, 3)

>>> x.dtype

dtype ('int32")

The array can be indexed using Python container-like syntax:

>>> # The element of x in the *second* row, *third* column, namely, 6.
>>> x[1, 2]
6

For example slicing can produce views of the array:

>>> y = x[:,1]

>>> y

array ([2, 5], dtype=int32)

>>> y[0] = 9 # this also changes the corresponding element in x
>>> y

array ([9, 5], dtype=int32)
>>> x
array ([[1, 9, 31,
[4, 5, 611, dtype=int32)

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray(shape[, dtype, buffer, offset, ...]) An array object represents a multidimensional, homoge-
neous array of fixed-size items.

class numpy.ndarray (shape, dtype=float, buffer=None, offset=0, strides=None, order=None)

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

(for the __new__ method; see Notes below)

4 1. Array objects

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.
zeros
Create an array, each element of which is zero.
empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).
dtype
Create a data-type.
numpy . typing.NDArray

An ndarray alias generic w.r.t. its dt ype. t ype.

Notes

There are two modes of creating an array using ___new
1. If buffer is None, then only shape, dt ype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No__init__ method is needed because the array is fully initialized after the __new___ method.

1.1. The N-dimensional array (ndarray) 5

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 1.23.0

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray (shape=(2,2), dtype=float, order='F")
array ([[0.0e+000, 0.0e+000], # random
[nan, 2.5e-32311)

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
offset=np.int_ () .itemsize,

ce dtype=int) # offset = l*itemsize, i.e. skip first element
array ([2, 3])

Attributes

T

[ndarray] The transposed array.
data

[buffer] Python buffer object pointing to the start of the array’s data.
dtype

[dtype object] Data-type of the array’s elements.
flags

[dict] Information about the memory layout of the array.
flat

[numpy flatiter object] A 1-D iterator over the array.
imag

[ndarray] The imaginary part of the array.
real

[ndarray] The real part of the array.
size

[int] Number of elements in the array.
itemsize

[int] Length of one array element in bytes.
nbytes

[int] Total bytes consumed by the elements of the array.
ndim

[int] Number of array dimensions.

6 1. Array objects

NumPy Reference, Release 1.23.0

shape

[tuple of ints] Tuple of array dimensions.

strides

[tuple of ints] Tuple of bytes to step in each dimension when traversing an array.

ctypes

[ctypes object] An object to simplify the interaction of the array with the ctypes module.

base

[ndarray] Base object if memory is from some other object.

Methods

all([axis, out, keepdims, where])

Returns True if all elements evaluate to True.

any([axis, out, keepdims, where])

Returns True if any of the elements of a evaluate to
True.

argmax([axis, out, keepdims])

Return indices of the maximum values along the given
axis.

argmin([axis, out, keepdims])

Return indices of the minimum values along the given
axis.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtypel[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set
of choices.

c11ip([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

conjQ

Complex-conjugate all elements.

conjugate()

Return the complex conjugate, element-wise.

copy([order])

Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along
the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axisl, axis2])

Return specified diagonals.

dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
f111(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimen-

sion.

get field(dtypel, offset])

Returns a field of the given array as a certain type.

1item(¥*args)

Copy an element of an array to a standard Python
scalar and return it.

itemset(*args)

Insert scalar into an array (scalar is cast to array’s
dtype, if possible)

max([axis, out, keepdims, initial, where])

Return the maximum along a given axis.

continues on next page

1.1. The N-dimensional array (ndarray)

NumPy Reference, Release 1.23.0

Table 1 - continued from previous page

mean([axis, dtype, out, keepdims, where])

Returns the average of the array elements along given
axis.

mi n([axis, out, keepdims, initial, where])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a dif-
ferent byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that
the value of the element in kth position is in the posi-
tion it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, ...])

Return the product of the array elements over the given
axis

ptp([axis, out, keepdims])

Peak to peak (maximum - minimum) value along a
given axis.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all » in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|[, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given num-
ber of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in
a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, WRITE-
BACKIFCOPY, respectively.

sort([axis, kind, order])

Sort an array in-place.

squeeze([axis])

Remove axes of length one from a.

std([axis, dtype, out, ddof, keepdims, where])

Returns the standard deviation of the array elements
along given axis.

sum([axis, dtype, out, keepdims, initial, where])

Return the sum of the array elements over the given
axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 inter-
changed.

t ake(indices][, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

tobytes([order])

Construct Python bytes containing the raw data bytes
in the array.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as an a . ndim-levels deep nested list
of Python scalars.

tostring([order])

A compatibility alias for tobytes, with exactly the
same behavior.

t race([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

t ranspose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof, keepdims, where])

Returns the variance of the array elements, along given
axis.

view([dtypell, type])

New view of array with the same data.

method

1. Array objects

NumPy Reference, Release 1.23.0

ndarray .all (axis=None, out=None, keepdims=False, *, where=True)

Returns True if all elements evaluate to True.
Refer to numpy . all for full documentation.

See also:

numpy.all

equivalent function

method

ndarray .any (axis=None, out=None, keepdims=False, *, where=True)

Returns True if any of the elements of a evaluate to True.
Refer to numpy . any for full documentation.

See also:

numpy . any

equivalent function

method

ndarray .argmax (axis=None, out=None, *, keepdims=False)

Return indices of the maximum values along the given axis.
Refer to numpy . a rgmax for full documentation.

See also:

numpy . argmax

equivalent function

method

ndarray.argmin (axis=None, out=None, *, keepdims=False)

Return indices of the minimum values along the given axis.
Refer to numpy . argmin for detailed documentation.

See also:

numpy .argmin

equivalent function

method

ndarray.argpartition (kth, axis=- 1, kind='introselect’, order=None)

Returns the indices that would partition this array.
Refer to numpy . argpartition for full documentation.
New in version 1.8.0.

See also:

1.1. The N-dimensional array (ndarray) 9

NumPy Reference, Release 1.23.0

numpy .argpartition

equivalent function

method
ndarray.argsort (axis=- 1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See also:

numpy . argsort

equivalent function

method
ndarray .astype (dtype, order="K’, casting=unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype

[str or dtype] Typecode or data-type to which the array is cast.

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,

‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K’.

casting

[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.

* ‘equiv’ means only byte-order changes are allowed.

* ‘safe’ means only casts which can preserve values are allowed.
 ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.

* ‘unsafe’ means any data conversions may be done.

subok

[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

copy

[bool, optional] By default, astype always returns a newly allocated array. If this is set to

false, and the dt ype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

10 1. Array objects

NumPy Reference, Release 1.23.0

arr_t

[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype (t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string
dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2., 2.51)

>>> x.astype (int)
array ([1, 2, 2])

method

ndarray .byteswap (inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters

inplace

[bool, optional] If True, swap bytes in-place, default is False.
Returns

out

[ndarray] The byteswapped array. If inplace is True, this is a view to self.

1.1. The N-dimensional array (ndarray) 11

NumPy Reference, Release 1.23.0

Examples

>>> A = np.array([1l, 256, 8755], dtype=np.intl6)
>>> list (map (hex, A))

['Ox1"', '0x100', 'O0x2233']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=int16)

>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap ()
array ([b'ceg', b'fac'], dtype='|S3")

A.newbyteorder () .byteswap () produces an array with the same values

but different representation in memory

>>> A = np.array([1l, 2, 31)

>>> A.view (np.uint8)

array((2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, O, 0, 0, O,
0, 0], dtype=uint8)

>>> A.newbyteorder () .byteswap (inplace=True)

array ([1, 2, 31)

>>> A.view(np.uint8)

array((o, o, o, o, o, o, 0, 12, o, o, o0, o, o, o, 0, 2, 0, 0, 0, 0, 0, O,
0, 3], dtype=uint8)

method

ndarray .choose (choices, out=None, mode=raise’)

Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.

See also:

numpy . choose

equivalent function

method

ndarray .clip (min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy . c11ip for full documentation.

See also:

numpy.clip

equivalent function

method

12 1. Array objects

NumPy Reference, Release 1.23.0

ndarray.compress (condition, axis=None, out=None)

Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.

See also:

numpy.compress

equivalent function

method

ndarray.conj ()

Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.

See also:

numpy .conjugate

equivalent function

method

ndarray.conjugate ()

Return the complex conjugate, element-wise.
Refer to numpy . conjugate for full documentation.

See also:

numpy.conjugate

equivalent function

method

ndarray.copy (order="C’)

Return a copy of the array.

Parameters

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy . copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy . copy

Similar function with different default behavior

numpy .copyto

1.1. The N-dimensional array (ndarray) 13

NumPy Reference, Release 1.23.0

Notes

This function is the preferred method for creating an array copy. The function numpy . copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

’>>> x = np.array([[1,2,3],[4,5,6]], order='F")

>>> y = x.copy()

’>>> x.£111(0)

>>> x
array ([[0, 0O, 0],
[0, 0, 0I1)

>>> y
array ([[1, 2, 3],
(4, 5, 611])

>>> y.flags['C_CONTIGUOUS']
True

method

ndarray . cumprod (axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy . cumprod for full documentation.

See also:

numpy . cumprod

equivalent function

method

ndarray . cumsum (axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.

See also:

numpy . cumsum

equivalent function

method

14 1. Array objects

NumPy Reference, Release 1.23.0

ndarray.diagonal (offser=0, axis] =0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:

numpy .diagonal

equivalent function

method

ndarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file
[str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

ndarray.dumps ()
Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.

Parameters
None

method

ndarray.£ill (value)

Fill the array with a scalar value.

Parameters

value

[scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fi111 (0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1., 1.1)

method

1.1. The N-dimensional array (ndarray) 15

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

ndarray.flatten (order="C’")

Return a copy of the array collapsed into one dimension.

Parameters

order

[{‘C, ‘F, ‘A’, K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns

[ndarray] A copy of the input array, flattened to one dimension.
See also:

ravel
Return a flattened array.
flat

A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten ()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

ndarray.getfield (dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype

[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset

[int] Number of bytes to skip before beginning the element view.

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> x = np.diag([1.+1.]]1%2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.73, 0.+0.731,
[0.40.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

ndarray.item (*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters

*args
[Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns

[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

1.1. The N-dimensional array (ndarray) 17

NumPy Reference, Release 1.23.0

Examples

>>> np.random.seed (123)

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array([[2, 2, 6],
(1, 3, 61,
(1, 0, 111)

>>> x.item(3)

1

>>> x.item(7)

0

>>> x.item((0, 1))

2

>>> x.item((2, 2))

1

method

ndarray.itemset (*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (*args) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters

*args

[Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments:
the last argument is the value to be set and must be a scalar, the first argument specifies a
single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, i temset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using i temset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed (123)

>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[2, 2, 6],

(1, 3, 61,

(1, 0, 110

>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)

>>> x

array ([[2, 2, 6],
(1, 0, 61,
(1, 0, 911

18

1. Array objects

NumPy Reference, Release 1.23.0

method

ndarray .max (axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.
Refer to numpy . amax for full documentation.

See also:

numpy . amax

equivalent function

method

ndarray .mean (axis=None, dtype=None, out=None, keepdims=False, *, where=True)

Returns the average of the array elements along given axis.
Refer to numpy . mean for full documentation.

See also:

numpy .mean

equivalent function

method

ndarray .min (axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the minimum along a given axis.
Refer to numpy . amin for full documentation.

See also:

numpy.amin

equivalent function

method

ndarray.newbyteorder (new_order=15’,/)

Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order

[string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of’

* ‘S’ - swap dtype from current to opposite endian
o {‘<, ‘little’} - little endian

« {*>, ‘big’} - big endian

1.1. The N-dimensional array (ndarray) 19

NumPy Reference, Release 1.23.0

» {*=’, ‘native’} - native order, equivalent to sys.byteorder
o {I, T’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.
Returns

new_arr

[array] New array object with the dtype reflecting given change to the byte order.

method

ndarray.nonzero ()

Return the indices of the elements that are non-zero.
Refer to numpy . nonzero for full documentation.

See also:

numpy .nonzero

equivalent function

method

ndarray.partition (kth, axis=- 1, kind="introselect’, order=None)

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position
it would be in a sorted array. All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.

New in version 1.8.0.

Parameters

kth

[int or sequence of ints] Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of kth it will partition all elements indexed by kth of them into their sorted position
at once.

Deprecated since version 1.22.0: Passing booleans as index is deprecated.
axis

[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.
order

[str or list of str, optional] When « is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need to be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also:

20 1. Array objects

https://docs.python.org/3/library/sys.html#sys.byteorder

NumPy Reference, Release 1.23.0

numpy .partition

Return a partitioned copy of an array.
argpartition

Indirect partition.
sort

Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
>>> a
array ([1, 2, 3, 41)

method

ndarray .prod (axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

Return the product of the array elements over the given axis
Refer to numpy . prod for full documentation.

See also:

numpy . prod

equivalent function

method

ndarray .ptp (axis=None, out=None, keepdims=False)

Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy . ptp for full documentation.

See also:

numpy . ptp

equivalent function

method

1.1. The N-dimensional array (ndarray)

21

NumPy Reference, Release 1.23.0

ndarray .put (indices, values, mode="raise’)

Seta.flat[n] = values[n] forall n in indices.
Refer to numpy . put for full documentation.

See also:

numpy . put

equivalent function

method

ndarray.ravel ([order])

Return a flattened array.
Refer to numpy . ravel for full documentation.

See also:

numpy .ravel
equivalent function
ndarray. flat

a flat iterator on the array.

method

ndarray . repeat (repeats, axis=None)

Repeat elements of an array.
Refer to numpy . repeat for full documentation.

See also:

numpy . repeat

equivalent function

method

Pall

ndarray . reshape (shape, order="C’)

Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.

See also:

numpy . reshape

equivalent function

22

1. Array objects

NumPy Reference, Release 1.23.0

Notes

Unlike the free function numpy. reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

ndarray.resize (new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters

new_shape
[tuple of ints, or n ints] Shape of resized array.
refcheck

[bool, optional] If False, reference count will not be checked. Default is True.
Returns
None
Raises

ValueError

If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.
See also:

resize

Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

1.1. The N-dimensional array (ndarray) 23

NumPy Reference, Release 1.23.0

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array ([[0, 1], [2, 3]], order='C")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 11, [2, 311, order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing...

>>> ¢c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a
array ([[0]])
>>> C
array ([[0]])

method

ndarray . round (decimals=0, out=None)

Return a with each element rounded to the given number of decimals.
Refer to numpy . around for full documentation.

See also:

numpy . around

equivalent function

method

ndarray.searchsorted (v, side=left’, sorter=None)

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

24

1. Array objects

NumPy Reference, Release 1.23.0

See also:

numpy . searchsorted

equivalent function

method

ndarray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.

Parameters

val

[object] Value to be placed in field.
dtype

[dtype object] Data-type of the field in which to place val.
offset

[int, optional] The number of bytes into the field at which to place val.
Returns
None
See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,
(0., 1., 0.1,
(0., O., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield (np.int32)
array ([[3, 3, 31,
[3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]1)
>>> x.setfield(np.eye(3), np.int32)

>>> x
array ([[1., 0., 0.1,
(0., 1., 0.7,
(0., O., 1.11)
method

1.1. The N-dimensional array (ndarray) 25

NumPy Reference, Release 1.23.0

ndarray .setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is
a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters

write

[bool, optional] Describes whether or not a can be written to.
align

[bool, optional] Describes whether or not a is aligned properly for its type.
uic

[bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, WRITEABLE,
and ALIGNED.

WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples
>>> y = np.array([[3, 1, 71,
[2, 0o, 01,
(8, 5, 911
>>> y
array ([[3, 1, 71,
(2, o0, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True

(continues on next page)

26 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

ndarray.sort (axis=- I, kind=None, order=None)

Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.
order

[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy . sort

Return a sorted copy of an array.
numpy.argsort

Indirect sort.
numpy . lexsort

Indirect stable sort on multiple keys.
numpy . searchsorted

Find elements in sorted array.
numpy .partition

Partial sort.

1.1. The N-dimensional array (ndarray) 27

NumPy Reference, Release 1.23.0

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>>a:np.array([('a', 2y, ('c¢', 1)1, dtype:[(vx-, 's1), ('y', int) 1)
>>> a.sort (order="y'")
>>> a

array ([(b'c', 1), (b'a', 2)]
IXII Al

dtype=[('s1'), ('y', '<i8")1)

method

ndarray.squeeze (axis=None)

Remove axes of length one from a.
Refer to numpy . squeeze for full documentation.

See also:

numpy . squeeze

equivalent function

method

ndarray . std (axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the standard deviation of the array elements along given axis.
Refer to numpy . std for full documentation.

See also:

numpy . std

equivalent function

method

ndarray . sum (axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.

See also:

28 1. Array objects

NumPy Reference, Release 1.23.0

numpy . sum

equivalent function

method

ndarray.swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

numpy . swapaxes

equivalent function

method

ndarray .take (indices, axis=None, out=None, mode="raise’)

Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.

See also:

numpy . take

equivalent function

method

ndarray.tobytes (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters

order

[{‘C’, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
Default is ‘C’.

Returns

[bytes] Python bytes exhibiting a copy of a’s raw data.

1.1. The N-dimensional array (ndarray) 29

NumPy Reference, Release 1.23.0

Examples

>>> x = np.array ([[0, 1], [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

ndarray.tofile (fid, sep=", format="%s’)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters

fid
[file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
sep

[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalentto file.write (a.tobytes ()).

format

[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support £ileno () (e.g., ByteslO).

method

ndarray.tolist ()

Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the i tem function.

If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters

30 1. Array objects

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

none

Returns

[object, or list of object, or list of list of object, or ...] The possibly nested list of array
elements.

Notes

The array may be recreated viaa = np.array (a.tolist ()), although this may sometimes lose pre-
cision.

Examples

Fora 1D array,a.tolist () isalmostthe sameas 1ist (a), exceptthat tolist changes numpy scalars
to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list (a)

>>> a_list

[1, 2]

>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist ()
>>> a_tolist

(1, 2]

>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array ([[1, 2], [3, 411)
>>> list (a)

[array ([1, 2]), array([3, 4])]

>>> a.tolist ()

(r1, 21, (3, 411

The base case for this recursion is a 0D array:

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

ndarray.tostring (order="C’)
A compatibility alias for t obytes, with exactly the same behavior.

Despite its name, it returns byfes not st rs.

Deprecated since version 1.19.0.

1.1. The N-dimensional array (ndarray) 31

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

method

ndarray .trace (offset=0, axis] =0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.

See also:

numpy . trace

equivalent function

method

ndarray.transpose (*axes)
Returns a view of the array with axes transposed.
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array

into a 2D column vector, an additional dimension must be added. np.atleast2d(a). T achieves this, as does a/,
np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their or-

der indicates how the axes are permuted (see Examples). If axes are not providedand a . shape = (i[0],
if1], ... i[n-2]1, i[n-1]), then a.transpose () .shape = (i[n-1], i[n-27,
if1], i[0]).
Parameters
axes

[None, tuple of ints, or 7 ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns

out

[ndarray] View of a, with axes suitably permuted.
See also:

transpose

Equivalent function
ndarray.T

Array property returning the array transposed.
ndarray.reshape

Give a new shape to an array without changing its data.

32 1. Array objects

NumPy Reference, Release 1.23.0

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a
array ([[1, 21,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)
method

ndarray .var (axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the variance of the array elements, along given axis.
Refer to numpy . var for full documentation.

See also:

numpy.var

equivalent function

method

ndarray.view ([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype (None) which is an alias for dtype (' float_").

Parameters

dtype

[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the t ype parameter).

type

[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

1.1. The N-dimensional array (ndarray) 33

NumPy Reference, Release 1.23.0

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.

Fora.view (some_dtype),if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis of a must be contiguous.
This axis will be resized in the result.

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl16)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2],
[3, 4]], dtype=int38)
>>> xv.mean (0)
array([2., 3.1)
Making changes to the view changes the underlying array
>>> xv[0,1] = 20
>>> X
array ([(1, 20), (3, 4)], dtype=[('a', 'il'), ('b', 'i1")])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a

array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

34

1. Array objects

NumPy Reference, Release 1.23.0

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([([1, 2, 31, [4, 5, 6]], dtype=np.intl6)

>>> y = x[:, ::2]
>>> y
array ([[1, 31,
[4, 6]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl16), ('length', np.intl16)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the last axis must be.

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl16), ('length', np.intl16)])
array ([[(1, 3)1,
[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8) .reshape (2, 3, 4)
>>> x.transpose(l, 0, 2).view(np.intl6)
array ([[[256, 77071,

[3340, 3854]17,

[[1284, 1798],
[4368, 488211,

[[2312, 28267,
[5396, 591011], dtype=intl16)

(ot ||

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array [selection]. Similar syntax is also used for
accessing fields in a structured data type.

See also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by the
array, or by some other object), combined with an indexing scheme that maps N integers into the location of an item in
the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes each item
takes and how the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of an
N-dimensional array in a 1-dimensional block. NumPYy is flexible, and ndarray objects can accommodate any strided

1.1. The N-dimensional array (ndarray) 35

NumPy Reference, Release 1.23.0

indexing scheme. In a strided scheme, the N-dimensional index (ng, n1, ..., ny—1) corresponds to the offset (in bytes):

N—-1
Noffset = § SNk
k=0

from the beginning of the memory block associated with the array. Here, s;, are integers which specify the st rides
of the array. The column-major order (used, for example, in the Fortran language and in Marlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

k—1 N-1
column __ : : row __ - .
8% = itemsize H dj, s = itemsize H d;.
j=0 j=k+1

where d; = self.shapel[j].

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

Note: Contiguous arrays and single-segment arrays are synonymous and are used interchangeably throughout the docu-
mentation.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the above
strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then forany legal index index[k] == 0. This means that in the formula for the
offset n;, = 0 and thus syn; = 0 and the value of s;, = self.strides[k] is arbitrary.

2. If an array has no elements (se1f.size == 0) thereis no legal index and the strides are never used. Any array
with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self and self.squeeze () always have the same contiguity and aligned flags value. This
also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.

An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of self.itemsize.
Understanding memory-alignment leads to better performance on most hardware.

Warning: It does not generally hold that self.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

NPY_RELAXED_STRIDES_DEBUG=1 can be used to help find errors when incorrectly relying on the strides in
C-extension code (see below warning).

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-segment
arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

36 1. Array objects

NumPy Reference, Release 1.23.0

1.1.4 Array attributes
Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its attributes
allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed attributes

are the core parts of an array and only some of them can be reset meaningfully without creating a new array. Information
on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.

ndarray.shape Tuple of array dimensions.

ndarray.strides Tuple of bytes to step in each dimension when traversing
an array.

ndarray.ndim Number of array dimensions.

ndarray.data Python buffer object pointing to the start of the array’s
data.

ndarray.size Number of elements in the array.

ndarray.itemsize Length of one array element in bytes.

ndarray.nbytes Total bytes consumed by the elements of the array.

ndarray.base Base object if memory is from some other object.

attribute

ndarray.flags
Information about the memory layout of the array.

Notes

The f1ags object can be accessed dictionary-like (as in a.flags ['WRITEABLE']), or by using lowercased
attribute names (as in a. flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
* WRITEBACKIFCOPY can only be set False.
¢ ALIGNED can only be set True if the data is truly aligned.

* WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but
can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape [dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] ==
self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-
style contiguous arrays is true.

Attributes

1.1. The N-dimensional array (ndarray) 37

NumPy Reference, Release 1.23.0

C_CONTIGUOUS (C)

The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F)

The data is in a single, Fortran-style contiguous segment.
OWNDATA (O)

The array owns the memory it uses or borrows it from another object.
WRITEABLE (W)

The data area can be written to. Setting this to False locks the data, making it read-only. A
view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of
a writeable array may be subsequently locked while the base array remains writeable. (The
opposite is not true, in that a view of a locked array may not be made writeable. However,
currently, locking a base object does not lock any views that already reference it, so under
that circumstance it is possible to alter the contents of a locked array via a previously created
writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError

exception.
ALIGNED (A)

The data and all elements are aligned appropriately for the hardware.
WRITEBACKIFCOPY (X)

This array is a copy of some other array. The C-API function

PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array
will be updated with the contents of this array.

FNC
F_CONTIGUOUS and not C_CONTIGUOUS.
FORC
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED (B)
ALIGNED and WRITEABLE.
CARRAY (CA)
BEHAVED and C_CONTIGUOUS.
FARRAY (FA)
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

attribute

ndarray.shape

Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-
place by assigning a tuple of array dimensions to it. As with numpy . reshape, one of the new shape dimensions
can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping
an array in-place will fail if a copy is required.

38

1. Array objects

NumPy Reference, Release 1.23.0

Warning:
reshape is the preferred approach.

Setting arr. shape is discouraged and may be deprecated in the future. Using ndarray.

See also:

numpy . shape

Equivalent getter function.
numpy . reshape

Function similar to setting shape.
ndarray.reshape

Method similar to setting shape.

Examples

>>> x = np.array ([1, 2, 3, 41)

>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))

>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array ([[0., 0., 0., 0., 0., 0., 0., 0.1,
r o., o0., 0., 0., 0., 0., 0., 0.7,
r o., 0., 0., 0., 0., 0., 0., 0.1D1)

>>> y.shape = (3, 6)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: Incompatible shape for in-place modification.
" .reshape ()’ to make a copy with the desired shape.

Use

attribute
ndarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (1 [0], 1i[1], ..., i[n]) inanarrayais:

offset = sum(np.array (i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Warning:

Setting arr.strides is discouraged and may be deprecated in the future. numpy.lib.
stride_tricks.as_strided should be preferred to create a new view of the same data in a safer way.

See also:

1.1. The N-dimensional array (ndarray)

39

NumPy Reference, Release 1.23.0

numpy.lib.stride tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 41,
[5, 6, 7, 8, 911, dtype:np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to
the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape (np.arange (2*3*4), (2,3,4))
>>> y
0, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
[[12, 13, 14, 15
16, 17, 18, 1971,
[20, 21, 22, 23111)
>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5*6*7*8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813
attribute

ndarray.ndim

Number of array dimensions.

40

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>>

X

= np.array ([1, 2, 3])

>>> x.ndim

w

>>> = np.zeros ((2, 3, 4))

>>> y.ndim

<

attribute

ndarray.data

Python buffer object pointing to the start of the array’s data.
attribute

ndarray.size

Number of elements in the array.
Equal to np.prod (a.shape), i.e., the product of the array’s dimensions.
Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of ob-
taining the same value (like the suggested np .prod (a.shape), which returns an instance of np.int_), and
may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

attribute

ndarray.itemsize

Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1,2,3], dtype=np.complexl128)

>>> x.itemsize
16

attribute

ndarray.nbytes

Total bytes consumed by the elements of the array.

1.1. The N-dimensional array (ndarray) 41

NumPy Reference, Release 1.23.0

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl128)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

attribute

ndarray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Data type

See also:

Data type objects

The data type object associated with the array can be found in the dt ype attribute:

ndarray.dtype Data-type of the array’s elements.

attribute

ndarray.dtype

Data-type of the array’s elements.

Warning: Setting arr.dtype is discouraged and may be deprecated in the future. Setting will replace the
dt ype without modifying the memory (see also ndarray.viewand ndarray.astype).

Parameters

None

42 1. Array objects

NumPy Reference, Release 1.23.0

Returns

[numpy dtype object]
See also:

ndarray.astype

Cast the values contained in the array to a new data-type.

ndarray.view

Create a view of the same data but a different data-type.

numpy . dtype

Examples

>>> X

array ([[0, 17,
(2, 311

>>> x.dtype

dtype ("int32")

>>> type (x.dtype)
<type 'numpy.dtype'>

Other attributes

ndarray.T

The transposed array.

ndarray.real

The real part of the array.

ndarray.imag

The imaginary part of the array.

ndarray.flat

A 1-D iterator over the array.

attribute

ndarray.T

The transposed array.
Same as self.transpose ().

See also:

transpose

1.1. The N-dimensional array (ndarray)

43

NumPy Reference, Release 1.23.0

Examples
>>> x np.array ([[1.,2.],[3.,4.11)
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x np.array([1.,2.,3.,4.1])
>>> x

array ([1., 2., 3., 4.1)
>>> x.T
array ([1., 2., 3., 4.71)

attribute

ndarray.real

The real part of the array.

See also:

numpy.real

equivalent function

Examples

>>> x np.sqrt ([1+03, 0+137])

>>> x.real

array ([1. , 0.707106781])
>>> x.real.dtype

dtype ('float64")

attribute

ndarray.imag

The imaginary part of the array.

Examples

>>> X

= np.sqrt ([1+03, 0+13])

>>> x.imag

array ([O. , 0.70710678])
>>> x.imag.dtype

dtype ('float6d")

attribute

ndarray.flat

A 1-D iterator over the array.

This is a numpy . f1at iter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator

object.

See also:

44

1. Array objects

NumPy Reference, Release 1.23.0

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2, 3)

>>> x

array ([[1, 2, 31,
(4, 5, 611)

>>> x.flat[3]

4

>>> x.T

array ([[1, 4],
[2, 51,
[3, 611)

>>> x.T.flat[3]

5

>>> type (x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat =
array ([[3, 3
[3! 37
>>> x.flat[[1,
array ([[3, 1
[3, 1

Array interface

See also:

The array interface protocol.

__array_interface__ | Python-side of the array interface
__array_struct___ C-side of the array interface

ctypes foreign function interface

ndarray.ctypes An object to simplify the interaction of the array with the
ctypes module.

attribute

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.
This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module.

The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return
ctypes objects that can be used as arguments to a shared library.

1.1. The N-dimensional array (ndarray) 45

NumPy Reference, Release 1.23.0

Parameters
None

Returns

[Python object] Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

_ctypes.data

A pointer to the memory area of the array as a Python integer. This memory area may contain data that is
not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and
data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble
that can include Python crashing. User Beware! The value of this attribute is exactly the same as self.
_array_interface_['data'] [0].

Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p ((a
+ b) .ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + Db) .
ctypes.data_as (ctypes.c_void_p)

_ctypes.shape

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding
to dtype ('p') on this platform (see c_intp). This base-type could be ctypes.c_int, ctypes.
c_long, or ctypes.c_longlong depending on the platform. The ctypes array contains the shape of
the underlying array.

_ctypes.strides

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape at-
tribute. This ctypes array contains the strides information from the underlying array. This strides information
is important for showing how many bytes must be jumped to get to the next element in the array.

_ctypes.data_as (obj)

Return the data pointer cast to a particular c-types object. For example, calling self._ as_parameter_
isequivalentto self.data_as (ctypes.c_void_p) . Perhaps you want to use the data as a pointer to
a ctypes array of floating-point data: self.data_as (ctypes.POINTER (ctypes.c_double)).

The returned pointer will keep a reference to the array.

_ctypes.shape_as (0bj)

Return the shape tuple as an array of some other c-types type. For example: self.shape_as (ctypes.
c_short).

_ctypes.strides_as (obj)

Return the strides tuple as an array of some other c-types type. For example: self.
strides_as (ctypes.c_longlong).

46

1. Array objects

https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 1.23.0

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes

>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array ([[0, 11,

[2, 311, dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_uint32))
<__ main__.LP_c_uint object at 0x7ff2fcl1fc200> # may vary
>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_uint32)) .contents
c_uint (0)
>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_uint64)) .contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fclfce60> # may vary
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at O0x7ff2fclff320> # may vary

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an array
result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any, argmax, argmin,
argpartition, argsort, choose, clip, compress, copy, cumprod, cumsum, diagonal, imag,
max, mean, min, nonzero, partition, prod, ptp, put, ravel, real, repeat, reshape, round,
searchsorted, sort, squeeze, std, sum, swapaxes, take, trace, transpose, var

1.1. The N-dimensional array (ndarray) 47

NumPy Reference, Release 1.23.0

Array conversion

ndarray. item(*args) Copy an element of an array to a standard Python scalar
and return it.

ndarray.tolist() Return the array as an a . ndim-levels deep nested list of
Python scalars.

ndarray.itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype,
if possible)

ndarray.tostring([order]) A compatibility alias for tobytes, with exactly the same
behavior.

ndarray.tobytes([order]) Construct Python bytes containing the raw data bytes in
the array.

ndarray.tofile(fid], sep, format]) Write array to a file as text or binary (default).

ndarray.dump(file) Dump a pickle of the array to the specified file.

ndarray.dumps() Returns the pickle of the array as a string.

ndarray.astype(dtype[, order, casting, ...]) Copy of the array, cast to a specified type.

ndarray.byteswap([inplace]) Swap the bytes of the array elements

ndarray.copy([order]) Return a copy of the array.

ndarray.view([dtype]l, type]) New view of array with the same data.

ndarray.get field(dtypel, offset]) Returns a field of the given array as a certain type.

ndarray.setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITE-
BACKIFCOPY, respectively.

ndarray. fill(value) Fill the array with a scalar value.

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted

as an n-tuple.

ndarray.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

ndarray.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

ndarray.

transpose(*axes)

Returns a view of the array with axes transposed.

ndarray.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 inter-
changed.

ndarray. flatten([order]) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.
ndarray.squeeze([axis]) Remove axes of length one from a.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D array.
Any other value for axis represents the dimension along which the operation should proceed.

48

1. Array objects

NumPy Reference, Release 1.23.0

ndarray.

t ake(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

ndarray.

put(indices, values[, mode])

Seta.flat[n] values [n] for all n in indices.

ndarray.

repeat(repeats[, axis])

Repeat elements of an array.

ndarray.

choose(choices[, out, mode])

Use an index array to construct a new array from a set of
choices.

ndarray.

sort([axis, kind, order])

Sort an array in-place.

ndarray.

argsort([axis, kind, order])

Returns the indices that would sort this array.

ndarray.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that
the value of the element in kth position is in the position
it would be in a sorted array.

ndarray.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

ndarray.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in a
to maintain order.

ndarray.

nonzero()

Return the indices of the elements that are non-zero.

ndarray.

compress(condition[, axis, out])

Return selected slices of this array along given axis.

ndarray.

diagonal([offset, axis1, axis2])

Return specified diagonals.

Calculation

Many of these methods take an argument named axis. In such cases,

¢ If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire array.
This behavior is also the default if self is a O-dimensional array or array scalar. (An array scalar is an instance of
the types/classes float32, float64, etc., whereas a O-dimensional array is an ndarray instance containing precisely
one array scalar.)

« If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created along
the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

>>> X np.arange (27) .reshape ((3, 3, 3))

>>> X

10, 1
14 j-31
r 16/
19,
22,
25,
>>> x.sum(axis=0)
array ([[27, 30, 331,

[36, 39, 427,

[45, 48, 5111)
>>> # for sum, axis is the first keyword,
>>> # specifying only its value

so we may omit 1it,

>>> x.sum(0), x.sum(l), x.sum(2)
(array([[27, 30, 33],
[36, 39, 427,

(continues on next page)

1.1. The N-dimensional array (ndarray) 49

NumPy Reference, Release 1.23.0

(continued from previous page)

array ([

array ([

o W

48, 51]
12, 15]
39, 421,
66, 6911),

]

]

]

~

~

~

12,
39, 48
66,

~

~

~ O W w o o U
~

~

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction

using a large

r data type.

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data type
in which case casting will be performed.

ndarray.max([axis, out, keepdims, initial, ...]) Return the maximum along a given axis.

ndarray.argmax([axis, out, keepdims]) Return indices of the maximum values along the given
axis.

ndarray.min([axis, out, keepdims, initial, ...]) Return the minimum along a given axis.

ndarray.argmin([axis, out, keepdims]) Return indices of the minimum values along the given
axis.

ndarray . ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a given
axis.

ndarray.clip([min, max, out]) Return an array whose values are limited to [min,
max].

ndarray.conj() Complex-conjugate all elements.

ndarray.round([decimals, out]) Return a with each element rounded to the given number
of decimals.

ndarray.trace([offset, axisl, axis2, dtype, out]) Return the sum along diagonals of the array.

ndarray. sum([axis, dtype, out, keepdims, ...]) Return the sum of the array elements over the given axis.

ndarray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given
axis.

ndarray.mean([axis, dtype, out, keepdims, where]) ~ Returns the average of the array elements along given
axis.

ndarray. var([axis, dtype, out, ddof, ...]) Returns the variance of the array elements, along given
axis.

ndarray. std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along
given axis.

ndarray.prod([axis, dtype, out, keepdims, ...]) Return the product of the array elements over the given

axis

ndarray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the
given axis.
ndarray.all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
ndarray.any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to True.
50 1. Array objects

NumPy Reference, Release 1.23.0

1.1.6 Arithmetic, matrix multiplication, and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield
ndarray objects as results.

Each of the arithmetic operations (+, —, *, /, //, %, divmod (), ** or pow (), <<, >>, &, *, |, ~) and the comparisons
(==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in NumPy. For more

information, see the section on Universal Functions.

Comparison operators:

ndarray.__1t__ (value,/) Return self<value.
ndarray.__le__ (value,/) Return self<=value.
ndarray.__gt__(value,/) Return self>value.
ndarray.__ge__(value,/) Return self>=value.
ndarray.__eq__(value,/) Return self==value.
ndarray.__ne__ (value,/) Return self!=value.

method

ndarray.__1lt__ (value, /)

Return self<value.
method

ndarray.__le_ (value,/)

Return self<=value.
method

ndarray.__gt__ (value, /)

Return self>value.
method

ndarray.__ge__ (value, /)

Return self>=value.
method

ndarray.__eq__ (value,/)
Return self==value.

method

ndarray.__ne__ (value, /)

Return self'!=value.

Truth value of an array (bool ()):

ndarray.__bool__ (/) True if self else False

method

ndarray.__bool__ (/)
True if self else False

1.1. The N-dimensional array (ndarray) 51

https://docs.python.org/3/library/functions.html#bool

NumPy Reference, Release 1.23.0

Note: Truth-value testing of an array invokes ndarray.__bool

, which raises an error if the number of elements

in the array is larger than 1, because the truth value of such arrays is ambiguous. Use . any () and .all () instead to
be clear about what is meant in such cases. (If the number of elements is 0, the array evaluates to False.)

Unary operations:

ndarray.__neqg__ (/) -self

ndarray.__pos__ (/) +self

ndarray.__abs__ (self)

ndarray.__invert_ (/) ~self
method

ndarray.__neg__ (/)

-self

method

ndarray.__pos__ (/)

+self

method

ndarray.__abs__ (self)

method

ndarray.__invert__ (/)

~self

Arithmetic:
ndarray.___add__ (value,/) Return self+value.
ndarray.__sub__(value,/) Return self-value.
ndarray.__mul__(value,/) Return self*value.
ndarray.__ truediv__ (value,/) Return self/value.
ndarray.___floordiv__(value,/) Return self//value.
ndarray.__mod__ (value,/) Return self%value.
ndarray.__divmod__ (value,/) Return divmod(self, value).
ndarray.___pow__ (value[, mod]) Return pow(self, value, mod).
ndarray.___lshift__(value,/) Return self «value.
ndarray.__rshift__(value,/) Return self»value.
ndarray.__and__ (value,/) Return self&value.
ndarray.__or__ (value,/) Return selflvalue.
ndarray.__ xor__ (value,/) Return selfAvalue.

method

ndarray.__add__ (value, /)

Return self+value.

method

52

1. Array objects

NumPy Reference, Release 1.23.0

ndarray.__sub__ (value, /)

Return self-value.
method

ndarray.__mul__ (value,/)

Return self*value.
method

ndarray._ _truediv__ (value, /)

Return self/value.
method

ndarray._ floordiv__ (value,/)

Return self//value.
method

ndarray.__mod__ (value,/)

Return self %value.
method

ndarray.__divmod__ (value, /)

Return divmod(self, value).
method

ndarray.__pow__ (value, mod=None, /)

Return pow(self, value, mod).
method

ndarray.__lshift__ (value, /)

Return self«value.
method

ndarray.__rshift__ (value, /)

Return self»value.
method

ndarray.__and__ (value,/)

Return self &value.
method

ndarray.__oxr__ (value, /)

Return selflvalue.
method

ndarray.__xor__ (value,/)

Return self*value.

Note:
¢ Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

* Because ndarray is a built-in type (written in C), the __r{op}___ special methods are not directly defined.

1.1. The N-dimensional array (ndarray) 53

https://docs.python.org/3/library/functions.html#pow

NumPy Reference, Release 1.23.0

e The functions called to implement many arithmetic special methods for arrays can be modified using
__array_ufunc__.

Arithmetic, in-place:

ndarray.___iadd__ (value,/) Return self+=value.
ndarray.__isub__ (value,/) Return self-=value.
ndarray.___imul__(value,/) Return self*=value.
ndarray.___itruediv__(value,/) Return self/=value.
ndarray.__ifloordiv__(value,/) Return self//=value.
ndarray.__imod__ (value,/) Return self %=value.
ndarray.__ipow__(value,/) Return self**=value.
ndarray.__ilshift__(value,/) Return self «=value.
ndarray.__irshift__(value,/) Return self»=value.
ndarray.___iand__ (value,/) Return self &=value.
ndarray.___ior__ (value,/) Return selfl=value.
ndarray.__ixor__(value,/) Return self*=value.
method

ndarray.__iadd__ (value, /)

Return self+=value.

method

ndarray.__isub__ (value, /)

Return self-=value.

method

ndarray.__imul__ (value, /)

Return self*=value.

method

ndarray.__itruediv__ (value, /)

Return self/=value.

method

ndarray.__ifloordiv__ (value, /)

Return self//=value.

method

ndarray.__imod__ (value, /)

Return self %=value.

method

ndarray.__ipow__ (value, /)

Return self**=value.

method

ndarray.__ilshift__ (value, /)

Return self«=value.

method

54

1. Array objects

NumPy Reference, Release 1.23.0

ndarray.__irshift__ (value, /)
Return self»=value.

method

ndarray.__iand__ (value, /)
Return self &=value.

method

ndarray.__ior__ (value,/)
Return selfl=value.

method

ndarray.__ixor__ (value, /)
Return self”=value.

Warning: In place operations will perform the calculation using the precision decided by the data type of the two
operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore, for mixed pre-
cision calculations, 2 {op}= B can be differentthan A = A {op} B. For example, suppose a = ones ((3,
3)). Then, a += 37 is different than a = a + 37j: while they both perform the same computation, a += 3
casts the result to fit back in a, whereas a = a + 37 re-binds the name a to the result.

Matrix Multiplication:
ndarray.___matmul__ (value,/) Return self @value.
method

ndarray.__matmul__ (value, /)
Return self @value.

Note: Matrix operators @ and @= were introduced in Python 3.5 following PEP 465, and the @ operator has been
introduced in NumPy 1.10.0. Further information can be found in the matmul documentation.

1.1.7 Special methods

For standard library functions:

ndarray.__copy__() Used if copy . copy is called on an array.
ndarray.__deepcopy__(memo, /) Used if copy . deepcopy is called on an array.
ndarray.__reduce_ () For pickling.
ndarray.__setstate__(state,/) For unpickling.

method

ndarray.__copy__ ()
Used if copy . copy is called on an array. Returns a copy of the array.

Equivalent to a . copy (order="K").

method

1.1. The N-dimensional array (ndarray) 55

mailto:self@value
mailto:self@value
https://peps.python.org/pep-0465/
https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/copy.html#copy.copy

NumPy Reference, Release 1.23.0

ndarray.__deepcopy__ (memo,/) — Deep copy of array.

Used if copy . deepcopy is called on an array.

method

ndarray.__reduce__ ()
For pickling.

method

ndarray.__setstate__ (state, /)
For unpickling.

The state argument must be a sequence that contains the following elements:

Parameters

version
[int] optional pickle version. If omitted defaults to 0.
shape
[tuple]
dtype
[data-type]
isFortran
[bool]
rawdata

[string or list] a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray.__new__(*args, **kwargs)

ndarray.__array__ ([dtypel, /) Returns either a new reference to self if dtype is not given
or a new array of provided data type if dtype is different
from the current dtype of the array.

ndarray.__array_wrap__(array[, context], /) Returns a view of array with the same type as self.
method
ndarray.__new__ (*args, **kwargs)
method

ndarray.__array__ ([dtype], /) — reference if type unchanged, copy otherwise.

Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different
from the current dtype of the array.

method

ndarray.__array_wrap_ (army[, context], /)

Returns a view of array with the same type as self.

56 1. Array objects

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.23.0

Container customization: (see /ndexing)

ndarray.__len__ (/) Return len(self).
ndarray.__getitem _(key,/) Return self[key].
ndarray.__setitem__(key, value, /) Set self[key] to value.
ndarray.__contains__(key,/) Return key in self.
method
ndarray.__len__ (/)
Return len(self).
method

ndarray.__getitem__ (key,/)
Return self[key].

method

ndarray._ setitem__ (key, value, /)

Set self[key] to value.
method

ndarray.__contains__ (key,/)

Return key in self.

Conversion; the operations int (), float () and complex (). They work only on arrays that have one element in
them and return the appropriate scalar.

ndarray.___int__ (self)

ndarray.___float__(self)

ndarray.__complex___

method

ndarray.__int__ (self)
method
ndarray.__float__ (self)

method

ndarray.__complex__ ()

String representations:

ndarray.__str__(/) Return str(self).
ndarray.__repr__(/) Return repr(self).
method

1.1. The N-dimensional array (ndarray) 57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex

NumPy Reference, Release 1.23.0

ndarray.__str__ (/)

Return str(self).
method

ndarray.__repr__ (/)

Return repr(self).

Utility method for typing:

ndarray.__class_getitem _ (item,/) Return a parametrized wrapper around the ndarray

type.

method

ndarray.__class_getitem__ (item, /)

Return a parametrized wrapper around the ndarray type.
New in version 1.22.

Returns

alias

[types.GenericAlias] A parametrized ndarray type.

See also:

PEP 585

Type hinting generics in standard collections.
numpy . typing.NDArray

An ndarray alias generic w.r.t. its dt ype. t ype.

Notes

This method is only available for python 3.9 and later.

Examples

>>> from typing import Any
>>> import numpy as np

>>> np.ndarray[Any, np.dtypel[Any]]
numpy.ndarray[typing.Any, numpy.dtypel[typing.Any]]

58

1. Array objects

https://peps.python.org/pep-0585/
https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 1.23.0

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.). This
can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a computer.
For scientific computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors are
mostly based on the types available in the C language that CPython is written in, with several additional types compatible
with Python’s types.

Array scalars have the same attributes and methods as ndarrays.' This allows one to treat items of an array partly on
the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy: For
example, isinstance (val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for ex-
ample isinstance (val, np.complexfloating) will return True if val is a complex valued type, while
isinstance (val, np.flexible) will return true if val is one of the flexible itemsize array types (str_,
bytes_, void).

1.2.1 Built-in scalar types
The built-in scalar types are shown below. The C-like names are associated with character codes, which are shown in
their descriptions. Use of the character codes, however, is discouraged.

Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as well
as from the generic array scalar type:

Array scalar type | Related Python type Inherits?
int_ int Python 2 only
float_ float yes
complex_ complex yes

bytes_ bytes yes

str_ str yes

bool__ bool no
datetime64 datetime.datetime no
timedelta64 datetime.timedelta | no

The bool_ data type is very similar to the Python bool but does not inherit from it because Python’s bool does not
allow itself to be inherited from, and on the C-level the size of the actual bool data is not the same as a Python Boolean
scalar.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer a
fixed-width integer type.

Tip: The default data type in NumPy is float_.

! However, array scalars are immutable, so none of the array scalar attributes are settable.

1.2. Scalars 59

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 1.23.0

v ¥ IR 2 \

bool object_ ' number : | flexible :

ﬁ integer j r inexact j ' characte void

isignedintegt&§ iunsignedintegegr flnatingé iccmplexﬂcatind tr
;I _-I _] unicode |
> byte | ubyte P half

~» short —» ushort | single —® csingle

3 intc S L] float —» complex|

> int_ > uint 3 longfloat —» dongfloat

| longlong —® ulonglong

Fig. 2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types intp
and uintp which just point to the integer type that holds a pointer for the platform. All the number types can be obtained
using bit-width names as well.

60 1. Array objects

NumPy Reference, Release 1.23.0

class numpy.generic
Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same APl as ndarray,
despite many consequent attributes being either “get-only,” or completely irrelevant. This is the class from which
it is strongly suggested users should derive custom scalar types.

class numpy.number

Abstract base class of all numeric scalar types.

Integer types

class numpy.integer
Abstract base class of all integer scalar types.

Note: The numpy integer types mirror the behavior of C integers, and can therefore be subject to overflow-errors.

Signed integer types

class numpy.signedinteger
Abstract base class of all signed integer scalar types.

class numpy.byte
Signed integer type, compatible with C char.

Character code
e
Alias on this platform (Linux x86_64)
numpy . int8: 8-bit signed integer (-128 to 127).

class numpy.short

Signed integer type, compatible with C short.
Character code
"y
Alias on this platform (Linux x86_64)
numpy.int16: 16-bit signed integer (-32_768 to 32_767).

class numpy.intc
Signed integer type, compatible with C int.

Character code
vy
Alias on this platform (Linux x86_64)
numpy . int32: 32-bit signed integer (—2_147_483_648to2_147_483_647).

class numpy.int_
Signed integer type, compatible with Python int and C long.

Character code

'l'

1.2. Scalars 61

https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 1.23.0

Alias on this platform (Linux x86_64)

numpy.int64: 64-bit signed integer (-9_223_372_036_854_775_808 to
9.223_372_036_854_775_807).

Alias on this platform (Linux x86_64)
numpy . intp: Signed integer large enough to fit pointer, compatible with C intptr_t.

class numpy.longlong
Signed integer type, compatible with C long long.

Character code
|l q A}
Unsigned integer types

class numpy.unsignedinteger

Abstract base class of all unsigned integer scalar types.

class numpy.ubyte
Unsigned integer type, compatible with C unsigned char.

Character code
ey
Alias on this platform (Linux x86_64)
numpy . uint8: 8-bit unsigned integer (0 to 255).

class numpy.ushort
Unsigned integer type, compatible with C unsigned short.

Character code
Ty
Alias on this platform (Linux x86_64)
numpy.uint16: 16-bit unsigned integer (0 to 65_535).

class numpy.uintc

Unsigned integer type, compatible with C unsigned int.
Character code
vIo
Alias on this platform (Linux x86_64)
numpy . uint32: 32-bit unsigned integer (0 to 4_294_967_295).

class numpy.uint

Unsigned integer type, compatible with C unsigned long.
Character code
v
Alias on this platform (Linux x86_64)
numpy.uint 64: 64-bit unsigned integer (0 to 18_446_744_073_709_551_615).

62 1. Array objects

NumPy Reference, Release 1.23.0

Alias on this platform (Linux x86_64)
numpy . uintp: Unsigned integer large enough to fit pointer, compatible with C uintptr_t.

class numpy.ulonglong
Signed integer type, compatible with C unsigned long long.

Character code

IQI

Inexact types

class numpy.inexact

Abstract base class of all numeric scalar types with a (potentially) inexact representation of the values in its range,
such as floating-point numbers.

Note: Inexact scalars are printed using the fewest decimal digits needed to distinguish their value from other values
of the same datatype, by judicious rounding. See the unique parameter of format_float_positional and
format_float_scientific.

This means that variables with equal binary values but whose datatypes are of different precisions may display differently:

>>> f16 = np.floatle6("0.1")

>>> f32 = np.float32(£f16)

>>> f64 = np.float64(£32)

>>> f16 == £32 == f64

True

>>> fleo, £32, f64

(0.1, 0.099975586, 0.0999755859375)

Note that none of these floats hold the exact value 1—10; f£16 prints as 0. 1 because it is as close to that value as possible,

whereas the other types do not as they have more precision and therefore have closer values.

Conversely, floating-point scalars of different precisions which approximate the same decimal value may compare unequal
despite printing identically:

>>> f16 = np.floatl6("0.1
>>> f32 = np.float32("0.1")
>>> f64 np.float64 ("0.1
>>> flo == £32 == f64
False

>>> fl6, £32, f64

(0.1, 0.1, 0.1)

n

Floating-point types

class numpy.floating

Abstract base class of all floating-point scalar types.

class numpy.half

Half-precision floating-point number type.
Character code

'e'

1.2. Scalars 63

NumPy Reference, Release 1.23.0

Alias on this platform (Linux x86_64)

numpy . float16: 16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits
mantissa.

class numpy.single

Single-precision floating-point number type, compatible with C f1oat.
Character code
Ve
Alias on this platform (Linux x86_64)

numpy . float 32: 32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits
mantissa.

class numpy.double (x=0, /)
Double-precision floating-point number type, compatible with Python £ 1oat and C double.

Character code
g
Alias
numpy.float_
Alias on this platform (Linux x86_64)

numpy.float 64: 64-bit precision floating-point number type: sign bit, 11 bits exponent, 52
bits mantissa.

class numpy.longdouble

Extended-precision floating-point number type, compatible with C 1ong double but not necessarily with IEEE
754 quadruple-precision.

Character code
g
Alias
numpy.longfloat
Alias on this platform (Linux x86_64)

numpy . float128: 128-bit extended-precision floating-point number type.

Complex floating-point types

class numpy.complexfloating
Abstract base class of all complex number scalar types that are made up of floating-point numbers.

class numpy.csingle
Complex number type composed of two single-precision floating-point numbers.

Character code
| F Al
Alias

numpy.singlecomplex

64 1. Array objects

https://docs.python.org/3/library/functions.html#float

NumPy Reference, Release 1.23.0

Alias on this platform (Linux x86_64)

numpy . complex64: Complex number type composed of 2 32-bit-precision floating-point num-
bers.

class numpy.cdouble (real=0, imag=0)

Complex number type composed of two double-precision floating-point numbers, compatible with Python
complex.

Character code
"D
Alias
numpy.cfloat
Alias
numpy.complex_
Alias on this platform (Linux x86_64)

numpy.complex128: Complex number type composed of 2 64-bit-precision floating-point
numbers.

class numpy.clongdouble
Complex number type composed of two extended-precision floating-point numbers.

Character code
el
Alias
numpy.clongfloat
Alias
numpy.longcomplex
Alias on this platform (Linux x86_64)

numpy.complex256: Complex number type composed of 2 128-bit extended-precision
floating-point numbers.

Other types

class numpy.bool_
Boolean type (True or False), stored as a byte.

Warning: The bool_ type is not a subclass of the int_ type (the bool_ is not even a number type). This
is different than Python’s default implementation of bool as a sub-class of int.

Character code
] ? Al
Alias

numpy .bool8

1.2. Scalars 65

https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 1.23.0

class numpy.datetime64

If created from a 64-bit integer, it represents an offset from 1970-01-01T00:00:00. If created from string,
the string can be in ISO 8601 date or datetime format.

>>> np.datetime64 (10, 'Y'")
numpy.datetime64 ('1980")

>>> np.datetime64 ('1980', 'Y")
numpy .datetime64 ('1980")

>>> np.datetime64 (10, 'D'")
numpy .datetime64 ('1970-01-11")

See Datetimes and Timedeltas for more information.
Character code
e
class numpy.timedelta64
A timedelta stored as a 64-bit integer.
See Datetimes and Timedeltas for more information.

Character code

|l A}

m

class numpy.object_
Any Python object.

Character code

'O'

Note: The data actually stored in object arrays (i.e., arrays having dtype object_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python 11 st s, in the sense that their contents
need not be of the same Python type.

The object type is also special because an array containing ob ject__ items does not return an ob ject_ object on item
access, but instead returns the actual object that the array item refers to.

The following data types are flexible: they have no predefined size and the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)

class numpy.flexible
Abstract base class of all scalar types without predefined length. The actual size of these types depends on the
specific np.dtype instantiation.

class numpy.bytes_
A byte string.

When used in arrays, this type strips trailing null bytes.
Character code
rg
Alias

numpy.string_

66 1. Array objects

https://docs.python.org/3/library/stdtypes.html#list

NumPy Reference, Release 1.23.0

class numpy.str_

A unicode string.
When used in arrays, this type strips trailing null codepoints.

Unlike the builtin st r, this supports the Buffer Protocol, exposing its contents as UCS4:

>>> m = memoryview (np.str_("abc"))

>>> m.format

l3wl

>>> m.tobytes ()
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00"

Character code
] U A
Alias

numpy.unicode_

class numpy.void

Either an opaque sequence of bytes, or a structure.

>>> np.void(b'abcd')
void (b'\x61\x62\x63\x64")

Structured void scalars can only be constructed via extraction from structured_arrays:

>>> arr = np.array((l, 2), dtype=[('x', np.int8), ('y', np.int8)])
>>> arr([()]
(1, 2) # looks like a tuple, but is "np.void’

Character code

'V'

Warning: See Note on string types.

Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never recommended),
you will need to change some of them to the new characters. In particular, the needed changes are ¢ —> S1,b ->
B,1 -> b,s —> h,w -> H,andu -> I.These changes make the type character convention more consistent
with other Python modules such as the st ruct module.

Sized aliases

Along with their (mostly) C-derived names, the integer, float, and complex data-types are also available using a bit-width
convention so that an array of the right size can always be ensured. Two aliases (numpy . intp and numpy.uintp)
pointing to the integer type that is sufficiently large to hold a C pointer are also provided.
numpy .bool8

alias of numpy.bool_

numpy.int8
numpy.int1l6

1.2. Scalars 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/c-api/buffer.html#bufferobjects
https://docs.python.org/3/library/struct.html#module-struct

NumPy Reference, Release 1.23.0

numpy .int32

numpy .int 64
Aliases for the signed integer types (one of numpy . byte, numpy.short, numpy.intc, numpy.int_ and
numpy . longlong) with the specified number of bits.
Compatible with the C99 int8_t, intl16_t, int32_t, and int64_t, respectively.

numpy.uint8

numpy.uint16

numpy .uint32

numpy .uint 64
Alias for the unsigned integer types (one of numpy . ubyte, numpy.ushort, numpy.uintc, numpy.uint
and numpy . ulonglong) with the specified number of bits.
Compatible with the C99 uint8_t,uintl16_t,uint32_t, and uint 64_t, respectively.

numpy .intp
Alias for the signed integer type (one of numpy.byte, numpy.short, numpy.intc, numpy.int_ and
np.longlong) that is the same size as a pointer.

Compatible with the C intptr_t.

Character code
|l p L}
numpy .uintp
Alias for the unsigned integer type (one of numpy . ubyte, numpy.ushort, numpy.uintc, numpy.uint
and np.ulonglong) that is the same size as a pointer.
Compatible with the C uintptr_t.
Character code
|l P A}
numpy . floatlé
alias of numpy.half
numpy . £loat32
alias of numpy.single
numpy . £float 64
alias of numpy.double
numpy . £loat 96
numpy . float128
Alias for numpy. longdouble, named after its size in bits. The existence of these aliases depends on the
platform.
numpy .complex64
alias of numpy.csingle
numpy .complex128
alias of numpy . cdouble
numpy .complex192

numpy .complex256

Alias for numpy.clongdouble, named after its size in bits. The existence of these aliases depends on the
platform.

68 1. Array objects

NumPy Reference, Release 1.23.0

Other aliases
The first two of these are conveniences which resemble the names of the builtin types, in the same style as bool_, int_,
str_,bytes_,and object_:

numpy . float_
alias of numpy . double

numpy .complex_

alias of numpy . cdouble
Some more use alternate naming conventions for extended-precision floats and complex numbers:

numpy .longfloat
alias of numpy. longdouble

numpy . singlecomplex

alias of numpy.csingle

numpy .cfloat

alias of numpy . cdouble

numpy . longcomplex

alias of numpy.clongdouble

numpy .clongfloat

alias of numpy.clongdouble
The following aliases originate from Python 2, and it is recommended that they not be used in new code.

numpy .string_

alias of numpy.bytes_

numpy .unicode_

alias of numpy.str_

1.2. Scalars 69

NumPy Reference, Release 1.23.0

1.2.2 Attributes

The array scalar objects have an array priorityof NPY_SCALAR_PRIORITY (-1,000,000.0). They also do not
(yet) have a ct ypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags The integer value of flags.
generic. shape Tuple of array dimensions.
generic.strides Tuple of bytes steps in each dimension.
generic.ndim The number of array dimensions.
generic.data Pointer to start of data.
generic.size The number of elements in the gentype.
generic.itemsize The length of one element in bytes.
generic.base Scalar attribute identical to the corresponding array at-
tribute.
generic.dtype Get array data-descriptor.
generic.real The real part of the scalar.
generic.imag The imaginary part of the scalar.

A 1-D view of the scalar.

generic.flat

generic.T Scalar attribute identical to the corresponding array at-

tribute.

generic.__array_interface__ Array protocol: Python side

generic.__array_struct___ Array protocol: struct

generic.__array_priority_ Array priority.

generic.__array_wrap___ sc.__array_wrap__(obj) return scalar from array
attribute

generic.flags
The integer value of flags.

attribute

generic.shape

Tuple of array dimensions.
attribute

generic.strides

Tuple of bytes steps in each dimension.
attribute

generic.ndim

The number of array dimensions.
attribute

generic.data

Pointer to start of data.
attribute

generic.size

The number of elements in the gentype.

attribute

70 1. Array objects

NumPy Reference, Release 1.23.0

generic.itemsize

The length of one element in bytes.
attribute

generic.base

Scalar attribute identical to the corresponding array attribute.

Please see ndarray.base.
attribute

generic.dtype

Get array data-descriptor.
attribute

generic.real

The real part of the scalar.
attribute

generic.imag

The imaginary part of the scalar.
attribute

generic.flat
A 1-D view of the scalar.

attribute

generic.T

Scalar attribute identical to the corresponding array attribute.

Please see ndarray. T.
attribute

generic.__array_interface___

Array protocol: Python side
attribute

generic.__array_struct

Array protocol: struct
attribute

generic.__array_priority_
Array priority.
method

generic.__array_wrap__ ()

sc.__array_wrap__(obj) return scalar from array

1.2. Scalars

71

NumPy Reference, Release 1.23.0

1.2.3 Indexing

See also:

Indexing routines, Data type objects (dtype)

Array scalars can be indexed like O-dimensional arrays: if x is an array scalar,
e x[()] returns a copy of array scalar
e x[...] returns a O-dimensional ndarray

e x['field-name'] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a structured data type.)

1.2.4 Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert the
scalar to an equivalent O-dimensional array and to call the corresponding array method. In addition, math operations on
array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that the
error state used for ufuncs also carries over to the math on array scalars.

The exceptions to the above rules are given below:

generic.__array_ sc.__array__(dtype) return 0-dim array from scalar with
specified dtype
generic.__array_wrap__ sc.__array_wrap__(obj) return scalar from array
generic.squeeze Scalar method identical to the corresponding array at-
tribute.
generic.byteswap Scalar method identical to the corresponding array at-
tribute.
generic.__reduce___ Helper for pickle.
generic.__setstate_
generic.setflags Scalar method identical to the corresponding array at-
tribute.
method
generic.__array__ ()

sc.__array__(dtype) return O-dim array from scalar with specified dtype
method

generic.squeeze ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. squeeze.
method

generic.byteswap ()
Scalar method identical to the corresponding array attribute.

Please see ndarray.byteswap.

method

72 1. Array objects

NumPy Reference, Release 1.23.0

generic.__reduce__ ()
Helper for pickle.
method

generic.__setstate__ ()

method

generic.setflags ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.setflags.

Utility method for typing:

number.__class_getitem__(item, /) Return a parametrized wrapper around the numbe r type.

method

number.__class_getitem__ (item, /)

Return a parametrized wrapper around the numbe r type.
New in version 1.22.

Returns

alias

[types.GenericAlias] A parametrized numbe r type.
See also:

PEP 585

Type hinting generics in standard collections.

Notes

This method is only available for python 3.9 and later.

Examples

>>> from typing import Any
>>> import numpy as np

>>> np.signedinteger[Any]
numpy.signedinteger [typing.Any]

1.2. Scalars 73

https://peps.python.org/pep-0585/

NumPy Reference, Release 1.23.0

1.2.5 Defining new types

There are two ways to effectively define a new array scalar type (apart from composing structured types drypes from the
built-in scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This will work
to a degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the data type of an
array you need to define a new data-type, and register it with NumPy. Such new types can only be defined in C, using the
NumPy C-API.

1.3 Data type objects (dtype)

A data type object (an instance of numpy . dtype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)

2. Size of the data (how many bytes is in e.g. the integer)
3. Byte order of the data (little-endian or big-endian)
4

. If the data type is structured data type, an aggregate of other data types, (e.g., describing an array item consisting
of an integer and a float),

1. what are the names of the “fields” of the structure, by which they can be accessed,
2. what is the data-type of each field, and
3. which part of the memory block each field takes.

5. If the data type is a sub-array, what is its shape and data type.

To describe the type of scalar data, there are several built-in scalar types in NumPy for various precision of integers,
floating-point numbers, efc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is the
scalar type associated with the data type of the array.

Note that the scalar types are not dt ype objects, even though they can be used in place of one whenever a data type
specification is needed in NumPy.

Structured data types are formed by creating a data type whose field contain other data types. Each field has a name by
which it can be accessed. The parent data type should be of sufficient size to contain all its fields; the parent is nearly always
based on the void type which allows an arbitrary item size. Structured data types may also contain nested structured
sub-array data types in their fields.

Finally, a data type can describe items that are themselves arrays of items of another data type. These sub-arrays must,
however, be of a fixed size.

If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended to the shape of
the array when the array is created. Sub-arrays in a field of a structured type behave differently, see arrays.indexing.fields.

Sub-arrays always have a C-contiguous memory layout.

Example

A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

>>> dt = np.dtype('>1i4")
>>> dt.byteorder

l>|

>>> dt.itemsize

(continues on next page)

74 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

4

>>> dt.name

'int32"

>>> dt.type is np.int32
True

The corresponding array scalar type is 1nt 32.

Example

A structured data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point number
(in field ‘grades’):

>>> dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))1)
>>> dt['name']

dtype ('<U16")

>>> dt['grades']

dtype (('<f8', (2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> x = np.array ([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]

('"John', [6., 7.1)

>>> x[1]['grades']

array ([6., 7.1)

>>> type(x[1])

<class 'numpy.void'>

>>> type(x[1]['grades'])

<class 'numpy.ndarray'>

1.3.1 Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dt ype object or something that can be
converted to one can be supplied. Such conversions are done by the dt ype constructor:

dt ype(dtypel[, align, copy]) Create a data type object.

class numpy.dtype (dtype, align=False, copy=False)
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be con-
structed from different combinations of fundamental numeric types.

Parameters

dtype
Object to be converted to a data type object.

align

1.3. Data type objects (dtype) 75

NumPy Reference, Release 1.23.0

[bool, optional] Add padding to the fields to match what a C compiler would output for a
similar C-struct. Can be True only if obj is a dictionary or a comma-separated string. If a
struct dtype is being created, this also sets a sticky alignment flag i salignedstruct.

copy

[bool, optional] Make a new copy of the data-type object. If False, the result may just be a

reference to a built-in data-type object.
See also:

result_type

Examples

Using array-scalar type:

>>> np.dtype (np.intl16)
dtype ('intle6')

Structured type, one field name ‘f1°, containing int16:

>>> np.dtype([('f1l', np.intl16)])
dtype ([('f1', '<i2'")])

Structured type, one field named ‘f1’, in itself containing a structured type with one field:

>>> np.dtype ([('£1', [('f1', np.int16)]1)1)
dtype ([("f1', [('f1', '<i2')])])

Structured type, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype([('f1l', np.uint64d), ('f2', np.int32)])
dtype ([("f1', '<u8'"), ('f2', '<id")])

Using array-protocol type strings:

>>> np.dtype([('a','£8"), ('b','S10") 1)
dtype ([('a', '<f8'), ('b', 'S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('£f0', '<i4'), ('f1', '<f£8', (2, 3))1)

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype([('hello', (np.int64,3)), ('world',np.void, 10)])
dtype ([('hello', '<i8', (3,)), ('world', 'v1i0")1])

Subdivide int16 into 2 int8’s, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype((np.intl6, {'x':(np.int8,0), 'v':(np.int8,1)1}))
dtype ((numpy.intle, [('x"', '"i1'), ('y', 'il1')]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

76

1. Array objects

NumPy Reference, Release 1.23.0

>>> np.dtype ({'names':['gender', 'age'], 'formats':['S1l',np.uint8]})
dtype ([('gender', 'S1'), ('age', 'ul')])

Offsets in bytes, here 0 and 25:

>>> np.dtype ({'surname': ('S25',0), 'age': (np.uint8,25)})
dtype ([('surname', 'S25'), ('age', 'ul'")])
Attributes
alignment

The required alignment (bytes) of this data-type according to the compiler.
base
Returns dtype for the base element of the subarrays, regardless of their dimension or shape.
byteorder
A character indicating the byte-order of this data-type object.
char
A unique character code for each of the 21 different built-in types.
descr
__array_interface__ description of the data-type.
fields
Dictionary of named fields defined for this data type, or None.
flags
Bit-flags describing how this data type is to be interpreted.
hasobject

Boolean indicating whether this dtype contains any reference-counted objects in any fields or
sub-dtypes.

isalignedstruct

Boolean indicating whether the dtype is a struct which maintains field alignment.
isbuiltin

Integer indicating how this dtype relates to the built-in dtypes.
isnative

Boolean indicating whether the byte order of this dtype is native to the platform.
itemsize

The element size of this data-type object.
kind

A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.
metadata

Either None or a readonly dictionary of metadata (mappingproxy).

1.3. Data type objects (dtype) 77

NumPy Reference, Release 1.23.0

name
A bit-width name for this data-type.
names
Ordered list of field names, or None if there are no fields.
ndim
Number of dimensions of the sub-array if this data type describes a sub-array, and O otherwise.
num
A unique number for each of the 21 different built-in types.
shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.
str
The array-protocol typestring of this data-type object.
subdtype
Tuple (item_dtype, shape) if this dt ype describes a sub-array, and None otherwise.
type

Methods

newbyteorder([new_order]) Return a new dtype with a different byte order.

method

dtype .newbyteorder (new_order=17’,/)

Return a new dtype with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.

Parameters

new_order

[string, optional] Byte order to force; a value from the byte order specifications below. The
default value (*S’) results in swapping the current byte order. new_order codes can be any of:

* ‘S’ - swap dtype from current to opposite endian

{‘<, ‘little’} - little endian
o {*>’, ‘big’} - big endian

[

=’, ‘native’} - native order

{F, T} - ignore (no change to byte order)
Returns

new_dtype

[dtype] New dtype object with the given change to the byte order.

78 1. Array objects

NumPy Reference, Release 1.23.0

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys

>>> sys_is_le = sys.byteorder == 'little'

>>> native_code = sys_is_le and '<' or '>'

>>> swapped_code = sys_is_le and '>' or '<'

>>> native_dt = np.dtype (native_code+'i2")

>>> swapped_dt = np.dtype (swapped_code+'i2")

>>> native_dt.newbyteorder ('S') == swapped_dt
True

>>> native_dt .newbyteorder () == swapped_dt

True

>>> native_dt == swapped_dt.newbyteorder ('S")

True

>>> native_dt == swapped_dt.newbyteorder('=")

True

>>> native_dt == swapped_dt.newbyteorder ('N")

True

>>> native_dt == native_dt.newbyteorder('|")

True

>>> np.dtype ('<i2') == native_dt.newbyteorder ('<")
True

>>> np.dtype('<i2') == native_dt.newbyteorder ('L")
True

>>> np.dtype ('>12') == native_dt.newbyteorder ('>")
True

>>> np.dtype('>1i2') == native_dt.newbyteorder ('B'")
True

What can be converted to a data-type object is described below:
dtype object
Used as-is.
None
The default data type: float_.
Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their sub-
classes as well.

Note that not all data-type information can be supplied with a type-object: for example, f1exible data-types
have a default itemsize of 0, and require an explicitly given size to be useful.

Example

>>> dt = np.dtype (np.int32) # 32-bit integer
>>> dt = np.dtype (np.complex128) # 128-bit complex floating-point number

Generic types

1.3. Data type objects (dtype) 79

NumPy Reference, Release 1.23.0

The generic hierarchical type objects convert to corresponding type objects according to the associations:

number, inexact, floating | float
complexfloating cfloat
integer, signedinteger int_
unsignedinteger uint
character string
generic, flexible void

Deprecated since version 1.19: This conversion of generic scalar types is deprecated. This is because it can be
unexpected in a context such as arr.astype (dtype=np.floating), which casts an array of float32
to an array of £1loat 64, even though f1oat32 is a subdtype of np.floating.

Built-in Python types

Several python types are equivalent to a corresponding array scalar when used to generate a dt ype object:

int int_
bool bool__
float float_
complex | cfloat
bytes bytes_
str str_
buffer void

(all others) | object_

Note that st r refers to either null terminated bytes or unicode strings depending on the Python version. In code
targeting both Python 2 and 3 np.unicode_ should be used as a dtype for strings. See Note on string types.

Example

>>> dt = np.dtype (float) # Python—-compatible floating-point number
>>> dt = np.dtype (int) # Python-compatible integer

>>> dt = np.dtype (object) # Python object

Note: All other types map to object_ for convenience. Code should expect that such types may map to a
specific (new) dtype in the future.

Types with . dtype

Any type object with a dt ype attribute: The attribute will be accessed and used directly. The attribute must return
something that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be prepended with '>"' (big-endian), '<' (little-
endian), or '=" (hardware-native, the default), to specify the byte order.

One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

80 1. Array objects

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

>>> dt
>>> dt
>>> dt
>>> dt

np.dtype
np.dtype
np.dtype
np.dtype

(
(
(
(

'b") # byte, native byte order

'>H'") # big-endian unsigned short

'<f') # little-endian single-precision float
td') # double-precision floating-point number

Array-protocol type strings (see The array interface protocol)

The first character specifies the kind of data and the remaining characters specify the number of bytes per item,
except for Unicode, where it is interpreted as the number of characters. The item size must correspond to an
existing type, or an error will be raised. The supported kinds are

Tt boolean
'b' (signed) byte
'B! unsigned byte
Tit (signed) integer
"u' unsigned integer
£ floating-point
'c! complex-floating point
'm' timedelta
™' datetime
o’ (Python) objects
'S', 'a' | zero-terminated bytes (not recommended)
'U’ Unicode string
VA raw data (void)
Example
>>> dt np.dtype('i4") # 32-bit signed integer
>>> dt np.dtype('£f8") # 64-bit floating-point number
>>> dt np.dtype('clé6') # 128-bit complex floating-point number
>>> dt np.dtype('a25') # 25-length zero-terminated bytes
>>> dt np.dtype ('U25") # 25-character string
Note on string types

For backward compatibility with Python 2 the S and a typestrings remain zero-terminated bytes and numpy .
string_ continues to alias numpy.bytes_. To use actual strings in Python 3 use U or numpy . str_. For
signed bytes that do not need zero-termination b or i1 can be used.

String with comma-separated fields

A short-hand notation for specifying the format of a structured data type is a comma-separated string of basic

formats.

A basic format in this context is an optional shape specifier followed by an array-protocol type string. Parenthesis
are required on the shape if it has more than one dimension. NumPy allows a modification on the format in that any
string that can uniquely identify the type can be used to specify the data-type in a field. The generated data-type
fields are named '£0"', 'f1"', ..., '£<N-1>"' where N (>1) is the number of comma-separated basic formats
in the string. If the optional shape specifier is provided, then the data-type for the corresponding field describes a

sub-array.

1.3. Data type objects (dtype)

81

NumPy Reference, Release 1.23.0

Example
* field named f£0 containing a 32-bit integer
* field named f£1 containing a 2 x 3 sub-array of 64-bit floating-point numbers

* field named f£2 containing a 32-bit floating-point number

>>> dt = np.dtype ("i4, (2,3)f8, f4")

¢ field named f£0 containing a 3-character string
¢ field named £1 containing a sub-array of shape (3,) containing 64-bit unsigned integers

« field named £2 containing a 3 x 4 sub-array containing 10-character strings

>>> dt = np.dtype("a3, 3u8, (3,4)al0")

Type strings

Any string in numpy . sctypeDict.keys():

Example
>>> dt = np.dtype('uint32") # 32-bit unsigned integer
>>> dt = np.dtype('float6d") # 64-bit floating-point number

(flexible_dtype, itemsize)

The first argument must be an object that is converted to a zero-sized flexible data-type object, the second argument
is an integer providing the desired itemsize.

Example
>>> dt = np.dtype ((np.void, 10)) # 10-byte wide data block
>>> dt = np.dtype(('U', 10)) # 10-character unicode string

(fixed_dtype, shape)

The first argument is any object that can be converted into a fixed-size data-type object. The second argument is
the desired shape of this type. If the shape parameter is 1, then the data-type object used to be equivalent to fixed
dtype. This behaviour is deprecated since NumPy 1.17 and will raise an error in the future. If shape is a tuple,
then the new dtype defines a sub-array of the given shape.

Example

>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array

>>> dt = np.dtype(('i4, (2,3)f8, £4', (2,3))) # 2 x 3 structured sub-array
[(field_name, field_dtype, field_shape), ...]

obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the descr
iteminthe array interface _ attribute.)

82 1. Array objects

NumPy Reference, Release 1.23.0

The first element, field_name, is the field name (if this is ' ' then a standard field name, ' £# ', is assigned). The
field name may also be a 2-tuple of strings where the first string is either a “title” (which may be any string or
unicode string) or meta-data for the field which can be any object, and the second string is the “name” which must
be a valid Python identifier.

The second element, field_dtype, can be anything that can be interpreted as a data-type.

The optional third element field_shape contains the shape if this field represents an array of the data-type in the
second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.

This style does not accept align in the dt ype constructor as it is assumed that all of the memory is accounted for
by the array interface description.

Example

Data-type with fields big (big-endian 32-bit integer) and 1itt le (little-endian 32-bit integer):

’>>> dt = np.dtype ([('big', '>id'), ('little', '<i4')])

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

’>>> dt = np.dtype([('R','ul"), ('G','ul"), ('B',"'ul"), ('A"','ul")])

{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}

This style has two required and three optional keys. The names and formats keys are required. Their respective
values are equal-length lists with the field names and the field formats. The field names must be strings and the field
formats can be any object accepted by dt ype constructor.

When the optional keys offsets and fitles are provided, their values must each be lists of the same length as the names
and formats lists. The offsets value is a list of byte offsets (limited to ct ypes.c_int) for each field, while the
titles value is a list of titles for each field (None can be used if no title is desired for that field). The titles can be
any object, but when a st r object will add another entry to the fields dictionary keyed by the title and referencing
the same field tuple which will contain the title as an additional tuple member.

The itemsize key allows the total size of the dtype to be set, and must be an integer large enough so all the fields
are within the dtype. If the dtype being constructed is aligned, the itemsize must also be divisible by the struct
alignment. Total dtype itemsize is limited to ct ypes.c_int.

Example

Data type with fields r, g, b, a, each being an 8-bit unsigned integer:

>>> dt = np.dtype({'names': ['r','g','b"','a'],
'formats': [np.uint8, np.uint8, np.uint8, np.uint8]})

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte position 0
from the start of the field and the second at position 2:

>>> dt = np.dtype({'names': ['r','b"'], 'formats': ['ul', 'ul'],
'offsets': [0, 2],
'titles': ['Red pixel', 'Blue pixel']})
{'fieldl': ..., 'field2': ..., ...}

1.3. Data type objects (dtype) 83

https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ctypes.html#ctypes.c_int

NumPy Reference, Release 1.23.0

This usage is discouraged, because it is ambiguous with the other dict-based construction method. If you have a
field called ‘names’ and a field called ‘formats’ there will be a conflict.

This style allows passing in the £ie1ds attribute of a data-type object.

obj should contain string or unicode keys that refer to (data-type, offset) or (data-type, offset,
title) tuples.

Example

Data type containing field col1 (10-character string at byte position 0), co12 (32-bit float at byte position 10),
and col3 (integers at byte position 14):

>>> dt = np.dtype({'coll': ('U10", O 'col2'": (np.float32, 10),
)

) ’
'col3': (int, 14)1})

(base_dtype, new_dtype)

In NumPy 1.7 and later, this form allows base_dtype to be interpreted as a structured dtype. Arrays created with
this dtype will have underlying dtype base_dtype but will have fields and flags taken from new_dtype. This is useful
for creating custom structured dtypes, as done in record arrays.

This form also makes it possible to specify struct dtypes with overlapping fields, functioning like the ‘union’ type
in C. This usage is discouraged, however, and the union mechanism is preferred.

Both arguments must be convertible to data-type objects with the same total size.

Example

32-bit integer, whose first two bytes are interpreted as an integer via field real, and the following two bytes via
field imag.

>>> dt = np.dtype((np.int32,{'real': (np.intl16, 0), 'imag': (np.intl6, 2)}))

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four unsigned integers:

>>> dt = np.dtype(("i4', [('r','ul"), ("g",'ul"), ("b", "ul’), (*a',"ul")]))

1.3.2 dtype

NumPy data type descriptions are instances of the dt ype class.

84 1. Array objects

NumPy Reference, Release 1.23.0

Attributes

The type of the data is described by the following dt ype attributes:

dtype.type

dtype.kind A character code (one of ’biufcmMOSUV’) identifying
the general kind of data.

dtype.char A unique character code for each of the 21 different built-
in types.

dtype.num A unique number for each of the 21 different built-in
types.

dtype.str The array-protocol typestring of this data-type object.

attribute

dtype.type = None

attribute

dtype.kind
A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

b | boolean
i signed integer
u | unsigned integer
f | floating-point
¢ | complex floating-point
m | timedelta
M | datetime
O | object
S | (byte-)string
U | Unicode
V | void

Examples

>>> dt = np.dtype('id")

>>> dt.kind

vy

>>> dt = np.dtype('f8")

>>> dt.kind

Ve

>>> dt = np.dtype([('fieldl", '"£8')1)

>>> dt.kind

vy

attribute
dtype.char

A unique character code for each of the 21 different built-in types.

1.3. Data type objects (dtype) 85

NumPy Reference, Release 1.23.0

Examples

>>> x = np.dtype (float)
>>> x.char
ldl

attribute

dtype.num
A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

Examples

>>> dt = np.dtype (str)
>>> dt.num
19

>>> dt = np.dtype (float)
>>> dt.num
12

attribute

dtype.str
The array-protocol typestring of this data-type object.

Size of the data is in turn described by:

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.
attribute

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

Examples

>>> x = np.dtype (float)

>>> x.name

'floatoe4d'

>>> x = np.dtype([('a', np.int32, 8), ('b', np.float6d4, 6)])
>>> x.name

'voidoe40'

attribute

dtype.itemsize
The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

86 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> arr = np.array ([[1, 2], [3, 4]11])

>>> arr.dtype

dtype ('int64")

>>> arr.itemsize

8

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.floaté64, (2,))])
>>> dt.itemsize

80

Endianness of this data:

dtype.byteorder
ject.

A character indicating the byte-order of this data-type ob-

attribute

dtype .byteorder
A character indicating the byte-order of this data-type object.

One of:

=" | native
little-endian
big-endian
not applicable

All built-in data-type objects have byteorder either ‘=" or ‘I’.

Examples

>>> dt = np.dtype('i2")

>>> dt.byteorder

>>> # endian is not relevant for 8 bit numbers

>>> np.dtype('il'") .byteorder
l"
>>> # or ASCII strings
>>> np.dtype('S2") .byteorder

>>> # Swapped code shows up as itself

>>> dt = np.dtype (swapped_code + 'i2")

>>> # Even 1if specific code 1is given, and it is native
>>> # '=' is the byteorder

>>> import sys

>>> sys_1is_le = sys.byteorder == 'little'

>>> native_code = sys_is_le and '<' or '>'

>>> swapped_code = sys_is_le and '>' or '<'

>>> dt = np.dtype (native_code + 'i2"')

>>> dt.byteorder

(continues on next page)

1.3. Data type objects (dtype)

87

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> dt.byteorder == swapped_code
True

Information about sub-data-types in a structured data type:

dtype.fields Dictionary of named fields defined for this data type, or
None.
dtype.names Ordered list of field names, or None if there are no fields.
attribute

dtype.fields
Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully
describing the field:

(dtype, offset[, title])

Offset is limited to C int, which is signed and usually 32 bits. If present, the optional title can be any object (if
it is a string or unicode then it will also be a key in the fields dictionary, otherwise it’s meta-data). Notice also
that the first two elements of the tuple can be passed directly as arguments to the ndarray.getfield and
ndarray.setfield methods.

See also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])

>>> print (dt.fields)

{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S1l6'), 0)}
attribute

dtype.names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through all of
the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
("name', 'grades')

For data types that describe sub-arrays:

88 1. Array objects

NumPy Reference, Release 1.23.0

dtype.subdtype Tuple (item_dtype, shape) if this dtype de-
scribes a sub-array, and None otherwise.
dtype.shape Shape tuple of the sub-array if this data type describes a

sub-array, and () otherwise.

attribute

dtype.subdtype
Tuple (item_dtype, shape) if this dt ype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked
on to the end of the retrieved array.

See also:

dtype.base

Examples

>>> x = numpy.dtype ('8f")
>>> x.subdtype
(dtype ('float32'), (8,))

>>> x = numpy.dtype('i2")
>>> x.subdtype
>>>

attribute

dtype.shape

Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Examples

>>> dt = np.dtype(('i4', 4))
>>> dt.shape
(4,)

>>> dt = np.dtype(('i4', (2, 3)))
>>> dt.shape
(2, 3)

Attributes providing additional information:

1.3. Data type objects (dtype) 89

NumPy Reference, Release 1.23.0

dtype.hasobject Boolean indicating whether this dtype contains any
reference-counted objects in any fields or sub-dtypes.

dtype.flags Bit-flags describing how this data type is to be interpreted.

dtype.isbuiltin Integer indicating how this dtype relates to the built-in
dtypes.

dtype.isnative Boolean indicating whether the byte order of this dtype is
native to the platform.

dtype.descr __array_interface__ description of the data-type.

dtype.alignment The required alignment (bytes) of this data-type accord-

ing to the compiler.

dtype.base Returns dtype for the base element of the subarrays, re-

gardless of their dimension or shape.

attribute

dtype.hasobject

Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address of that
object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types that
may contain arbitrary Python objects and data-types that won’t.

attribute

dtype.flags

Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of
these flags is in C-API documentation; they are largely useful for user-defined data-types.

The following example demonstrates that operations on this particular dtype requires Python C-API.

Examples
>>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)1)
>>> x.flags
16
>>> np.core.multiarray.NEEDS_PYAPI
16
attribute

dtype.isbuiltin

Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

0 | if this is a structured array type, with fields

1 | if this is a dtype compiled into numpy (such as ints, floats etc)

2 | if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to

extend numpy to handle a new array type. See user.user-defined-data-types in the NumPy manual.

90

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> dt = np.dtype('i2"')
>>> dt.isbuiltin

>>> dt = np.dtype('f8")
>>> dt.isbuiltin

1
>>> dt = np.dtype ([('fieldl', '£8')1])
>>> dt.isbuiltin
0
attribute

dtype.isnative

Boolean indicating whether the byte order of this dtype is native to the platform.
attribute

dtype.descr

__array_interface__ description of the data-type.
The format is that required by the ‘descr’ key in the __array_interface__ attribute.

Warning: This attribute exists specifically for __array_interface__, and passing it directly to np.dtype will not
accurately reconstruct some dtypes (e.g., scalar and subarray dtypes).

Examples

>>> x = np.dtype (float)
>>> x.descr
[("", '<£8")]

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.descr

[("name', '<Ul6'), ('grades', '<f8', (2,))]

attribute

dtype.alignment
The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

Examples
>>> x = np.dtype('i4")
>>> x.alignment
4
>>> x = np.dtype (float)
>>> x.alignment
8
attribute

1.3. Data type objects (dtype) 91

NumPy Reference, Release 1.23.0

dtype .base

Returns dtype for the base element of the subarrays, regardless of their dimension or shape.

See also:

dtype. subdtype

Examples

>>> x = numpy.dtype('8f")
>>> x.base
dtype ('float32")

>>> x = numpy.dtype('i2")
>>> x.base
dtype ('intl16")

Metadata attached by the user:

dtype.metadata Either None or a readonly dictionary of metadata (map-

pingproxy).

attribute

dtype.metadata

Either None or a readonly dictionary of metadata (mappingproxy).

The metadata field can be set using any dictionary at data-type creation. NumPy currently has no uniform approach
to propagating metadata; although some array operations preserve it, there is no guarantee that others will.

Warning: Although used in certain projects, this feature was long undocumented and is not well supported.
Some aspects of metadata propagation are expected to change in the future.

Examples

>>> dt = np.dtype(float, metadata={"key": "value"})
>>> dt.metadatal["key"]

'value'

>>> arr = np.array([1l, 2, 3], dtype=dt)
>>> arr.dtype.metadata
mappingproxy ({'key': 'value'})

Adding arrays with identical datatypes currently preserves the metadata:

>>> (arr + arr) .dtype.metadata
mappingproxy ({'key': 'value'})

But if the arrays have different dtype metadata, the metadata may be dropped:

92

1. Array objects

NumPy Reference, Release 1.23.0

>>> dt2 = np.dtype(float, metadata={"key2": "value2"})
>>> arr2 = np.array([3, 2, 1], dtype=dt2)

>>> (arr + arr2) .dtype.metadata is None

True # The metadata field is cleared so None is returned

Methods

Data types have the following method for changing the byte order:

dtype.newbyteorder([new_order]) Return a new dtype with a different byte order.

The following methods implement the pickle protocol:

dtype.__reduce___ Helper for pickle.
dtype.__setstate___

method

dtype.__reduce__ ()
Helper for pickle.

method

dtype.__setstate__ ()

Utility method for typing:

dtype.__class_getitem__ (item,/) Return a parametrized wrapper around the dt ype type.

method

dtype.__class_getitem__ (item, /)

Return a parametrized wrapper around the dt ype type.
New in version 1.22.

Returns

alias

[types.GenericAlias] A parametrized dt ype type.
See also:

PEP 585

Type hinting generics in standard collections.

1.3. Data type objects (dtype) 93

https://peps.python.org/pep-0585/

NumPy Reference, Release 1.23.0

Notes

This method is only available for python 3.9 and later.

Examples

>>> import numpy as np

>>> np.dtype[np.int64]
numpy .dtype [numpy.int64]

Comparison operations:

dtype.___ge_ _(value,/)

Return self>=value.

dtype.__gt__(value,/)

Return self>value.

dtype.___le__(value,/)

Return self<=value.

dtype.__ 1t__(value,/)

Return self<value.

method

dtype.__ge__ (value, /)

Return self>=value.
method

dtype.__gt__ (value,/)
Return self>value.

method

dtype.__le__ (value, /)
Return self<=value.

method

dtype.__1t__ (value, /)

Return self<value.

1.4 Indexing routines

See also:

basics.indexing

94

1. Array objects

NumPy Reference, Release 1.23.0

1.4.1 Generating index arrays

c_ Translates slice objects to concatenation along the second
axis.

r_ Translates slice objects to concatenation along the first
axis.

s_ A nicer way to build up index tuples for arrays.

nonzero(a) Return the indices of the elements that are non-zero.

whe re(condition, [X, y], /)

Return elements chosen from x or y depending on condi-
tion.

1indices(dimensions[, dtype, sparse])

Return an array representing the indices of a grid.

1x_(*args)

Construct an open mesh from multiple sequences.

ogrid

nd_grid instance which returns an open multi-
dimensional “meshgrid”.

ravel_multi_index(multi_index, dims[, mode, Converts a tuple of index arrays into an array of flat in-

)] dices, applying boundary modes to the multi-index.

unravel_index(indices, shape[, order]) Converts a flat index or array of flat indices into a tuple of
coordinate arrays.

diag_indices(n[, ndim]) Return the indices to access the main diagonal of an array.

diag indices_ from(arr) Return the indices to access the main diagonal of an n-
dimensional array.

mask_indices(n, mask_func[, k]) Return the indices to access (n, n) arrays, given a masking
function.

tril_indices(n[, k, m]) Return the indices for the lower-triangle of an (n, m) ar-
ray.

tril_indices_ from(arr|, k]) Return the indices for the lower-triangle of arr.

triu_indices(n[, k, m]) Return the indices for the upper-triangle of an (n, m) ar-
ray.

triu_indices_ from(arr[, k]) Return the indices for the upper-triangle of arr.

numpy.c_ = <numpy.lib.index_tricks.CClass object>

Translates slice objects to concatenation along the second axis.

This is short-hand for np.r_['-1,2,0",

index expression], which is useful because of its common

occurrence. In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with 1’s
post-pended to the shape (column vectors made out of 1-D arrays).

See also:

column_stack

Stack 1-D arrays as columns into a 2-D array.

For more detailed documentation.

1.4. Indexing routines

95

NumPy Reference, Release 1.23.0

Examples
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
array ([[1, 4],
(2, 51,
[3, 611)
>>> np.c_[np.array([[1,2,31]1), O, O, np.array([[4,5,611)]
array ([[1, 2, 3, ..., 4, 5, 611])
numpy.r_ = <numpy.lib.index_tricks.RClass object>

Translates slice objects to concatenation along the first axis.
This is a simple way to build up arrays quickly. There are two use cases.
1. If the index expression contains comma separated arrays, then stack them along their first axis.

2. If the index expression contains slice notation or scalars then create a 1-D array with a range indicated by the
slice notation.

If slice notation is used, the syntax start:stop:step is equivalent to np.arange (start, stop,
step) inside of the brackets. However, if step is an imaginary number (i.e. 100j) then its integer portion is in-
terpreted as a number-of-points desired and the start and stop are inclusive. In other words start : stop:stepj
is interpreted as np . linspace (start, stop, step, endpoint=1) inside of the brackets. After ex-
pansion of slice notation, all comma separated sequences are concatenated together.

Optional character strings placed as the first element of the index expression can be used to change the output. The
strings ‘r” or ‘c’ result in matrix output. If the result is 1-D and ‘r’ is specified a 1 x N (row) matrix is produced.
If the result is 1-D and ‘c’ is specified, then a N x 1 (column) matrix is produced. If the result is 2-D then both
provide the same matrix result.

A string integer specifies which axis to stack multiple comma separated arrays along. A string of two comma-
separated integers allows indication of the minimum number of dimensions to force each entry into as the second
integer (the axis to concatenate along is still the first integer).

A string with three comma-separated integers allows specification of the axis to concatenate along, the minimum
number of dimensions to force the entries to, and which axis should contain the start of the arrays which are less
than the specified number of dimensions. In other words the third integer allows you to specify where the 1’s should
be placed in the shape of the arrays that have their shapes upgraded. By default, they are placed in the front of the
shape tuple. The third argument allows you to specify where the start of the array should be instead. Thus, a third
argument of ‘0’ would place the 1’s at the end of the array shape. Negative integers specify where in the new shape
tuple the last dimension of upgraded arrays should be placed, so the default is *-1°.

Parameters
Not a function, so takes no parameters
Returns
A concatenated ndarray or matrix.
See also:

concatenate

Join a sequence of arrays along an existing axis.

Translates slice objects to concatenation along the second axis.

96

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> np.r_[np.array([1,2,31), 0, O, np.array([4,5,6])]

array ([, 2, 3, ..., 4, 5, 6])

>>> np.r_[-1:1:63, [0]*3, 5, 6]

array([-1. , -0.6, -0.2, 0.2, 0.6, 1., 0., 0., 0., 5., 6. 1)

String integers specify the axis to concatenate along or the minimum number of dimensions to force entries into.

>>> a = np.array ([[0, 1, 21, [3, 4, 511)

>>> np.r_['-1', a, al # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 511)

,2', [1,2,31, [4,5,6]] # concatenate along first axis, dim>=2
. 31
611)

4
>>> np.r_['0
array ([[1, 2

[4, 5

’

>>> np.r_['0,2,0', [1,2,3]1, [4,5,6]]

array ([[1],

(21,

[31,

[41,

[51,

[611)
>>> np.r_['1,2,0"', [1,2,31, [4,5,6]]
array ([[1, 4],

(2, 51,

[3, 611)

Using ‘1° or ‘c’ as a first string argument creates a matrix.

>>> np.r_['r',[1,2,3], [4,5,6]]
matrix ([[1, 2, 3, 4, 5, 6]])

numpy.s_ = <numpy.lib.index_tricks.IndexExpression object>

A nicer way to build up index tuples for arrays.

Note: Use one of the two predefined instances index_exp or s_ rather than directly using IndexExpression.

For any index combination, including slicing and axis insertion, a[indices] is the same as a[np.
index_exp[indices]] for any array a. However, np.index_exp[indices] can be used anywhere
in Python code and returns a tuple of slice objects that can be used in the construction of complex index expres-
sions.

Parameters

maketuple

[bool] If True, always returns a tuple.
See also:

index_exp

Predefined instance that always returns a tuple: index_exp = IndexExpression(maketuple=True).

1.4. Indexing routines 97

NumPy Reference, Release 1.23.0

Predefined instance without tuple conversion: s_ = IndexExpression(maketuple=False).

Notes

You can do all this with slice() plus a few special objects, but there’s a lot to remember and this version is simpler
because it uses the standard array indexing syntax.

Examples

>>> np.s_[2::2]

slice (2, None, 2)

>>> np.index_exp[2::2]
(slice (2, None, 2),)

>>> np.array ([0, 1, 2, 3, 4])[np.s_[2::2]]
array ([2, 4])

numpy .nonzero (a)

Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that
dimension. The values in a are always tested and returned in row-major, C-style order.

To group the indices by element, rather than dimension, use a rgwhere, which returns a row for each non-zero
element.

Note: When called on a zero-d array or scalar, nonzero (a) is treated as nonzero (atleast_1d(a)).

Deprecated since version 1.17.0: Use at 1east_ 1d explicitly if this behavior is deliberate.

Parameters

[array_like] Input array.
Returns

tuple_of _arrays

[tuple] Indices of elements that are non-zero.
See also:

flatnonzero
Return indices that are non-zero in the flattened version of the input array.
ndarray.nonzero

Equivalent ndarray method.

98

1. Array objects

NumPy Reference, Release 1.23.0

count_nonzero

Counts the number of non-zero elements in the input array.

Notes

While the nonzero values can be obtained with a[nonzero(a)], it is recommended to use x[x.
astype (bool)] orx[x != 0] instead, which will correctly handle 0-d arrays.

Examples

>>> x = np.array([[3, O, 01, [0, 4, 0], [5, 6, 0]1)

>>> x

array ([[3, 0, 0]
[o, 4, 01,
[5, 6, 011)

>>> np.nonze (x)

(array ([0, 1, 2

>>> x[np.nonzero (x)]

array ([3, 4, 5, 61)

>>> np.transpose (np.nonzero (x))
array ([[0, 01,

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the a
where the condition is true.

>>> a = np.array([[1, 2, 31, [4, 5, 61, [7, 8, 911)
>>> a > 3
array ([[False, False, False],
[True, True, Truel,
[True, True, Truel])
>>> np.nonzero(a > 3)
(array (2, 2, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

Using this result to index a is equivalent to using the mask directly:

>>> a[np.nonzero(a > 3)]
array([4, 5, 6, 7, 8, 91)
>>> ala > 3] # prefer this spelling
array ([4, 5, 6, 7, 8, 91)

nonzero can also be called as a method of the array.

>>> (a > 3) .nonzero ()
(array(rt, 1, 1, 2, 2, 21), array(lo, 1, 2, 0, 1, 21))

numpy .where (condition[, X, y], /)

Return elements chosen from x or y depending on condition.

1.4. Indexing routines 99

NumPy Reference, Release 1.23.0

Note: When only condition is provided, this function is a shorthand for np.asarray (condition) .
nonzero (). Using nonzero directly should be preferred, as it behaves correctly for subclasses. The rest
of this documentation covers only the case where all three arguments are provided.

Parameters

condition

[array_like, bool] Where True, yield x, otherwise yield y.
X,y

[array_like] Values from which to choose. x, y and condition need to be broadcastable to some
shape.

Returns

out

[ndarray] An array with elements from x where condition is True, and elements from y else-
where.

See also:
choose
nonzero
The function that is called when x and y are omitted

Notes

If all the arrays are 1-D, whe re is equivalent to:

[xv if c else yv
for ¢, xv, yv in zip(condition, x, V)]

Examples
>>> a = np.arange (10)
>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
>>> np.where(a < 5, a, 10*a)
array ([O, 1, 2, 3, 4, 50, 60, 70, 80, 901])

This can be used on multidimensional arrays too:

>>> np.where ([[True, False], [True, Truel],
(11, 21, [3, 411,
(1o, 81, (7, 611)

The shapes of x, y, and the condition are broadcast together:

100 1. Array objects

NumPy Reference, Release 1.23.0

>>> x, y = np.ogrid[:3, :4]
>>> np.where(x < vy, x, 10 + vy) # both x and 10+y are broadcast
array([([10, O, O, 0],

(1o, 11, 1, 11,

(1o, 11, 12, 211)

>>> a = np.array([[0, 1, 27,

(o, 2, 471,
c.. [0, 3, 611
>>> np.where(a < 4, a, -1) # -1 1is broadcast
array ([[0, 1, 21,

(o, 2, -11,
Lo, 3, -111)

numpy . indices (dimensions, dtype=<class ‘int’>, sparse=False)

Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values O, 1, ... varying only along the corresponding axis.

Parameters

dimensions

[sequence of ints] The shape of the grid.
dtype

[dtype, optional] Data type of the result.
sparse

[boolean, optional] Return a sparse representation of the grid instead of a dense representation.
Default is False.

New in version 1.17.
Returns

grid
[one ndarray or tuple of ndarrays]
If sparse is False:

Returns one array of grid indices, grid.shape = (len(dimensions),) +
tuple (dimensions).

If sparse is True:

Returns a tuple of arrays, with grid[i].shape = (1, ..., 1,
dimensions([i], 1, ..., 1) withdimensions[i]in the ith place

See also:

mgrid, ogrid, meshgrid

1.4. Indexing routines 101

NumPy Reference, Release 1.23.0

Notes

The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of
dimensions, i.e. if dimensionsis a tuple (r0, ..., rN-1) of length N, the output shapeis (N, r0, ...,
rN-1).

The subarrays grid [k] contains the N-D array of indices along the k-t h axis. Explicitly:

grid[k, 10, 11, ..., iN-1] = ik
Examples
>>> grid = np.indices ((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array ([[0, 0, 0],
(1, 1, 111)
>>> grid[1] # column indices

array ([[0, 1, 2],
[0, 1, 211

The indices can be used as an index into an array.

>>> x = np.arange (20) .reshape (5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array ([[0, 1, 21,

[4, 5, 6]1)

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

If sparse is set to true, the grid will be returned in a sparse representation.

>>> i, j = np.indices((2, 3), sparse=True)
>>> 1i.shape
(2, 1)
>>> j.shape
(1, 3)
>>> i # row indices
array ([[0],
[111)
>>> 5 # column indices

array ([[0, 1, 211)

numpy . ix_ (*args)

Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in all
but one dimension and the dimension with the non-unit shape value cycles through all N dimensions.

Using ix_ one can quickly construct index arrays that will index the cross product. a [np.ix_([1,3]1,[2,
51) 1] returns the array [[a[1,2] all,5]1]1, [al3,2] al3,5]111].

Parameters

102

1. Array objects

NumPy Reference, Release 1.23.0

args
[1-D sequences] Each sequence should be of integer or boolean type. Boolean sequences will
be interpreted as boolean masks for the corresponding dimension (equivalent to passing in
np.nonzero (boolean_sequence)).

Returns

out

[tuple of ndarrays] N arrays with N dimensions each, with N the number of input sequences.
Together these arrays form an open mesh.

See also:

ogrid, mgrid, meshgrid

Examples

>>> a = np.arange (10) .reshape (2, 5)
>>> g

array ([[0, 1, 2, 3, 4]

1 ’
[5, 6, 7, 8, 911)
>>> ixgrid =
>>> ixgrid
(array ([[0],

[111), array([[2, 411))
>>> ixgrid[0].shape, ixgrid[1].shape
(2, 1), (1, 2))
>>> alixgrid]
array ([[2, 4],

[7, 911)

>>> ixgrid = np.ix_ ([True, True], [2, 41])
>>> alixgrid]
array ([[2, 4],
(7, 911
>>> ixgrid = np.ix_ ([True, True], [False, False, True, False, True])
>>> alixgrid]
array ([[2, 4],
[7, 911)

numpy.ogrid = <numpy.lib.index_tricks.OGridClass object>

nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open (i.e. not fleshed out) mesh-
grid when indexed, so that only one dimension of each returned array is greater than 1. The dimension and number
of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex number,
then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted as
specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns

mesh-grid

1.4. Indexing routines 103

NumPy Reference, Release 1.23.0

ndarrays with only one dimension not equal to 1

See also:

np.lib.index_tricks.nd_grid
class of ogridand mgrid objects
mgrid

like ogrid but returns dense (or fleshed out) mesh grids

array concatenator

Examples

>>> from numpy import ogrid

>>> ogrid[-1:1:57]

array ([-1. , -0.5, 0. , 0.5, 1. 1)
>>> ogrid[0:5,0:5]

l[array ([[

[0
0],
(11,
(21,
[31]
(4]

1), array ([0, 1, 2, 3, 411)]

numpy .ravel _multi_index (multi_index, dims, mode=raise’, order="C’)
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

Parameters

multi_index
[tuple of array_like] A tuple of integer arrays, one array for each dimension.
dims
[tuple of ints] The shape of array into which the indices from multi_index apply.

mode

[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of -bounds indices are handled. Can specify
either one mode or a tuple of modes, one mode per index.

e ‘raise’ — raise an error (default)

* ‘wrap’ — wrap around

e ‘clip’ — clip to the range

In ‘clip’ mode, a negative index which would normally wrap will clip to O instead.

order

[{‘C, ‘F’}, optional] Determines whether the multi-index should be viewed as indexing in row-
major (C-style) or column-major (Fortran-style) order.

Returns

104 1. Array objects

NumPy Reference, Release 1.23.0

raveled_indices

[ndarray] An array of indices into the flattened version of an array of dimensions dims.
See also:

unravel_index

Notes

New in version 1.6.0.

Examples

>>> arr = np.array([[3,6,6]1,[4,5,111)

>>> np.ravel_multi_index(arr, (7,6))

array ([22, 41, 371)

>>> np.ravel_multi_index(arr, (7,6), order='EF")

array ([31, 41, 131)

>>> np.ravel_multi_index(arr, (4,6), mode='clip')

array ([22, 23, 19])

>>> np.ravel_multi_index(arr, (4,4), mode=('clip', 'wrap'))
array ([12, 13, 131)

>>> np.ravel_multi_index ((3,1,4,1), (6,7,8,9))
1621

numpy . unravel_index (indices, shape, order="C")

Converts a flat index or array of flat indices into a tuple of coordinate arrays.

Parameters

indices

[array_like] An integer array whose elements are indices into the flattened version of an array
of dimensions shape. Before version 1.6.0, this function accepted just one index value.

shape
[tuple of ints] The shape of the array to use for unraveling indices.
Changed in version 1.16.0: Renamed from dims to shape.

order

[{‘C’, ‘F’}, optional] Determines whether the indices should be viewed as indexing in row-major
(C-style) or column-major (Fortran-style) order.

New in version 1.6.0.
Returns

unraveled_coords

[tuple of ndarray] Each array in the tuple has the same shape as the indices array.

See also:

1.4. Indexing routines 105

NumPy Reference, Release 1.23.0

ravel_multi_index

Examples

>>> np.unravel_index ([22, 41, 371, (7,6))

(array ([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index([31, 41, 13], (7,6), order='F")
(array ([3, 6, 6]), array([4, 5, 11))

>>> np.unravel_index (1621,
(3, 1, 4, 1)

(6,7,8,9))

numpy .diag_indices (n, ndim=2)

Return the indices to access the main diagonal of an array.

This returns a tuple of indices that can be used to access the main diagonal of an array a with a.ndim >= 2
dimensions and shape (n, n, ..., n). For a.ndim = 2 this is the usual diagonal, for a.ndim > 2 this is the set
of indices to accessa[i, i, ..., i]fori = [0..n-1].

Parameters

n

[int] The size, along each dimension, of the arrays for which the returned indices can be used.
ndim

[int, optional] The number of dimensions.
See also:

diag_indices_from

Notes

New in version 1.4.0.

Examples

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = np.diag_indices (4)

>>> di

(array ([0, 1, 2, 3]), array([0, 1, 2,
>>> a = np.arange (16) .reshape (4, 4)

31))

>>> a

array([[O, 1, 2, 31,
[4, 5, 6, 171,
[8 9, 10, 117,
[12, 13, 14, 1511)

>>> a[di] = 100

>>> a

(continues on next page)

106

1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

[8, 9, 100, 117,
[12, 13, 14, 10011)

Now, we create indices to manipulate a 3-D array:

>>> d3 = np.diag_indices (2, 3)
>>> d3
(array ([0, 11), array ([0, 11), array([0, 11))

And use it to set the diagonal of an array of zeros to 1:

>>> a = np.zeros((2, 2, 2), dtype=int)

>>> a[d3] = 1

>>> a

array ([[[1, O],
(0, 011,
(Lo, o1,
(0, 1111)

numpy .diag_indices_from (arr)
Return the indices to access the main diagonal of an n-dimensional array.

See diag indices for full details.

Parameters

arr

[array, at least 2-D]
See also:

diag_indices

Notes

New in version 1.4.0.
numpy .mask_indices (n, mask_func, k=0)
Return the indices to access (n, n) arrays, given a masking function.

Assume mask_func is a function that, for a square array a of size (n, n) with a possible offset argument k, when
called as mask_func (a, k) returns a new array with zeros in certain locations (functions like t riuor tril
do precisely this). Then this function returns the indices where the non-zero values would be located.

Parameters

[int] The returned indices will be valid to access arrays of shape (n, n).

mask_func

[callable] A function whose call signature is similar to that of triu, tril. That is,
mask_func (x, k) returns a boolean array, shaped like x. k is an optional argument to
the function.

1.4. Indexing routines 107

NumPy Reference, Release 1.23.0

[scalar] An optional argument which is passed through to mask_func. Functions like t iy,
tril take a second argument that is interpreted as an offset.

Returns
indices

[tuple of arrays.] The n arrays of indices corresponding to the locations where
mask_func (np.ones ((n, n)), k) isTrue.

See also:

triu, tril, triu_indices, tril_indices

Notes

New in version 1.4.0.

Examples

These are the indices that would allow you to access the upper triangular part of any 3x3 array:

>>> iu = np.mask_indices (3, np.triu)

For example, if a is a 3x3 array:

>>> a = np.arange (9) .reshape (3, 3)
>>> 3
array ([[0, 1, 21,
[3, 4, 51,
(6, 7, 811)
>>> afiu]
array ([0, 1, 2, 4, 5, 8])

An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of
the main one:

>>> jul

np.mask_indices (3, np.triu, 1)

with which we now extract only three elements:

>>> aliul]
array ([1, 2, 51])

numpy .tril_indices (n, k=0, m=None)
Return the indices for the lower-triangle of an (n, m) array.

Parameters

[int] The row dimension of the arrays for which the returned indices will be valid.

108 1. Array objects

NumPy Reference, Release 1.23.0

[int, optional] Diagonal offset (see t 1 1 for details).

[int, optional] New in version 1.9.0.

The column dimension of the arrays for which the returned arrays will be valid. By default m
is taken equal to 7.

Returns

inds

[tuple of arrays] The indices for the triangle. The returned tuple contains two arrays, each with
the indices along one dimension of the array.

See also:

triu_indices

similar function, for upper-triangular.
mask_indices

generic function accepting an arbitrary mask function.

tril, triu

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> 111 = np.tril_indices (4)
>>> 112 = np.tril_indices (4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange (16) .reshape (4, 4)
>>> a

0, 1, 2,
4, 5, 6,
8, 9, 10,
2, 13, 14,

array ([

[
[
[
[1

Both for indexing:

>>> al[ill]
array ([0, 4, 5, ..., 13, 14, 15])

And for assigning values:

1.4. Indexing routines 109

NumPy Reference, Release 1.23.0

>>> al[ill] = -1

>>> a

array ([[-1, 1, 2, 31,
[-1, -1, 6, 71,
(-1, -1, -1, 11],
[-1, -1, -1, -111)

These cover almost the whole array (two diagonals right of the main one):

>>> af[il2] = -10
>>> a
array ([-10, -10, 31,

[-10]
[-10, -10, -10, -10]
[-10, -10, -10, -10]
[-10, -10, -10, -10]

numpy.tril_indices_from (arr, k=0)

Return the indices for the lower-triangle of arr.
See tril indices for full details.

Parameters

arr

[array_like] The indices will be valid for square arrays whose dimensions are the same as arr.

[int, optional] Diagonal offset (see t 1 1 for details).
See also:

tril_indices, tril

Notes

New in version 1.4.0.

numpy .triu_indices (n, k=0, m=None)

Return the indices for the upper-triangle of an (n, m) array.

Parameters

n

[int] The size of the arrays for which the returned indices will be valid.

[int, optional] Diagonal offset (see t 1 u for details).

[int, optional] New in version 1.9.0.

The column dimension of the arrays for which the returned arrays will be valid. By default m
is taken equal to n.

Returns

110 1. Array objects

NumPy Reference, Release 1.23.0

inds

[tuple, shape(2) of ndarrays, shape(n)] The indices for the triangle. The returned tuple contains
two arrays, each with the indices along one dimension of the array. Can be used to slice a
ndarray of shape(n, n).

See also:

tril_indices

similar function, for lower-triangular.
mask_indices

generic function accepting an arbitrary mask function.

triu, tril

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> jul = np.triu_indices (4)
>>> iu2 = np.triu_indices (4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange (16) .reshape (4, 4)
>>> a

0, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
2, 13, 14, 15

Both for indexing:

>>> aliul]
array ([0, 1, 2, ..., 10, 11, 151)

And for assigning values:

>>> af[iul] = -1
>>> a
array ([[-1, -1, -1, -11,

1]

4, -1, -1, -171,
8, 9, -1, -11,
2, 13, 14, -111)

These cover only a small part of the whole array (two diagonals right of the main one):

1.4. Indexing routines 111

NumPy Reference, Release 1.23.0

>>> aliu2] = -10

>>> a

array ([[-1, -1, -10, =107,
r 4, -1, -1, -101,
[8, 9, -1, -11,
[12, 13, 14, -111)

numpy .triu_indices_from (arr, k=0)

Return the indices for the upper-triangle of arr.
See triu_indices for full details.

Parameters

arr

[ndarray, shape(N, N)] The indices will be valid for square arrays.

[int, optional] Diagonal offset (see t 1 u for details).

Returns

triu_indices_from

[tuple, shape(2) of ndarray, shape(N)] Indices for the upper-triangle of arr.

See also:

triu_indices, triu

Notes

New in version 1.4.0.

1.4.2 Indexing-like operations

take(a, indices|, axis, out, mode])

Take elements from an array along an axis.

take along axis(arr, indices, axis)

Take values from the input array by matching 1d index
and data slices.

choose(a, choices[, out, mode])

Construct an array from an index array and a list of arrays
to choose from.

compres s(condition, a[, axis, out])

Return selected slices of an array along given axis.

diag(v], k])

Extract a diagonal or construct a diagonal array.

diagonal(a[, offset, axisl, axis2])

Return specified diagonals.

select(condlist, choicelist[, default])

Return an array drawn from elements in choicelist, de-
pending on conditions.

lib.stride_tricks.
sliding window_view(X, ...)

Create a sliding window view into the array with the given
window shape.

lib.stride_tricks.as_strided(X],

n)

shape,

Create a view into the array with the given shape and
strides.

112

1. Array objects

NumPy Reference, Release 1.23.0

numpy . take (a, indices, axis=None, out=None, mode=raise’)
Take elements from an array along an axis.
When axis is not None, this function does the same thing as “fancy” indexing (indexing arrays using arrays); how-

ever, it can be easier to use if you need elements along a given axis. A call suchas np.take (arr, indices,
axis=3) isequivalenttoarr[:,:, :,indices, ...].

Explained without fancy indexing, this is equivalent to the following use of ndindex, which sets each of 11, 77,
and kk to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shapel[axis+l:]
Nj = indices.shape
for ii in ndindex (Ni) :
for jj in ndindex (Nj):
for kk in ndindex (Nk) :

out[ii + 3 + kk] = a[ii + (indices[3jjl,) + kkI
Parameters

a
[array_like (Ni..., M, Nk...)] The source array.

indices
[array_like (Nj...)] The indices of the values to extract.
New in version 1.8.0.
Also allow scalars for indices.

axis
[int, optional] The axis over which to select values. By default, the flattened input array is used.

out
[ndarray, optional (Ni..., Nj..., Nk...)] If provided, the result will be placed in this array. It
should be of the appropriate shape and dtype. Note that out is always buffered if mode=raise’;
use other modes for better performance.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
e ‘raise’ — raise an error (default)
* ‘wrap’ — wrap around
e ‘clip’ — clip to the range
‘clip’ mode means that all indices that are too large are replaced by the index that addresses the
last element along that axis. Note that this disables indexing with negative numbers.

Returns
out

[ndarray (Ni..., Nj..., Nk...)] The returned array has the same type as a.

See also:

1.4. Indexing routines 113

NumPy Reference, Release 1.23.0

compress
Take elements using a boolean mask
ndarray. take
equivalent method
take_along_axis

Take elements by matching the array and the index arrays

Notes

By eliminating the inner loop in the description above, and using s_ to build simple slice objects, take can be
expressed in terms of applying fancy indexing to each 1-d slice:

Ni, Nk = a.shape[:axis], a.shapelaxis+1l:]
for ii in ndindex (Ni) :
for kk in ndindex (Nj) :
out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]

For this reason, it is equivalent to (but faster than) the following use of apply_along axis:

out = np.apply_along_axis (lambda a_1d: a_ld[indices], axis, a)

Examples

>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array ([4, 3, 6])

In this example if a is an ndarray, “fancy” indexing can be used.

>>> a = np.array (a)
>>> al[indices]
array ([4, 3, 6])

If indices is not one dimensional, the output also has these dimensions.

>>> np.take(a, [[0, 11, [2, 311)
array ([[4, 31,
[5, 711)

numpy .take_along_axis (arr, indices, axis)

Take values from the input array by matching 1d index and data slices.

This iterates over matching 1d slices oriented along the specified axis in the index and data arrays, and uses the
former to look up values in the latter. These slices can be different lengths.

Functions returning an index along an axis, like argsort and argpart it ion, produce suitable indices for this
function.

New in version 1.15.0.

Parameters

114

1. Array objects

NumPy Reference, Release 1.23.0

arr
[ndarray (Ni..., M, Nk...)] Source array
indices

[ndarray (Ni..., J, Nk...)] Indices to take along each 1d slice of arr. This must match the
dimension of arr, but dimensions Ni and Nj only need to broadcast against arr.

axis

[int] The axis to take 1d slices along. If axis is None, the input array is treated as if it had first
been flattened to 1d, for consistency with sort and argsort.

Returns

out: ndarray (Ni..., J, Nk...)

The indexed result.
See also:

take
Take along an axis, using the same indices for every 1d slice
put_along_axis

Put values into the destination array by matching 1d index and data slices

Notes

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of i1 and kk to a
tuple of indices:

Ni, M, Nk = a.shapel[:axis], a.shapelaxis], a.shapelaxis+1:]
J = indices.shape[axis] # Need not equal M
out = np.empty (Ni + (J,) + Nk)

for ii in ndindex (Ni) :
for kk in ndindex (Nk) :

a_1d = a [i1 + s_[:,]1 + kk]
indices_1d = indices[ii + s_[:,] + kk]
out_1d = out [ii + s_T[:,] + kk]
for j in range (J):

out_1d[j] = a_ld[indices_1d[]j]]

Equivalently, eliminating the inner loop, the last two lines would be:

out_1d[:] = a_ld[indices_1d]

1.4. Indexing routines 115

NumPy Reference, Release 1.23.0

Examples

For this sample array

>>> a = np.array([[10, 30, 20], [60, 40, 5011)

We can sort either by using sort directly, or argsort and this function

>>> np.sort (a, axis=1)
array ([[10, 20, 307,
[40, 50, 6011)
>>> ai = np.argsort(a, axis=1); ai
array ([[0, 2, 17,
(1, 2, 01D
>>> np.take_along_axis(a, ai, axis=1)
array ([[10, 20, 307,
[40, 50, 6011)

The same works for max and min, if you expand the dimensions:

>>> np.expand_dims (np.max (a, axis=1), axis=1)

array ([[30],
[60]11)
>>> ai = np.expand_dims (np.argmax(a, axis=1), axis=1)
>>> ai
array ([[1],
[011)
>>> np.take_along_axis(a, ai, axis=1)
array ([[30],
[60]11)

If we want to get the max and min at the same time, we can stack the indices first

>>> ai_min = np.expand_dims (np.argmin(a, axis=1), axis=1)
>>> ai_max = np.expand_dims (np.argmax(a, axis=1), axis=1)
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
>>> ai
array ([[0, 17,

[1, 011)

>>> np.take_along_axis(a, ai, axis=1)
array ([[10, 307,
[40, 60]11])

numpy . choose (a, choices, out=None, mode=raise’)

Construct an array from an index array and a list of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality, this function is less
simple than it might seem from the following code description (below ndi = numpy .1lib.index_tricks):

np.choose(a,c) == np.array([cla[I]][I] for I in ndi.ndindex(a.shape)]).
But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are first
broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1 we have that,
necessarily, Ba.shape == Bchoices[i].shape foreach i. Then, a new array with shape Ba . shape is
created as follows:

116

1. Array objects

NumPy Reference, Release 1.23.0

e if mode="raise"' (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1];now, suppose that i (in that range) is the value at the (70, 3j1, ..., jm) positionin Ba
- then the value at the same position in the new array is the value in Bchoices [1] at that same position;

e if mode="wrap", values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to map
integers outside the range [0, n-1] back into that range; and then the new array is constructed as above;

e if mode="clip"', values in a (and thus Ba) may be any (signed) integer; negative integers are mapped to

0; values greater than n—1 are mapped to n—1; and then the new array is constructed as above.

Parameters

[int array] This array must contain integers in [0, n-1], where n is the number of choices,
unless mode=wrap or mode=clip, in which cases any integers are permissible.

choices

[sequence of arrays] Choice arrays. a and all of the choices must be broadcastable to the same
shape. If choices is itself an array (not recommended), then its outermost dimension (i.e., the
one corresponding to choices.shape [0]) is taken as defining the “sequence”.

out

[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype. Note that out is always buffered if mode="raise"'; use other
modes for better performance.

mode

[{‘raise’ (default), ‘wrap’, ‘clip’}, optional] Specifies how indices outside [0, n-1] will be
treated:

* ‘raise’ : an exception is raised
* ‘wrap’ : value becomes value mod n

e ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1
Returns

merged_array

[array] The merged result.
Raises

ValueError: shape mismatch

If a and each choice array are not all broadcastable to the same shape.
See also:

ndarray.choose
equivalent method
numpy. take_along_axis

Preferable if choices is an array

1.4. Indexing routines 117

NumPy Reference, Release 1.23.0

Notes
To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported, choices should

neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container should be either a list or
a tuple.

Examples

>>> choices = [[0O, 1, 2, 31, [10, 11, 12, 1371,
(20, 21, 22, 2331, [30, 31, 32, 3311
>>> np.choose([2, 3, 1, 0], choices
the first element of the result will be the first element of the
third (2+1) "array" in choices, namely, 20; the second element
will be the second element of the fourth (3+1) choice array, i.e.,
31, etc.
o)
array ([20, 31, 12, 37)
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array ([20, 31, 12, 31)
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array ([20, 1, 12, 3])
>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>>a = [[1, O, 11, [0, 1, O], [1, O, 1]]

>>> choices = [-10, 10]
>>> np.choose (a, choices)
array ([[10, -10, 107,

[-10, 10, -107,
[10, -10, 1011)

>>> # With thanks to Anne Archibald

>>> a = np.array ([0, 1]).reshape((2,1,1))

>>> cl = np.array([1l, 2, 3]).reshape((1,3,1))

>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))

>>> np.choose(a, (cl, c2)) # result is 2x3x5, res[0,:,:]=cl, res[1l,:,:]=c2
array ([[[1, 1, 1, 1, ,

’ 2/ 2! 2/

numpy . compress (condition, a, axis=None, out=None)

Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condition evaluates
to True. When working on a 1-D array, compress is equivalent to extract.

Parameters

condition

[1-D array of bools] Array that selects which entries to return. If len(condition) is less than
the size of a along the given axis, then output is truncated to the length of the condition array.

118 1. Array objects

NumPy Reference, Release 1.23.0

[array_like] Array from which to extract a part.

axis

[int, optional] Axis along which to take slices. If None (default), work on the flattened array.

out

[ndarray, optional] Output array. Its type is preserved and it must be of the right shape to hold

the output.
Returns

compressed_array

[ndarray] A copy of a without the slices along axis for which condition is false.

See also:

take, choose, diag, diagonal, select
ndarray.compress

Equivalent method in ndarray
extract

Equivalent method when working on 1-D arrays

ufuncs-output-type

Examples
>>> a = np.array ([[1, 21, [3, 41, [5, 611)
>>> a
array ([[1, 2],
[3, 41,
[5, 611)
>>> np.compress ([0, 1], a, axis=0)
array ([[3, 4]11)
>>> np.compress ([False, True, True], a, axis=0)
array ([[3, 4],
[5, 611])
>>> np.compress ([False, True], a, axis=1)
array ([[2],
[41,
[611)
Working on the flattened array does not return slices along an axis but selects elements.
>>> np.compress ([False, True], a)
array ([2])

numpy .diag (v, k=0)

Extract a diagonal or construct a diagonal array.

1.4. Indexing routines

119

NumPy Reference, Release 1.23.0

See the more detailed documentation for numpy . diagonal if you use this function to extract a diagonal and
wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are
using.

Parameters

[array_like] If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a
2-D array with v on the k-th diagonal.

[int, optional] Diagonal in question. The default is 0. Use k>0 for diagonals above the main
diagonal, and k<0 for diagonals below the main diagonal.

Returns

out

[ndarray] The extracted diagonal or constructed diagonal array.
See also:

diagonal
Return specified diagonals.
diagflat
Create a 2-D array with the flattened input as a diagonal.
trace
Sum along diagonals.
triu
Upper triangle of an array.
tril

Lower triangle of an array.

Examples
>>> x = np.arange (9) .reshape ((3,3))
>>> x

array ([[0, 1, 21,
[3, 4, 5],
[6, 7, 811)

>>> np.diag(x)

array ([0, 4, 8])

>>> np.diag(x, k=1)
array ([1, 5])

>>> np.diag(x, k=-1)
array ([3, 7])

120 1. Array objects

NumPy Reference, Release 1.23.0

>>> np.diag(np.diag(x))

(
array ([[0, 0, 0],
[O’ 4, O]’
[0, O, 811)

numpy .diagonal (a, offset=0, axis] =0, axis2=1)

Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
it+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are used to determine
the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing
axis] and axis2 and appending an index to the right equal to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of the
values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.

Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting array
will produce an error.

In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.

If you don’t write to the array returned by this function, then you can just ignore all of the above.

If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal (a) .copy () instead of just np.diagonal (a). This will work with both past and future versions
of NumPy.

Parameters

[array_like] Array from which the diagonals are taken.
offset

[int, optional] Offset of the diagonal from the main diagonal. Can be positive or negative.
Defaults to main diagonal (0).

axisl

[int, optional] Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to first axis (0).

axis2
[int, optional] Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns

array_of_diagonals

[ndarray] If a is 2-D, then a 1-D array containing the diagonal and of the same type as a is
returned unless a is a mat rix, in which case a 1-D array rather than a (2-D) matrix is
returned in order to maintain backward compatibility.

If a.ndim > 2, then the dimensions specified by axis/ and axis2 are removed, and a new
axis inserted at the end corresponding to the diagonal.

1.4. Indexing routines 121

NumPy Reference, Release 1.23.0

Raises

ValueError

If the dimension of « is less than 2.
See also:

diag

MATLAB work-a-like for 1-D and 2-D arrays.
diagflat

Create diagonal arrays.
trace

Sum along diagonals.

Examples
>>> a = np.arange (4) .reshape (2, 2)
>>> 3
array ([[0, 17,
(2, 311

>>> a.diagonal ()
array ([0, 3])

>>> a.diagonal (1)
array ([11)

A 3-D example:

>>> a = np.arange (8) .reshape(2,2,2); a
array ([[[0, 17,
(2, 311,
[[4, 51,
(6, 7111)
>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and
1) # the "middle" (row) axis first.
array ([[0, 6],
(1, 711

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most (column)
axis, and that the diagonals are “packed” in rows.

>>> afl:,:,0] # main diagonal is [0 6]
array ([[0, 21,

[4, 611)
>>> afl:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

The anti-diagonal can be obtained by reversing the order of elements using either numpy . £11ipud or numpy .
fliplr.

122

1. Array objects

NumPy Reference, Release 1.23.0

>>> a = np.arange (9) .reshape (3, 3)
>>> a
array ([[0, 1, 21,
[3, 4, 51,
[6, 7, 811)
>>> np.fliplr(a) .diagonal() # Horizontal flip
array([2, 4, 6])
>>> np.flipud(a) .diagonal() # Vertical flip
array([6, 4, 2])

Note that the order in which the diagonal is retrieved varies depending on the flip function.

numpy . select (condlist, choicelist, default=0)

Return an array drawn from elements in choicelist, depending on conditions.

Parameters

condlist

[list of bool ndarrays] The list of conditions which determine from which array in choicelist the
output elements are taken. When multiple conditions are satisfied, the first one encountered in
condlist is used.

choicelist

[list of ndarrays] The list of arrays from which the output elements are taken. It has to be of
the same length as condlist.

default

[scalar, optional] The element inserted in output when all conditions evaluate to False.
Returns

output

[ndarray] The output at position m is the m-th element of the array in choicelist where the m-th
element of the corresponding array in condlist is True.

See also:

where
Return elements from one of two arrays depending on condition.

take, choose, compress, diag, diagonal

Examples

>>> x = np.arange (6)

>>> condlist = [x<3, x>3]

>>> choicelist = [x, x**2]

>>> np.select (condlist, choicelist, 42)
array ([O, 1, 2, 42, 16, 25])

1.4. Indexing routines 123

NumPy Reference, Release 1.23.0

>>> condlist = [x<=4, x>3]

>>> choicelist = [x, x**2]

>>> np.select (condlist, choicelist, 055)
array ([O, 1, 2, 3, 4, 257)

lib.stride_tricks.sliding_window_view (x, window_shape, axis=None, *, subok=False,
writeable=False)
Create a sliding window view into the array with the given window shape.
Also known as rolling or moving window, the window slides across all dimensions of the array and extracts subsets
of the array at all window positions.
New in version 1.20.0.
Parameters
X
[array_like] Array to create the sliding window view from.
window_shape
[int or tuple of int] Size of window over each axis that takes part in the sliding window. If axis
is not present, must have same length as the number of input array dimensions. Single integers
i are treated as if they were the tuple (i,).
axis
[int or tuple of int, optional] Axis or axes along which the sliding window is applied. By default,
the sliding window is applied to all axes and window_shape[i] will refer to axis i of x. If axis
is given as a tuple of int, window_shape[i] will refer to the axis axis[i] of x. Single integers i
are treated as if they were the tuple (i,).
subok
[bool, optional] If True, sub-classes will be passed-through, otherwise the returned array will
be forced to be a base-class array (default).
writeable
[bool, optional] When true, allow writing to the returned view. The default is false, as this
should be used with caution: the returned view contains the same memory location multiple
times, so writing to one location will cause others to change.
Returns
view
[ndarray] Sliding window view of the array. The sliding window dimensions are inserted
at the end, and the original dimensions are trimmed as required by the size of the sliding
window. That is, view.shape = x_shape_trimmed + window_shape, where
x_shape_trimmedis x.shape with every entry reduced by one less than the correspond-
ing window size.
See also:
lib.stride_tricks.as_strided
A lower-level and less safe routine for creating arbitrary views from custom shape and strides.
124 1. Array objects

NumPy Reference, Release 1.23.0

broadcast_to

broadcast an array to a given shape.

Notes
For many applications using a sliding window view can be convenient, but potentially very slow. Often specialized
solutions exist, for example:

* scipy.signal.fftconvolve

e filtering functions in scipy.ndimage

* moving window functions provided by bottleneck.

As a rough estimate, a sliding window approach with an input size of N and a window size of W will scale as
O(N*W) where frequently a special algorithm can achieve O(N). That means that the sliding window variant for a
window size of 100 can be a 100 times slower than a more specialized version.

Nevertheless, for small window sizes, when no custom algorithm exists, or as a prototyping and developing tool,
this function can be a good solution.

Examples

>>> x = np.arange (6)

>>> x.shape

(6,)

>>> v = sliding_window_view(x, 3)
>>> v.shape

(4, 3)

>>> v

array ([[0, , ,

w N = O
~

Sw N
~ 0~
g w N
NS

~

This also works in more dimensions, e.g.

>>> 1, J = np.ogrid[:3, :4]

>>> x = 10%1 + J

>>> x.shape

(3, 4)

>>> x

array([[0, 1, 2, 31,

[0, 11, 12, 137,
[20, 21, 22, 2311)

>>> shape = (2,2)

>>> v = sliding_window_view (x, shape)

>>> v.shape

(2, 3, 2, 2)

>>> v

array ([[[[O, 17,
[10, 11171,
(r 1, 27,
(11, 1211,
(rz, 31,
[12, 13111,

(continues on next page)

1.4. Indexing routines 125

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve
https://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage
https://github.com/pydata/bottleneck

NumPy Reference, Release 1.23.0

(continued from previous page)

The axis can be specified explicitly:

>>> v = sliding_window_view(x, 3, 0)
>>> v.shape
(1, 4, 3)
>>> v
array ([[[O, 10, 207,
[1, 11, 2171,
[2, 12, 227,
[3, 13, 23]11)

The same axis can be used several times. In that case, every use reduces the corresponding original dimension:

>>> v = gliding_window_view(x, (2, 3), (1, 1))
>>> v.shape
(3, 1, 2, 3)
>>> v
array ([[[[O, 1, 2],
(1, 2, 3111,
[rrio, 11, 121,
(11, 12, 13111,
[rrzo, 21, 221,
[21, 22, 231111)

Combining with stepped slicing (::step), this can be used to take sliding views which skip elements:

>>> x = np.arange(7)
>>> sliding_window_view(x, 5)[:, ::2]
array ([[0, 2, 4],

[1, 3, 51,

[2, 4, 6]1)

or views which move by multiple elements

>>> x = np.arange(7)
>>> sliding _window_view(x, 3)[::2, :]
array ([[0, 1, 2],

[2, 3, 41,

[4, 5, 611])

A common application of s1iding_window_view is the calculation of running statistics. The simplest exam-
ple is the moving average:

>>> x = np.arange(6)

>>> x.shape

(6,)

>>> v = sliding_window_view(x, 3)
>>> v.shape

(4, 3)

(continues on next page)

126

1. Array objects

https://en.wikipedia.org/wiki/Moving_average

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> v
array ([[0, 1, 2],
(1, 2, 31,
(2, 3, 41,
[3, 4, 511)
>>> moving_average = v.mean (axis=-1)
>>> moving_average
array([1., 2., 3., 4.1)

Note that a sliding window approach is often not optimal (see Notes).

lib.stride_tricks.as_strided (x, shape=None, strides=None, subok=False, writeable=True)

Create a view into the array with the given shape and strides.

Warning: This function has to be used with extreme care, see notes.

Parameters

[ndarray] Array to create a new.
shape
[sequence of int, optional] The shape of the new array. Defaults to x . shape.

strides

[sequence of int, optional] The strides of the new array. Defaults to x . strides.

subok
[bool, optional] New in version 1.10.
If True, subclasses are preserved.

writeable
[bool, optional] New in version 1.12.

If set to False, the returned array will always be readonly. Otherwise it will be writable if the
original array was. It is advisable to set this to False if possible (see Notes).

Returns
view
[ndarray]

See also:

broadcast_to
broadcast an array to a given shape.
reshape

reshape an array.

1.4. Indexing routines 127

NumPy Reference, Release 1.23.0

lib.stride_tricks.sliding _window_view

userfriendly and safe function for the creation of sliding window views.

Notes

as_strided creates a view into the array given the exact strides and shape. This means it manipulates the internal
data structure of ndarray and, if done incorrectly, the array elements can point to invalid memory and can corrupt
results or crash your program. It is advisable to always use the original x . st rides when calculating new strides
to avoid reliance on a contiguous memory layout.

Furthermore, arrays created with this function often contain self overlapping memory, so that two elements are
identical. Vectorized write operations on such arrays will typically be unpredictable. They may even give different
results for small, large, or transposed arrays.

Since writing to these arrays has to be tested and done with great care, you may want to use writeable=False
to avoid accidental write operations.

For these reasons it is advisable to avoid as_ st rided when possible.

1.4.3 Inserting data into arrays

place(arr, mask, vals) Change elements of an array based on conditional and in-
put values.

put(a, ind, v[, mode]) Replaces specified elements of an array with given values.

put_along_axis(arr, indices, values, axis) Put values into the destination array by matching 1d index
and data slices.

putmask(a, mask, values) Changes elements of an array based on conditional and
input values.

fill_diagonal(a, val[, wrap]) Fill the main diagonal of the given array of any dimen-
sionality.

numpy . place (arr, mask, vals)

Change elements of an array based on conditional and input values.

Similar to np.copyto (arr, vals, where=mask), the difference is that p1ace uses the first N elements
of vals, where N is the number of True values in mask, while copyt o uses the elements where mask is True.

Note that ext ract does the exact opposite of place.

Parameters

arr
[ndarray] Array to put data into.
mask
[array_like] Boolean mask array. Must have the same size as a.
vals

[1-D sequence] Values to put into a. Only the first N elements are used, where N is the number
of True values in mask. If vals is smaller than N, it will be repeated, and if elements of a are
to be masked, this sequence must be non-empty.

See also:

128 1. Array objects

NumPy Reference, Release 1.23.0

copyto, put, take, extract

Examples

>>> arr = np.arange (6) .reshape (2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr

array ([[0, 1, 2]

numpy . put (a, ind, v, mode=raise’)

Replaces specified elements of an array with given values.

The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters

[ndarray] Target array.
ind

[array_like] Target indices, interpreted as integers.

[array_like] Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
e ‘raise’ — raise an error (default)
e ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’ mode means that all indices that are too large are replaced by the index that addresses the
last element along that axis. Note that this disables indexing with negative numbers. In ‘raise’
mode, if an exception occurs the target array may still be modified.

See also:

putmask, place
put_along_axis

Put elements by matching the array and the index arrays

1.4. Indexing routines 129

NumPy Reference, Release 1.23.0

Examples

>>> a = np.arange (5)

>>> np.put(a, [0, 2], [-44, -55])
>>> a

array ([—-44, 1, =55, 3, 41)

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip')
>>> 3

arraY([OI 1/ 2! 3! 751)

numpy .put_along_axis (arr, indices, values, axis)

Put values into the destination array by matching 1d index and data slices.

This iterates over matching 1d slices oriented along the specified axis in the index and data arrays, and uses the
former to place values into the latter. These slices can be different lengths.

Functions returning an index along an axis, like argsort and argpart it ion, produce suitable indices for this
function.

New in version 1.15.0.

Parameters

arr
[ndarray (Ni..., M, Nk...)] Destination array.
indices

[ndarray (Ni..., J, Nk...)] Indices to change along each 1d slice of arr. This must match the
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast against arr.

values

[array_like (Ni..., J, Nk...)] values to insert at those indices. Its shape and dimension are
broadcast to match that of 1ndices.

axis
[int] The axis to take 1d slices along. If axis is None, the destination array is treated as if a
flattened 1d view had been created of it.

See also:

take_along_axis

Take values from the input array by matching 1d index and data slices

130 1. Array objects

NumPy Reference, Release 1.23.0

Notes

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of 11 and kk to a
tuple of indices:

Ni, M, Nk a.shape[:axis], a.shapelaxis], a.shapelaxis+l:]
J = indices.shapelaxis] # Need not equal M

for ii in ndindex (Ni) :
for kk in ndindex (Nk) :

a_1ld = a [1ii + s_T[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
values_1d = values [ii + s_[:,] + kk]

for j in range (J):
a_ld[indices_1d[j]] = values_1d[]]

Equivalently, eliminating the inner loop, the last two lines would be:

a_ld[indices_1d] = values_1d

Examples

For this sample array

>>> a = np.array([[10, 30, 20], [60, 40, 5011)

We can replace the maximum values with:

>>> ail = np.expand_dims (np.argmax(a, axis=1), axis=1)
>>> ai
array ([[1]1,
[0]11)
>>> np.put_along_axis(a, ai, 99, axis=1)
>>> a

array ([[10, 99, 207,
[99, 40, 5011)

numpy . putmask (a, mask, values)

Changes elements of an array based on conditional and input values.
Setsa.flat[n] = values[n] for each n where mask.flat [n]==True.

If values is not the same size as a and mask then it will repeat. This gives behavior different from a [mask] =
values.

Parameters

[ndarray] Target array.
mask
[array_like] Boolean mask array. It has to be the same shape as a.

values

[array_like] Values to put into a where mask is True. If values is smaller than a it will be
repeated.

1.4. Indexing routines 131

NumPy Reference, Release 1.23.0

See also:

place, put, take, copyto

Examples

>>> x = np.arange (6) .reshape (2, 3)
>>> np.putmask (x, x>2, x**2)
>>> x
array ([[O, 1, 271,
[9, 16, 2511)

If values is smaller than a it is repeated:

>>> x = np.arange(5)

>>> np.putmask (x, x>1, [-33, —-44])
>>> x

array ([O, 1, -33, -44, -33])

numpy . £111_diagonal (a, val, wrap=False)
Fill the main diagonal of the given array of any dimensionality.

For anarray awitha .ndim >= 2, the diagonal is the list of locations withindicesa [1, ..., i] allidentical.
This function modifies the input array in-place, it does not return a value.

Parameters

[array, at least 2-D.] Array whose diagonal is to be filled, it gets modified in-place.
val

[scalar or array_like] Value(s) to write on the diagonal. If val is scalar, the value is written
along the diagonal. If array-like, the flattened val is written along the diagonal, repeating if
necessary to fill all diagonal entries.

wrap

[bool] For tall matrices in NumPy version up to 1.6.2, the diagonal “wrapped” after N columns.
You can have this behavior with this option. This affects only tall matrices.

See also:

diag indices,diag_indices_from

Notes

New in version 1.4.0.

This functionality can be obtained via diag_indices, but internally this version uses a much faster implemen-
tation that never constructs the indices and uses simple slicing.

132 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a

array ([[5, 0, 071,

The same function can operate on a 4-D array:

>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

>>> a0, 0]

array ([[4, 0, 0],
(o, 0, 01,
[0, 0, 011)

>>> al[l, 1]

array ([[0, O, O],
[o, 4, 01,
[0, 0, 011

>>> a2, 2]

array([[0, O, O],
[o, o, 01,
[0, O, 411)

The wrap option affects only tall matrices:

>>> # tall matrices no wrap

’

>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal (a, 4)
>>> a
array([[4, 0, O],

[o, 4, 01,

[0, 0, 41,

[o, o, 01,

[0, 0, 0I1)

>>> a =

>>> # tall
np.zeros ((5,
>>> np.fill_diagonal(a, 4, wrap=True)

matrices wrap

3), int)

>>> a =

>>> a
array ([

np.zeros ((3,
>>> np.fill_diagonal (a, 4, wrap=True)

[4I

0,

>>> a

array ([[4, 0, 0],
[o, 4, 0],
[o, o, 41,
[0, o, 01,
[4, 0, 011)

>>> # wide matrices

0, 0,

5), int)

01,

(continues on next page)

1.4. Indexing routines

133

NumPy Reference, Release 1.23.0

(continued from previous page)

The anti-diagonal can be filled by reversing the order of elements using either numpy . £1ipud or numpy.

fliplr.
>>> a = np.zeros((3, 3), int);
>>> np.fill_diagonal (np.fliplr(a), [1,2,3]) # Horizontal flip
>>> g
array ([[0, O, 17,
[o, 2, 01,
[3, 0, 01D)

>>> a
array ([[0, 0, 31,

>>> np.fill_diagonal (np.flipud(a),

[1,2,31) # Vertical flip

Note that the order in which the diagonal is filled varies depending on the flip function.

1.4.4 lterating over arrays

nditer(opl, flags, op_flags, op_dtypes, ...])

Efficient multi-dimensional iterator object to iterate over
arrays.

ndenumerate(arr)

Multidimensional index iterator.

ndindex(*shape)

An N-dimensional iterator object to index arrays.

nested_iters(op, axes|, flags, op_flags, ...])

Create nditers for use in nested loops

flatiter()

Flat iterator object to iterate over arrays.

lib.Arrayterator(var[, buf_size])

Buffered iterator for big arrays.

iterable(y)

Check whether or not an object can be iterated over.

class numpy.nditer (op, flags=None, op_flags=None, op_dtypes=None, order="K’, casting=safe’,
op_axes=None, itershape=None, buffersize=0)

Efficient multi-dimensional iterator object to iterate over arrays. To get started using this object, see the infroductory

guide to array iteration.

Parameters

op

[ndarray or sequence of array_like] The array(s) to iterate over.

flags

[sequence of str, optional] Flags to control the behavior of the iterator.

* buffered enables buffering when required.

¢ c_index causes a C-order index to be tracked.

e f_index causes a Fortran-order index to be tracked.

e multi_index causes a multi-index, or a tuple of indices with one per iteration dimension,

to be tracked.

134

1. Array objects

NumPy Reference, Release 1.23.0

e common_dtype causes all the operands to be converted to a common data type, with
copying or buffering as necessary.

e copy_1if_overlap causes the iterator to determine if read operands have overlap with
write operands, and make temporary copies as necessary to avoid overlap. False positives
(needless copying) are possible in some cases.

e delay_bufalloc delays allocation of the buffers until a reset() call is made. Allows
allocate operands to be initialized before their values are copied into the buffers.

* external_loop causes the values given to be one-dimensional arrays with multiple
values instead of zero-dimensional arrays.

e grow_inner allows the value array sizes to be made larger than the buffer size when
both buffered and external_loop is used.

* ranged allows the iterator to be restricted to a sub-range of the iterindex values.
e refs_ok enables iteration of reference types, such as object arrays.

e reduce_ok enables iteration of readwrite operands which are broadcasted, also
known as reduction operands.

e zerosize_ok allows itersize to be zero.
op_flags

[list of list of str, optional] This is a list of flags for each operand. At minimum, one of
readonly, readwrite, or writeonly must be specified.

* readonly indicates the operand will only be read from.

e readwrite indicates the operand will be read from and written to.

* writeonly indicates the operand will only be written to.

* no_broadcast prevents the operand from being broadcasted.

* contig forces the operand data to be contiguous.

e aligned forces the operand data to be aligned.

* nbo forces the operand data to be in native byte order.

* copy allows a temporary read-only copy if required.

e updateifcopy allows a temporary read-write copy if required.

* allocate causes the array to be allocated if it is None in the op parameter.
* no_subtype prevents an allocate operand from using a subtype.

e arraymask indicates that this operand is the mask to use for selecting elements when
writing to operands with the ‘writemasked’ flag set. The iterator does not enforce this, but
when writing from a buffer back to the array, it only copies those elements indicated by this
mask.

* writemasked indicates that only elements where the chosen arraymask operand is
True will be written to.

* overlap_assume_elementwise can be used to mark operands that are accessed
only in the iterator order, to allow less conservative copying when copy_if_overlapis
present.

1.4. Indexing routines 135

NumPy Reference, Release 1.23.0

op_dtypes

[dtype or tuple of dtype(s), optional] The required data type(s) of the operands. If copying or
buffering is enabled, the data will be converted to/from their original types.

order

[{‘C, F, ‘A’, K’} optional] Controls the iteration order. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’
means as close to the order the array elements appear in memory as possible. This also affects
the element memory order of allocate operands, as they are allocated to be compatible
with iteration order. Default is ‘K’.

casting

[{'no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur when making a copy or buffering. Setting this to ‘unsafe’ is not recommended, as it can
adversely affect accumulations.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.
* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
* ‘unsafe’ means any data conversions may be done.
op_axes

[list of list of ints, optional] If provided, is a list of ints or None for each operands. The list
of axes for an operand is a mapping from the dimensions of the iterator to the dimensions of
the operand. A value of -1 can be placed for entries, causing that dimension to be treated as
newaxis.

itershape

[tuple of ints, optional] The desired shape of the iterator. This allows allocate operands
with a dimension mapped by op_axes not corresponding to a dimension of a different operand
to get a value not equal to 1 for that dimension.

buffersize

[int, optional] When buffering is enabled, controls the size of the temporary buffers. Set to 0
for the default value.

Notes

nditer supersedes f1atiter. The iterator implementation behind nditer is also exposed by the NumPy C
APL

The Python exposure supplies two iteration interfaces, one which follows the Python iterator protocol, and another
which mirrors the C-style do-while pattern. The native Python approach is better in most cases, but if you need
the coordinates or index of an iterator, use the C-style pattern.

136 1. Array objects

NumPy Reference, Release 1.23.0

Examples

Here is how we might write an iter_add function, using the Python iterator protocol:

>>> def iter_add_py(x, y, out=None):
addop = np.add
it = np.nditer([x, vy, out], [1],
[['readonly'], ['readonly'], ['writeonly',6 'allocate']])

with it:

for (a, b, c¢) in it:

addop (a, b, out=c)
return it.operands[2]

Here is the same function, but following the C-style pattern:

>>> def iter_add(x, y, out=None):
addop = np.add
it = np.nditer([x, vy, outl, [],
[['readonly'], ['readonly'], ['writeonly','allocate']])
with it:
while not it.finished:
addop (it [0], it[1], out=it[2])
it.iternext ()
return it.operands[2]

Here is an example outer product function:

>>> def outer_it (x, y, out=None):
mulop = np.multiply

it = np.nditer([x, y, out], ['external loop'],
[['readonly'], ['readonly'], ['writeonly', 'allocate']],
op_axes=[list (range(x.ndim)) + [-1] * y.ndim,
[-1] * x.ndim + list(range(y.ndim)),
None])
with it:

for (a, b, c) in it:
mulop(a, b, out=c)
return it.operands[2]

>>> a = np.arange (2)+1
>>> b = np.arange (3) +1
>>> outer_it (a,b)
array ([[1, 2, 31,

[2, 4, 611)

Here is an example function which operates like a “lambda” ufunc:

>>> def luf (lamdaexpr, *args, **kwargs):

.. "'"1"1uf (lambdaexpr, opl, ..., opn, out=None, order='K', casting='safe',.
—~buffersize=0)"'"'"'

nargs = len(args)

op = (kwargs.get ('out',None),) + args

it = np.nditer(op, ['buffered', 'external_ loop'],

[['writeonly', 'allocate', 'no_broadcast']] +
[['readonly', 'nbo', 'aligned']]*nargs,

order=kwargs.get ('order', 'K"),

casting=kwargs.get ('casting', 'safe'),

(continues on next page)

1.4. Indexing routines

137

NumPy Reference, Release 1.23.0

(continued from previous page)

buffersize=kwargs.get ('buffersize',0))
while not it.finished:
it[0] = lamdaexpr (*it([1:])
it.iternext ()
return it.operands[0]

>>> a = np.arange(5)

>>> b = np.ones (5)

>>> luf (lambda i,3j:i*i + j/2, a, b)
array ([0.5, 1.5, 4.5, 9.5, 16.57])

If operand flags "writeonly" or "readwrite" are used the operands may be views into the original data with
the WRITEBACKIFCOPY flag. In this case nditer must be used as a context manager or the nditer.close
method must be called before using the result. The temporary data will be written back to the original data when
the _exit__ function is called but not before:

>>> a = np.arange (6, dtype='i4d") [::-2]

>>> with np.nditer(a, [],
[['writeonly', 'updateifcopy']],
casting='unsafe',

op_dtypes=[np.dtype('f4")]) as 1i:
X = i.operands[0]
x[:] = [-1, -2, -3]

a still unchanged here
>>> a, x
(array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))

It is important to note that once the iterator is exited, dangling references (like x in the example) may or may not
share data with the original data a. If writeback semantics were active, i.e. if x.base.flags. writebackifcopy is True,
then exiting the iterator will sever the connection between x and a, writing to x will no longer write to a. If writeback
semantics are not active, then x.data will still point at some part of a.data, and writing to one will affect the other.

Context management and the c1ose method appeared in version 1.15.0.

Attributes

dtypes

[tuple of dtype(s)] The data types of the values provided in value. This may be different
from the operand data types if buffering is enabled. Valid only before the iterator is closed.

finished
[bool] Whether the iteration over the operands is finished or not.
has_delayed_bufalloc

[bool] If True, the iterator was created with the delay_bufalloc flag, and no reset() func-
tion was called on it yet.

has_index

[bool] If True, the iterator was created with either the c_index or the £_index flag, and
the property index can be used to retrieve it.

has_multi_index

[bool] If True, the iterator was created with the multi_index flag, and the property
multi_index can be used to retrieve it.

138 1. Array objects

NumPy Reference, Release 1.23.0

index

When the c_index or £_index flag was used, this property provides access to the index.
Raises a ValueError if accessed and has_index is False.

iterationneedsapi

[bool] Whether iteration requires access to the Python API, for example if one of the operands
is an object array.

iterindex

[int] An index which matches the order of iteration.
itersize

[int] Size of the iterator.
itviews

Structured view(s) of operands in memory, matching the reordered and optimized iterator
access pattern. Valid only before the iterator is closed.

multi_index

When the multi_index flag was used, this property provides access to the index. Raises a
ValueError if accessed accessed and has_multi_index is False.

ndim
[int] The dimensions of the iterator.
nop
[int] The number of iterator operands.
operands
[tuple of operand(s)] operands[Slice]
shape
[tuple of ints] Shape tuple, the shape of the iterator.
value

Value of operands at current iteration. Normally, this is a tuple of array scalars, but if the
flag external_loop is used, it is a tuple of one dimensional arrays.

1.4. Indexing routines 139

NumPy Reference, Release 1.23.0

Methods
close() Resolve all writeback semantics in writeable operands.
copy() Get a copy of the iterator in its current state.
debug_print() Print the current state of the nditer instance and
debug info to stdout.
enable_external_loop() When the “external_loop” was not used during con-
struction, but is desired, this modifies the iterator to
behave as if the flag was specified.
iternext() Check whether iterations are left, and perform a single
internal iteration without returning the result.
remove_axis(,/) Removes axis i from the iterator.
remove_multi_index() When the “multi_index” flag was specified, this re-
moves it, allowing the internal iteration structure to be
optimized further.
reset() Reset the iterator to its initial state.
method

nditer.close ()

Resolve all writeback semantics in writeable operands.
New in version 1.15.0.

See also:
Modifying Array Values

method

nditer.copy ()
Get a copy of the iterator in its current state.

Examples

>>> x = np.arange (10)

>>> y = x + 1

>>> it = np.nditer([x, vyI])

>>> next (it)

(array (0), array (1))
>>> it2 = it.copy ()
>>> next (it2)

(array (1), array(2))

method

nditer.debug_print ()
Print the current state of the nditer instance and debug info to stdout.

method

nditer.enable_external_loop ()

When the “external_loop” was not used during construction, but is desired, this modifies the iterator to behave
as if the flag was specified.

140 1. Array objects

NumPy Reference, Release 1.23.0

method

nditer.iternext ()

Check whether iterations are left, and perform a single internal iteration without returning the result. Used in
the C-style pattern do-while pattern. For an example, see nditer.

Returns

iternext

[bool] Whether or not there are iterations left.

method

nditer.remove_axis (i, /)
Removes axis i from the iterator. Requires that the flag “multi_index” be enabled.

method

nditer.remove_multi_index ()

When the “multi_index” flag was specified, this removes it, allowing the internal iteration structure to be
optimized further.

method

nditer.reset ()

Reset the iterator to its initial state.

class numpy.ndenumerate (arr)

Multidimensional index iterator.
Return an iterator yielding pairs of array coordinates and values.

Parameters

arr

[ndarray] Input array.
See also:

ndindex, flatiter

Examples

>>> a = np.array ([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
print (index, x)

= = o o -
~ ~ ~ ~ .
= o o
Bsw N -

class numpy.ndindex (*shape)

An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each
iteration a tuple of indices is returned, the last dimension is iterated over first.

1.4. Indexing routines 141

NumPy Reference, Release 1.23.0

Parameters

shape

[ints, or a single tuple of ints] The size of each dimension of the array can be passed as indi-
vidual parameters or as the elements of a tuple.

See also:

ndenumerate, flatiter

Examples

Dimensions as individual arguments

>>> for index in np.ndindex (3, 2, 1):
print (index)

~
o

~

~
(@]

~
o O O O

~

~

~
~

NN PO O
~ .

= Ok O F O
~

~
~

Same dimensions - but in a tuple (3, 2, 1)

>>> for index in np.ndindex ((3, 2, 1)):
print (index)

~
(@]

~

~
o

~

~
~

~
= O P Ok O
~

~

NN PO O
~ .

~

~
o O O O

ndincr() Increment the multi-dimensional index by one.

method

ndindex.ndincr ()
Increment the multi-dimensional index by one.

This method is for backward compatibility only: do not use.

Deprecated since version 1.20.0: This method has been advised against since numpy 1.8.0, but only started
emitting DeprecationWarning as of this version.

numpy .nested_iters (op, axes, flags=None, op_flags=None, op_dtypes=None, order="K’, casting="safe’,

buffersize=0)
Create nditers for use in nested loops
Create a tuple of nditer objects which iterate in nested loops over different axes of the op argument. The first

iterator is used in the outermost loop, the last in the innermost loop. Advancing one will change the subsequent
iterators to point at its new element.

142

1. Array objects

NumPy Reference, Release 1.23.0

Parameters

op

[ndarray or sequence of array_like] The array(s) to iterate over.
axes

[list of list of int] Each item is used as an “op_axes” argument to an nditer
flags, op_flags, op_dtypes, order, casting, buffersize (optional)

See nditer parameters of the same name
Returns

iters

[tuple of nditer] An nditer for each item in axes, outermost first
See also:

nditer

Examples

Basic usage. Note how y is the “flattened” version of [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified the first iter’s

axes as [1]
>>> a = np.arange(l12) .reshape(2, 3, 2)
>>> i, j = np.nested_iters(a, [[1], [0, 211, flags=["multi_index"])
>>> for x in 1i:
print (i.multi_index)
for y in j:

C. print('', j.multi_index, vy)
(0,)

(0, 0) O

(0, 1) 1

(1, 0) o

1, 1) 7

(1,)

(0, 0) 2

(0, 1) 3

(1, 0) 8

(1, 1) 9

(2,)

(0, 0) 4

(0, 1) 5

(1, 0) 10

(1, 1) 11

class numpy.flatiter

Flat iterator object to iterate over arrays.

A flatiter iterator is returned by x . f1at for any array x. It allows iterating over the array as if it were a 1-D
array, either in a for-loop or by calling its next method.

Iteration is done in row-major, C-style order (the last index varying the fastest). The iterator can also be indexed
using basic slicing or advanced indexing.

1.4. Indexing routines 143

NumPy Reference, Release 1.23.0

See also:

ndarray. flat
Return a flat iterator over an array.
ndarray.flatten

Returns a flattened copy of an array.

Notes

A flatiter iterator can not be constructed directly from Python code by calling the £1at iter constructor.

Examples

>>> x = np.arange (6) .reshape (2, 3)
>>> fl1 = x.flat
>>> type (fl)
<class 'numpy.flatiter'>
>>> for item in fl:
print (item)

g W NP O

>>> f1[2:4]
array ([2, 3])

Attributes

base
A reference to the array that is iterated over.

coords

An N-dimensional tuple of current coordinates.

index

Current flat index into the array.

144

1. Array objects

NumPy Reference, Release 1.23.0

Methods

copy() Get a copy of the iterator as a 1-D array.

method

flatiter.copy ()
Get a copy of the iterator as a 1-D array.

Examples

>>> x = np.arange (6) .reshape (2, 3)

>>> x

array ([[0, 1, 271,
(3, 4, 511)

>>> fl1 = x.flat

>>> fl.copy ()
array ([0, 1, 2, 3, 4, 51])

class numpy.lib.Arrayterator (var, buf_size=None)

Buffered iterator for big arrays.

Arrayterator creates a buffered iterator for reading big arrays in small contiguous blocks. The class is useful
for objects stored in the file system. It allows iteration over the object without reading everything in memorys;
instead, small blocks are read and iterated over.

Arrayterator can be used with any object that supports multidimensional slices. This includes NumPy arrays,
but also variables from Scientific.IO.NetCDF or pynetcdf for example.

Parameters

var
[array_like] The object to iterate over.
buf_size

[int, optional] The buffer size. If buf_size is supplied, the maximum amount of data that will
be read into memory is buf_size elements. Default is None, which will read as many element
as possible into memory.

See also:

ndenumerate

Multidimensional array iterator.
flatiter

Flat array iterator.
memmap

Create a memory-map to an array stored in a binary file on disk.

1.4. Indexing routines 145

NumPy Reference, Release 1.23.0

Notes

The algorithm works by first finding a “running dimension”, along which the blocks will be extracted. Given an
array of dimensions (d1, d2, ..., dn),e.g. if buf_sizeis smaller than d1, the first dimension will be used.
If, on the other hand, d1 < buf_size < d1*d2 the second dimension will be used, and so on. Blocks are
extracted along this dimension, and when the last block is returned the process continues from the next dimension,
until all elements have been read.

Examples

>>> a = np.arange(3 * 4 * 5 * 6).reshape (3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)

>>> a_itor.shape

(3, 4, 5, 6)

Now we can iterate over a_1itor, and it will return arrays of size two. Since buf_size was smaller than any
dimension, the first dimension will be iterated over first:

>>> for subarr in a_itor:

if not subarr.all():
C. print (subarr, subarr.shape)
>>> # [[[[0 1]]]] (1, 1, 1, 2)

Attributes

var
buf_size
start
stop
step
shape
The shape of the array to be iterated over.
flat

A 1-D flat iterator for Arrayterator objects.

numpy .iterable (y)

Check whether or not an object can be iterated over.

Parameters

[object] Input object.
Returns

b

[bool] Return True if the object has an iterator method or is a sequence and Fa 1 se otherwise.

146

1. Array objects

NumPy Reference, Release 1.23.0

Notes

In most cases, the results of np.iterable (obj) areconsistent with isinstance (obj, collections.
abc.Iterable). One notable exception is the treatment of O-dimensional arrays:

>>> from collections.abc import Iterable

>>> a = np.array(1.0) # O-dimensional numpy array
>>> isinstance(a, Iterable)

True

>>> np.iterable (a)

False

Examples

>>> np.iterable([1, 2, 3])
True

>>> np.iterable(2)

False

1.5 Iterating Over Arrays

Note: Arrays support the iterator protocol and can be iterated over like Python lists. See the quickstart.indexing-slicing-
and-iterating section in the Quickstart guide for basic usage and examples. The remainder of this document presents the
nditer object and covers more advanced usage.

The iterator object nditer, introduced in NumPy 1.6, provides many flexible ways to visit all the elements of one or
more arrays in a systematic fashion. This page introduces some basic ways to use the object for computations on arrays
in Python, then concludes with how one can accelerate the inner loop in Cython. Since the Python exposure of nditer
is a relatively straightforward mapping of the C array iterator API, these ideas will also provide help working with array
iteration from C or C++.

1.5.1 Single Array Iteration

The most basic task that can be done with the nditer is to visit every element of an array. Each element is provided
one by one using the standard Python iterator interface.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a):
print (x, end=" ")

012345

An important thing to be aware of for this iteration is that the order is chosen to match the memory layout of the array
instead of using a standard C or Fortran ordering. This is done for access efficiency, reflecting the idea that by default
one simply wants to visit each element without concern for a particular ordering. We can see this by iterating over the
transpose of our previous array, compared to taking a copy of that transpose in C order.

1.5. Iterating Over Arrays 147

NumPy Reference, Release 1.23.0

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a.T):
print (x, end=' ")

012345

>>> for x in np.nditer(a.T.copy(order='C')):
print (x, end=' ")

031425

The elements of both a and a.T get traversed in the same order, namely the order they are stored in memory, whereas
the elements of a.T.copy(order="C’) get visited in a different order because they have been put into a different memory
layout.

Controlling Iteration Order

There are times when it is important to visit the elements of an array in a specific order, irrespective of the layout of the
elements in memory. The nditer object provides an order parameter to control this aspect of iteration. The default,
having the behavior described above, is order="K’ to keep the existing order. This can be overridden with order="C’ for
C order and order="F for Fortran order.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, order='F"'):
print (x, end="' ")

031425

>>> for x in np.nditer(a.T, order='C'"):
print (x, end="' ")
031425

Modifying Array Values
By default, the ndi ter treats the input operand as a read-only object. To be able to modify the array elements, you must
specify either read-write or write-only mode using the readwrite’ or ‘writeonly’ per-operand flags.

The nditer will then yield writeable buffer arrays which you may modify. However, because the nditer must copy this
buffer data back to the original array once iteration is finished, you must signal when the iteration is ended, by one of two
methods. You may either:

* used the nditer as a context manager using the with statement, and the temporary data will be written back when
the context is exited.

« call the iterator’s close method once finished iterating, which will trigger the write-back.

The nditer can no longer be iterated once either close is called or its context is exited.

148 1. Array objects

NumPy Reference, Release 1.23.0

Example
>>> a = np.arange (6) .reshape (2, 3)
>>> a
array ([[0, 1, 2],
[3, 4, 511)
>>> with np.nditer(a, op_flags=['readwrite']) as it:
for x in it:
x[...] = 2 * x
>>> a
array ([[O, 2, 47,
[6, 8, 10]11])

If you are writing code that needs to support older versions of numpy, note that prior to 1.15, ndi t er was not a context
manager and did not have a close method. Instead it relied on the destructor to initiate the writeback of the buffer.

Using an External Loop

In all the examples so far, the elements of a are provided by the iterator one at a time, because all the looping logic is
internal to the iterator. While this is simple and convenient, it is not very efficient. A better approach is to move the
one-dimensional innermost loop into your code, external to the iterator. This way, NumPy’s vectorized operations can be
used on larger chunks of the elements being visited.

The nditer will try to provide chunks that are as large as possible to the inner loop. By forcing ‘C’ and ‘F order, we
get different external loop sizes. This mode is enabled by specifying an iterator flag.

Observe that with the default of keeping native memory order, the iterator is able to provide a single one-dimensional
chunk, whereas when forcing Fortran order, it has to provide three chunks of two elements each.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, flags=['external loop']):
print (x, end=' ")

[001 2 3 4 5]

>>> for x in np.nditer(a, flags=['external loop'], order='F'):
print (x, end=' ")

[0 3] [1 4] [2 5]

1.5. Iterating Over Arrays 149

NumPy Reference, Release 1.23.0

Tracking an Index or Multi-Index

During iteration, you may want to use the index of the current element in a computation. For example, you may want to
visit the elements of an array in memory order, but use a C-order, Fortran-order, or multidimensional index to look up
values in a different array.

The index is tracked by the iterator object itself, and accessible through the index or multi_index properties, depending
on what was requested. The examples below show printouts demonstrating the progression of the index:

Example

>>> a = np.arange (6) .reshape (2, 3)

>>> it = np.nditer(a, flags=['f_index'])
>>> for x in it:
print (" <Zd>" % (x, it.index), end=' ')

0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_index'])
>>> for x in it:
print (" <%s>" % (x, it.multi_index), end=' ")

0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> with np.nditer(a, flags=['multi_index'], op_flags=['writeonly']) as it:
for x in it:
x[...] = it.multi_index[1] - it.multi_index[0]
>>> a
array ([[0, 1, 21,
(-1, 0, 111)

Tracking an index or multi-index is incompatible with using an external loop, because it requires a different index value
per element. If you try to combine these flags, the nditer object will raise an exception.

Example
>>> a = np.zeros ((2,3))
>>> it = np.nditer(a, flags=['c_index', 'external loop'l])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is.
—being tracked

150 1. Array objects

NumPy Reference, Release 1.23.0

Alternative Looping and Element Access

To make its properties more readily accessible during iteration, nditer has an alternative syntax for iterating, which
works explicitly with the iterator object itself. With this looping construct, the current value is accessible by indexing into
the iterator. Other properties, such as tracked indices remain as before. The examples below produce identical results to
the ones in the previous section.

Example
>>> a = np.arange (6) .reshape (2, 3)
>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
print (" <Zd>" % (1t [0], it.index), end=' ")

is_not_finished = it.iternext ()

0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_index'])

>>> while not it.finished:
print (" <Zs>" % (it[0], it.multi_index), end=' ")
is_not_finished = it.iternext ()

0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> with np.nditer(a, flags=['multi_index'], op_flags=['writeonly']) as it:
while not it.finished:
1t [0] = it.multi_index[1] - it.multi_index[0]

is_not_finished = it.iternext ()

Buffering the Array Elements

When forcing an iteration order, we observed that the external loop option may provide the elements in smaller chunks
because the elements can’t be visited in the appropriate order with a constant stride. When writing C code, this is generally
fine, however in pure Python code this can cause a significant reduction in performance.

By enabling buffering mode, the chunks provided by the iterator to the inner loop can be made larger, significantly reducing
the overhead of the Python interpreter. In the example forcing Fortran iteration order, the inner loop gets to see all the
elements in one go when buffering is enabled.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
print (x, end=' ")

[0 3] [1 4] [2 5]

1.5. Iterating Over Arrays 151

NumPy Reference, Release 1.23.0

>>> for x in np.nditer(a, flags=['external loop', 'buffered'], order='F"):
print (x, end=' ")

[0 3142 5]

Iterating as a Specific Data Type

There are times when it is necessary to treat an array as a different data type than it is stored as. For instance, one may
want to do all computations on 64-bit floats, even if the arrays being manipulated are 32-bit floats. Except when writing
low-level C code, it’s generally better to let the iterator handle the copying or buffering instead of casting the data type
yourself in the inner loop.

There are two mechanisms which allow this to be done, temporary copies and buffering mode. With temporary copies,
a copy of the entire array is made with the new data type, then iteration is done in the copy. Write access is permitted
through a mode which updates the original array after all the iteration is complete. The major drawback of temporary
copies is that the temporary copy may consume a large amount of memory, particularly if the iteration data type has a
larger itemsize than the original one.

Buffering mode mitigates the memory usage issue and is more cache-friendly than making temporary copies. Except for
special cases, where the whole array is needed at once outside the iterator, buffering is recommended over temporary
copying. Within NumPy, buffering is used by the ufuncs and other functions to support flexible inputs with minimal
memory overhead.

In our examples, we will treat the input array with a complex data type, so that we can take square roots of negative
numbers. Without enabling copies or buffering mode, the iterator will raise an exception if the data type doesn’t match
precisely.

Example

>>> a = np.arange (6) .reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128']):
print (np.sqgrt (x), end="' ")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand required copying or buffering, but neither copying nor.
—buffering was enabled

In copying mode, ‘copy’ is specified as a per-operand flag. This is done to provide control in a per-operand fashion.
Buffering mode is specified as an iterator flag.

Example
>>> a = np.arange(6) .reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=['readonly', 'copy'],

op_dtypes=['complex128']):
print (np.sqgrt (x), end="' ")

1.73205080756887727 1.41421356237309513 13 0j (1+403) (1.4142135623730951+03)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['complex128']):
print (np.sqgrt (x), end="' ")

(continues on next page)

152 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

1.73205080756887725 1.41421356237309515 13 03 (1+03) (1.4142135623730951+07)

The iterator uses NumPy’s casting rules to determine whether a specific conversion is permitted. By default, it enforces
‘safe’ casting. This means, for example, that it will raise an exception if you try to treat a 64-bit float array as a 32-bit
float array. In many cases, the rule ‘same_kind’ is the most reasonable rule to use, since it will allow conversion from 64
to 32-bit float, but not from float to int or from complex to float.

Example

>>> a = np.arange (6.)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32']):
print (x, end=' ")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
—'float32') according to the rule 'safe'

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32'],
casting="'same_kind'):
print (x, end=' ")

0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['int32'], casting='same_kind
<—>'):

print (x, end="' ")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
—'int32') according to the rule 'same_kind'

One thing to watch out for is conversions back to the original data type when using a read-write or write-only operand.
A common case is to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’ casting to allow the other
floating-point types to be processed as well. While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array would violate the casting rule.

Example
>>> a = np.arange (6)
>>> for x in np.nditer(a, flags=['buffered'], op_flags=['readwrite'],
op_dtypes=['float64'], casting='same_kind'"):
x[...] x / 2.0

Traceback (most recent call last):

File "<stdin>", line 2, in <module>
TypeError: Iterator requested dtype could not be cast from dtype('float64') to dtype(
—'int64"'), the operand 0 dtype, according to the rule 'same_kind'

1.5. Iterating Over Arrays 153

NumPy Reference, Release 1.23.0

1.5.2 Broadcasting Array lteration

NumPy has a set of rules for dealing with arrays that have differing shapes which are applied whenever functions take
multiple operands which combine element-wise. This is called broadcasting. The nditer object can apply these rules
for you when you need to write such a function.

As an example, we print out the result of broadcasting a one and a two dimensional array together.

Example

>>> a = np.arange(3)
>>> b = np.arange (6) .reshape (2, 3)
>>> for x, y in np.nditer([a,b]):

o)

print ("%d:2d" % (x,y), end=' ')

0:0 1:1 2:2 0:3 1:4 2:5

When a broadcasting error occurs, the iterator raises an exception which includes the input shapes to help diagnose the
problem.

Example

>>> a = np.arange (2)
>>> b = np.arange (6) .reshape (2, 3)
>>> for x, y in np.nditer([a,b]):

o

print (" : "% (x,y), end=" ")
Traceback (most recent call last):

ValueError: operands could not be broadcast together with shapes (2,) (2,3)

Iterator-Allocated Output Arrays

A common case in NumPy functions is to have outputs allocated based on the broadcasting of the input, and additionally
have an optional parameter called ‘out’ where the result will be placed when it is provided. The nditer object provides
a convenient idiom that makes it very easy to support this mechanism.

We'll show how this works by creating a function square which squares its input. Let’s start with a minimal function
definition excluding ‘out’ parameter support.

Example

>>> def square(a):
with np.nditer([a, None]) as it:
for x, y in it:
y[l...] = x*x
return it.operands([1]

>>> square([1,2,3])
array ([1, 4, 91])

154 1. Array objects

NumPy Reference, Release 1.23.0

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’ for operands that are passed in as None. This means we
were able to provide just the two operands to the iterator, and it handled the rest.

When adding the ‘out’ parameter, we have to explicitly provide those flags, because if someone passes in an array as ‘out’,
the iterator will default to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is the default for input arrays is to
prevent confusion about unintentionally triggering a reduction operation. If the default were ‘readwrite’, any broadcasting
operation would also trigger a reduction, a topic which is covered later in this document.

While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which will prevent the output from being broadcast. This is
important, because we only want one input value for each output. Aggregating more than one input value is a reduction
operation which requires special handling. It would already raise an error because reductions must be explicitly enabled in
an iterator flag, but the error message that results from disabling broadcasting is much more understandable for end-users.
To see how to generalize the square function to a reduction, look at the sum of squares function in the section about
Cython.

For completeness, we’ll also add the ‘external_loop’ and ‘buffered’ flags, as these are what you will typically want for
performance reasons.

Example

>>> def square(a, out=None) :

it = np.nditer([a, out],
flags = ['external_loop', 'buffered'],
op_flags = [['readonly'],
['writeonly', 'allocate', 'no_broadcast']])
with it:
for x, y in it:
yl...] = x*x

return it.operands([1]

>>> square([1,2,3])
array ([1, 4, 9])

>>> b = np.zeros((3,))

>>> square([1,2,3], out=b)
array ([1., 4., 9.1)

>>> b

array ([1., 4., 9.1)

>>> square (np.arange (6) .reshape (2, 3), out=Db)
Traceback (most recent call last):

ValueError: non-broadcastable output operand with shape (3,) doesn't
match the broadcast shape (2,3)

1.5. Iterating Over Arrays 155

NumPy Reference, Release 1.23.0

Outer Product lteration

Any binary operation can be extended to an array operation in an outer product fashion like in outer, and the nditer
object provides a way to accomplish this by explicitly mapping the axes of the operands. It is also possible to do this with
newaxis indexing, but we will show you how to directly use the nditer op_axes parameter to accomplish this with no
intermediate views.

We'll do a simple outer product, placing the dimensions of the first operand before the dimensions of the second operand.
The op_axes parameter needs one list of axes for each operand, and provides a mapping from the iterator’s axes to the
axes of the operand.

Suppose the first operand is one dimensional and the second operand is two dimensional. The iterator will have three
dimensions, so op_axes will have two 3-element lists. The first list picks out the one axis of the first operand, and is -1 for
the rest of the iterator axes, with a final result of [0, -1, -1]. The second list picks out the two axes of the second operand,
but shouldn’t overlap with the axes picked out in the first operand. Its list is [-1, O, 1]. The output operand maps onto the
iterator axes in the standard manner, so we can provide None instead of constructing another list.

The operation in the inner loop is a straightforward multiplication. Everything to do with the outer product is handled by
the iterator setup.

Example

>>> a = np.arange(3)
>>> b = np.arange (8) .reshape (2, 4)
>>> it = np.nditer([a, b, None], flags=['external loop'],
. op_axes=[[0, -1, -11, [-1, O, 1], None]l)
>>> with it:

for x, y, z in it:

z[...] = x*y

result = it.operands[2] # same as z
>>> result
array ([[[

~
~

~
~
o~
~

[

o~
~

~

[

~
~

~

N oY O O
~

S oy J w O O

~
o N O OO
~

[
[
(
[
[

o~

Note that once the iterator is closed we can not access operands and must use a reference created inside the context
manager.

Reduction lteration

Whenever a writeable operand has fewer elements than the full iteration space, that operand is undergoing a reduction. The
nditer object requires that any reduction operand be flagged as read-write, and only allows reductions when ‘reduce_ok’
is provided as an iterator flag.

For a simple example, consider taking the sum of all elements in an array.

Example

>>> a = np.arange (24) .reshape(2,3,4)
>>> b = np.array (0)

(continues on next page)

156 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> with np.nditer([a, b], flags=['reduce_ok'],
op_flags=[['readonly'], ['readwrite']]) as it:
for x,y in it:
y[i...] += x
>>> Db
array (276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated operands. Before iteration is started, any
reduction operand must be initialized to its starting values. Here’s how we can do this, taking sums along the last axis of
a.

Example
>>> a = np.arange (24) .reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok'],

op_flags=[['readonly'], ['readwrite', 'allocate'll,
Ce op_axes=[None, [0,1,-111)
>>> with it:

it.operands[1][...] = 0
for x, y in it:

y[i...] += x
result = it.operands[1]

>>> result

array ([[6, 22, 38],
[54, 70, 8611)

>>> np.sum(a, axis=2)

array ([[6, 22, 38],
[54, 70, 86]11)

To do buffered reduction requires yet another adjustment during the setup. Normally the iterator construction involves
copying the first buffer of data from the readable arrays into the buffer. Any reduction operand is readable, so it may
be read into a buffer. Unfortunately, initialization of the operand after this buffering operation is complete will not be
reflected in the buffer that the iteration starts with, and garbage results will be produced.

The iterator flag “delay_bufalloc” is there to allow iterator-allocated reduction operands to exist together with buffering.
When this flag is set, the iterator will leave its buffers uninitialized until it receives a reset, after which it will be ready for
regular iteration. Here’s how the previous example looks if we also enable buffering.

Example

>>> a = np.arange (24) .reshape(2,3,4)

>>> it = np.nditer([a, None], flags=['reduce_ok',
'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],

ce op_axes=[None, [0,1,-111)
>>> with it:
it.operands[1][...] = 0
it.reset ()
for x, y in it:

(continues on next page)

1.5. Iterating Over Arrays 157

NumPy Reference, Release 1.23.0

(continued from previous page)

yi...] += x
result = it.operands[1]
>>> result
array ([[6, 22, 38],
[54, 70, 86]1])

1.5.3 Putting the Inner Loop in Cython

Those who want really good performance out of their low level operations should strongly consider directly using the
iteration API provided in C, but for those who are not comfortable with C or C++, Cython is a good middle ground with
reasonable performance tradeoffs. For the ndi t e r object, this means letting the iterator take care of broadcasting, dtype
conversion, and buffering, while giving the inner loop to Cython.

For our example, we’ll create a sum of squares function. To start, let’s implement this function in straightforward Python.
We want to support an ‘axis’ parameter similar to the numpy sum function, so we will need to construct a list for the
op_axes parameter. Here’s how this looks.

Example

>>> def axis_to_axeslist (axis, ndim) :
if axis is None:
return [-1] * ndim

else:
if type(axis) is not tuple:
axis = (axis,)
axeslist = [1] * ndim
for i in axis:
axeslist[i] = -1
ax = 0
for i in range (ndim) :
if axeslist[i] != -1:
axeslist[i] = ax
ax += 1

return axeslist

>>> def sum_squares_py(arr, axis=None, out=None) :

axeslist = axis_to_axeslist (axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce_ok',
'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],

op_axes=[None, axeslist],
op_dtypes=['float6d', 'float6d'])
with it:
it.operands([1][...] = 0
it.reset ()
for x, y in it:
y[i...] += x*x
return it.operands([1]

>>> a = np.arange (6) .reshape (2, 3)
>>> sum_squares_py (a)
array (55.)

(continues on next page)

158 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> sum_squares_py (a, axis=-1)
array ([5., 50.1)

To Cython-ize this function, we replace the inner loop (y[...] += x*x) with Cython code that’s specialized for the float64
dtype. With the ‘external_loop’ flag enabled, the arrays provided to the inner loop will always be one-dimensional, so very
little checking needs to be done.

Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist (axis, ndim):
if axis is None:
return [-1] * ndim
else:
if type(axis) is not tuple:
axis = (axis,)
axeslist = [1] * ndim
for i in axis:
axeslist[i] = -1
ax = 0
for i in range (ndim) :
if axeslist[i] != —-1:
axeslist[i] = ax
ax += 1
return axeslist

@cython.boundscheck (False)
def sum_squares_cy(arr, axis=None, out=None) :
cdef np.ndarray[double] x
cdef np.ndarray[double] y
cdef int size
cdef double value

axeslist = axis_to_axeslist (axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce_ok', 'external loop',
'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],

op_axes=[None, axeslist],
op_dtypes=['floated', 'float64d'])
with it:
it.operands[1][...] = 0
it.reset ()
for xarr, yarr in it:
X = xarr
y = yarr
size = x.shapel[0]
for i in range(size):
value = x[1]
y[i] = y[i] + value * value
return it.operands[1]

On this machine, building the .pyx file into a module looked like the following, but you may have to find some Cython
tutorials to tell you the specifics for your system configuration.:

1.5. Iterating Over Arrays 159

NumPy Reference, Release 1.23.0

$ cython sum_squares.pyx
$ gcc —-shared -pthread -fPIC -fwrapv -02 -Wall -I/usr/include/python2.7 —-fno-strict-
—aliasing —-o sum_squares.so sum_squares.c

Running this from the Python interpreter produces the same answers as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange (6) .reshape (2, 3)

>>> sum_squares_cy (a)

array (55.0)

>>> sum_squares_cy (a, axis=-1)

array ([5., 50.1)

Doing a little timing in IPython shows that the reduced overhead and memory allocation of the Cython inner loop is
providing a very nice speedup over both the straightforward Python code and an expression using NumPy’s built-in sum
function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(a*a, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all (sum_squares_cy(a, axis=-1) == np.sum(a*a, axis=-1))
True
>>> np.all (sum_squares_py(a, axis=-1) == np.sum(a*a, axis=-1))
True

1.6 Standard array subclasses

Note: Subclassing a numpy . ndarray is possible but if your goal is to create an array with modified behavior, as do
dask arrays for distributed computation and cupy arrays for GPU-based computation, subclassing is discouraged. Instead,
using numpy’s dispatch mechanism is recommended.

The ndarray can be inherited from (in Python or in C) if desired. Therefore, it can form a foundation for many useful
classes. Often whether to sub-class the array object or to simply use the core array component as an internal part of a
new class is a difficult decision, and can be simply a matter of choice. NumPy has several tools for simplifying how your
new object interacts with other array objects, and so the choice may not be significant in the end. One way to simplify the
question is by asking yourself if the object you are interested in can be replaced as a single array or does it really require
two or more arrays at its core.

Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly through

160 1. Array objects

NumPy Reference, Release 1.23.0

your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict guidelines,
asanyarray would rarely be useful. However, most subclasses of the array object will not redefine certain aspects of
the array object such as the buffer interface, or the attributes of the array. One important example, however, of why your
subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine the “*” operator to be
matrix-multiplication, rather than element-by-element multiplication.

1.6.1 Special attributes and methods

See also:
Subclassing ndarray
NumPy provides several hooks that classes can customize:

class.__array_ufunc___ (ufunc, method, *inputs, **kwargs)

New in version 1.13.

Any class, ndarray subclass or not, can define this method or set it to None in order to override the behavior of
NumPy’s ufuncs. This works quite similarly to Python’s __mul__ and other binary operation routines.

* ufunc is the ufunc object that was called.

* method is a string indicating which Ufunc method was called (one of "__call__ ", "reduce",
"reduceat", "accumulate", "outer", "inner").

e inputs is a tuple of the input arguments to the ufunc.

* kwargs is a dictionary containing the optional input arguments of the ufunc. If given, any out arguments,
both positional and keyword, are passed as a tuple in kwargs. See the discussion in Universal functions
(ufunc) for details.

The method should return either the result of the operation, or Not Implemented if the operation requested is
not implemented.

If one of the input or output arguments has a ___array_ufunc__ method, it is executed instead of the
ufunc. If more than one of the arguments implements __array_ufunc__, they are tried in the order: sub-
classes before superclasses, inputs before outputs, otherwise left to right. The first routine returning something
other than Not Implemented determines the result. If all of the _ array ufunc__ operations return
NotImplemented,a TypeError is raised.

Note: We intend to re-implement numpy functions as (generalized) Ufunc, in which case it will become possible
for them to be overridden by the __array_ufunc__ method. A prime candidate is matmu 1, which currently
is not a Ufunc, but could be relatively easily be rewritten as a (set of) generalized Ufuncs. The same may happen
with functions such as median, amin, and argsort.

Like with some other special methods in python, suchas __hash__and __iter__,itis possible to indicate that
your class does not support ufuncs by setting __array_ufunc__ = None. Ufuncs always raise TypeError
when called on an object that sets __array_ufunc__ = None.

The presence of __array_ufunc___ also influences how ndarray handles binary operations like arr +
obj and arr < obj when arr is an ndarray and ob7j is an instance of a custom class. There are two
possibilities. If obj.__array_ufunc__ is present and not None, then ndarray.__add__ and friends will
delegate to the ufunc machinery, meaning that arr + obj becomes np.add (arr, obj), and then add
invokes obj.__array_ufunc__. This is useful if you want to define an object that acts like an array.

Alternatively, if obj.__array_ufunc__ is set to None, then as a special case, special methods like
ndarray.__add__ will notice this and unconditionally raise TypeError. This is useful if you want to create
objects that interact with arrays via binary operations, but are not themselves arrays. For example, a units handling

1.6. Standard array subclasses 161

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

NumPy Reference, Release 1.23.0

system might have an object m representing the “meters” unit, and want to support the syntax arr * m to rep-
resent that the array has units of “meters”, but not want to otherwise interact with arrays via ufuncs or otherwise.
This can be done by setting __array_ufunc__ = None and defining __mul__ and __rmul__ methods.
(Note that this means that writing an __array_ufunc___ that always returns Not Implemented is not quite
the same as setting __array_ufunc__ = None: in the former case, arr + obj will raise TypeError,
while in the latter case it is possible to define a ___radd___ method to prevent this.)

The above does not hold for in-place operators, for which ndarray never returns Not Implemented. Hence,
arr += obj would always lead to a TypeError. This is because for arrays in-place operations cannot gener-
ically be replaced by a simple reverse operation. (For instance, by default, arr += obj would be translated to
arr = arr + obj,i.e., arr would be replaced, contrary to what is expected for in-place array operations.)

Note: If you define __array_ufunc__:

* If you are not a subclass of ndarray, we recommend your class define special methods like __add___
and __1t__ that delegate to ufuncs just like ndarray does. An easy way to do this is to subclass from
NDArrayOperatorsMixin.

e If you subclass ndarray, we recommend that you put all your override logic in __array_ufunc___and
not also override special methods. This ensures the class hierarchy is determined in only one place rather than
separately by the ufunc machinery and by the binary operation rules (which gives preference to special methods
of subclasses; the alternative way to enforce a one-place only hierarchy, of setting ___array_ufunc__ to
None, would seem very unexpected and thus confusing, as then the subclass would not work at all with ufuncs).

e ndarray defines its own __array_ ufunc__, which, evaluates the ufunc if no arguments have
overrides, and returns Not Implemented otherwise. This may be useful for subclasses for which
__array_ufunc__ converts any instances of its own class to ndarray: it can then pass these on to
its superclass using super () .__array_ufunc__ (*inputs, **kwargs), and finally return the
results after possible back-conversion. The advantage of this practice is that it ensures that it is possible to
have a hierarchy of subclasses that extend the behaviour. See Subclassing ndarray for details.

Note: If a class defines the _ array ufunc__ method, this disables the _ array wrap
__array_prepare__,_ _array_priority__ mechanism described below for ufuncs (which may even-
tually be deprecated).

class.__array_ function_ (func, types, args, kwargs)

New in version 1.16.

Note:

e In NumPy 1.17, the protocol is enabled by default, but can be disabled with
NUMPY_EXPERIMENTAL_ARRAY_FUNCTION=O0.

¢ InNumPy 1.16, you need to set the environment variable NUMPY_EXPERIMENTAL_ARRAY_FUNCTION=1
before importing NumPy to use NumPy function overrides.

» Eventually, expectto __array_function__ to always be enabled.

» func is an arbitrary callable exposed by NumPy’s public API, which was called in the form func (*args,
**kwargs).

* types is a collection collections.abc.Collection of unique argument types from the original
NumPy function call that implement __array_function__ .

162

1. Array objects

https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection

NumPy Reference, Release 1.23.0

* The tuple args and dict kwargs are directly passed on from the original call.

As a convenience for __array_function__ implementors, types provides all argument types with an
'__array_function__ ' attribute. This allows implementors to quickly identify cases where they should
deferto __array_function__ implementations on other arguments. Implementations should not rely on the
iteration order of types.

Most implementations of __array_function___ will start with two checks:
1. Is the given function something that we know how to overload?
2. Are all arguments of a type that we know how to handle?

If these conditions hold, array_function__ should return the result from calling its implementation for
func (*args, **kwargs). Otherwise, it should return the sentinel value Not Implemented, indicating
that the function is not implemented by these types.

There are no general requirements on the return value from __array_function__, although most sensible
implementations should probably return array(s) with the same type as one of the function’s arguments.

It may also be convenient to define a custom decorators (implements below) for registering
__array_function__ implementations.

HANDLED_FUNCTIONS = {}

class MyArray:
def _ array_function__ (self, func, types, args, kwargs):

if func not in HANDLED_FUNCTIONS:
return NotImplemented

Note: this allows subclasses that don't override

__array_function__ to handle MyArray objects

if not all(issubclass(t, MyArray) for t in types):
return NotImplemented

return HANDLED_FUNCTIONS|[func] (*args, **kwargs)

def implements (numpy_function) :

"""Register an __array_function__ implementation for MyArray objects."""
def decorator (func) :
HANDLED_FUNCTIONS [numpy_function] = func

return func
return decorator

@implements (np.concatenate)
def concatenate (arrays, axis=0, out=None) :
implementation of concatenate for MyArray objects

@implements (np.broadcast_to)
def broadcast_to(array, shape):
implementation of broadcast_to for MyArray objects

Note that it is not required for __array_function__ implementations to include all of the corresponding
NumPy function’s optional arguments (e.g., broadcast_to above omits the irrelevant subok argument). Op-
tional arguments are only passed into __array_function___ if they were explicitly used in the NumPy func-
tion call.

Just like the case for builtin special methods like ___add__, properly written __array_function___ methods
should always return Not Implemented when an unknown type is encountered. Otherwise, it will be impossible
to correctly override NumPy functions from another object if the operation also includes one of your objects.

1.6. Standard array subclasses 163

NumPy Reference, Release 1.23.0

For the most part, the rules for dispatch with __array_function__ match those for __array_ufunc__.
In particular:

e NumPy will gather implementations of __array_function__ from all specified inputs and call them
in order: subclasses before superclasses, and otherwise left to right. Note that in some edge cases involving
subclasses, this differs slightly from the current behavior of Python.

e Implementations of __array_function___ indicate that they can handle the operation by returning any
value other than Not Implemented.

e Ifall__array_function__ methods return Not Implemented, NumPy will raise TypeError.

If no __array_function__ methods exists, NumPy will default to calling its own implementation, in-
tended for use on NumPy arrays. This case arises, for example, when all array-like arguments are Python num-
bers or lists. (NumPy arrays do have a __array_function__ method, given below, but it always returns
Not Implemented if any argument other than a NumPy array subclass implements __array_function__.)

One deviation from the current behavior of __ _array_ufunc__ is that NumPy will only -call
__array_function__ on the first argument of each unique type. This matches Python’s rule for call-
ing reflected methods, and this ensures that checking overloads has acceptable performance even when there are a
large number of overloaded arguments.

class.__array finalize__ (obj)

This method is called whenever the system internally allocates a new array from obj, where obj is a subclass (subtype)
of the ndarray. It can be used to change attributes of self after construction (so as to ensure a 2-d matrix for
example), or to update meta-information from the “parent.” Subclasses inherit a default implementation of this
method that does nothing.

class.__array_prepare__ (array, context=None)

At the beginning of every ufunc, this method is called on the input object with the highest array priority, or the
output object if one was specified. The output array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which simply returns the output array unmodified.
Subclasses may opt to use this method to transform the output array into an instance of the subclass and update
metadata before returning the array to the ufunc for computation.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of ___array ufunc_ .

class.__array_wrap__ (array, context=None)

At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the user.
Subclasses inherit a default implementation of this method, which transforms the array into a new instance of the
object’s class. Subclasses may opt to use this method to transform the output array into an instance of the subclass
and update metadata before returning the array to the user.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of ___array ufunc__.

class.__array_priority__

The value of this attribute is used to determine what type of object to return in situations where there is more than
one possibility for the Python type of the returned object. Subclasses inherit a default value of 0.0 for this attribute.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array ufunc__.

164

1. Array objects

https://bugs.python.org/issue30140
https://docs.python.org/3/reference/datamodel.html#object.__ror__
https://docs.python.org/3/reference/datamodel.html#object.__ror__

NumPy Reference, Release 1.23.0

class.__array__ ([dtype])

If a class (ndarray subclass or not) having the __array__ method is used as the output object of an ufunc, results
will not be written to the object returned by __array_ . This practice will return TypeError.

1.6.2 Matrix objects

Note: It is strongly advised not to use the matrix subclass. As described below, it makes writing functions that deal
consistently with matrices and regular arrays very difficult. Currently, they are mainly used for interacting with scipy.
sparse. We hope to provide an alternative for this use, however, and eventually remove the mat rix subclass.

mat rix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices but
expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (‘;’) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make sure you understand this for functions
that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a matrix
when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(...) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

6. Matrices have special attributes which make calculations easier. These are

matrix.T Returns the transpose of the matrix.
matrix.H Returns the (complex) conjugate transpose of self.
matrix.I Returns the (multiplicative) inverse of invertible self.
matrix.A Return self as an ndarray object.

property

property matrix.T

Returns the transpose of the matrix.
Does not conjugate! For the complex conjugate transpose, use . H.

Parameters
None
Returns

ret

[matrix object] The (non-conjugated) transpose of the matrix.

1.6. Standard array subclasses 165

NumPy Reference, Release 1.23.0

See also:

transpose, getH

Examples
>>> m = np.matrix('[1, 2; 3, 41")
>>> m
matrix ([[1, 21,
(3, 411)
>>> m.getT ()
matrix ([[1, 31,
(2, 411)
property

property matrix.H

Returns the (complex) conjugate transpose of self.
Equivalent to np . transpose (self) if self is real-valued.

Parameters
None
Returns

ret

[matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange (12) .reshape((3,4)))
>>> z = x - 13*x; z
0. +0.73, 1. -1.3, 2. =2.73, 3. -3.31,
[4. -4.73, 5. =-5.73, 6. —6.7, 7. =7.31,
8. -8.7, 9. -9.73, 10.-10.3, 11.-11.311)
>>> z.getH()

(
matrix([[0. -0.7, 4. +4.73, 8. +8.731,
[1. +1.3, 5. +5.3, 9. 4+9.31,
[2. +2.3, 6. +6.73, 10.+10.731,
[3. +3.3, 7. +7.3, 11.+11.311)
property

property matrix.I

Returns the (multiplicative) inverse of invertible self.

Parameters
None

Returns

166

1. Array objects

NumPy Reference, Release 1.23.0

ret

[matrix object] If self is non-singular, ret is such that ret * self ==self * ret ==
np.matrix (np.eye(self [0, :].size)) all return True.

Raises

numpy.linalg.LinAlgError: Singular matrix

If self is singular.
See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]"); m

matrix ([[1, 2],
[3, 411)

>>> m.getI()

matrix([[-2. , 1. 1,
[1.5, =-0.511)

>>> m.getI() * m

matrix ([[1., 0.1, # may vary
[0., 1.11)

property

property matrix.A

Return self as an ndarray object.
Equivalent to np.asarray (self).

Parameters
None
Returns

ret

[ndarray] self as an ndarray

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 3],

0

|: 47 5/ 6/ 7]/
8, 9, 10, 11]1])
(

1.6. Standard array subclasses 167

NumPy Reference, Release 1.23.0

Warning: Matrix objects over-ride multiplication, ‘*’, and power, “**’, to be matrix-multiplication and matrix power,
respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then you must use
the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own subclass
of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted to an
ndarray . The name “mat “is an alias for “matrix “in NumPy.

matrix(datal, dtype, copy])

Note: Itisno longer recommended to use this class, even

for linear

asmatrix(data[, dtype]) Interpret the input as a matrix.

bmat(obj[, 1dict, gdict]) Build a matrix object from a string, nested sequence, or
array.

class numpy.matrix (data, dtype=None, copy=True)

Note: It is no longer recommended to use this class, even for linear algebra. Instead use regular arrays. The class
may be removed in the future.

Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that retains
its 2-D nature through operations. It has certain special operators, such as * (matrix multiplication) and * * (matrix
power).

Parameters

data

[array_like or string] If data is a string, it is interpreted as a matrix with commas or spaces
separating columns, and semicolons separating rows.

dtype
[data-type] Data-type of the output matrix.

Ccopy

[bool] If data is already an ndarray, then this flag determines whether the data is copied
(the default), or whether a view is constructed.

See also:

array

168 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> a = np.matrix ('l 2; 3 4")
>>> a
matrix ([[1, 27,

(3, 411)

>>> np.matrix ([[1, 21, [3, 411)
matrix ([[1, 2],
(3, 411)

Attributes

A
Return self as an ndarray object.
Al

Return self as a flattened ndarray.

H

Returns the (complex) conjugate transpose of self.
I

Returns the (multiplicative) inverse of invertible self.
T

Returns the transpose of the matrix.
base

Base object if memory is from some other object.
ctypes

An object to simplify the interaction of the array with the ctypes module.
data

Python buffer object pointing to the start of the array’s data.
dtype

Data-type of the array’s elements.
flags

Information about the memory layout of the array.
flat

A 1-D iterator over the array.
imag

The imaginary part of the array.
itemsize

Length of one array element in bytes.

1.6. Standard array subclasses 169

NumPy Reference, Release 1.23.0

nbytes

Total bytes consumed by the elements of the array.

ndim

Number of array dimensions.

real

The real part of the array.

shape

Tuple of array dimensions.

size

Number of elements in the array.

strides

Tuple of bytes to step in each dimension when traversing an array.

Methods

all([axis, out])

Test whether all matrix elements along a given axis
evaluate to True.

any([axis, out])

Test whether any array element along a given axis eval-
uates to True.

argmax([axis, out])

Indexes of the maximum values along an axis.

argmin([axis, out])

Indexes of the minimum values along an axis.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtypel[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set
of choices.

c1ip([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

conij()

Complex-conjugate all elements.

conjugate()

Return the complex conjugate, element-wise.

copy([order])

Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along
the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axisl, axis2])

Return specified diagonals.

dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
f11I(value) Fill the array with a scalar value.
flatten([order]) Return a flattened copy of the matrix.

getA() Return self as an ndarray object.

getAl() Return self as a flattened ndarray.

getH() Returns the (complex) conjugate transpose of self.

continues on next page

1. Array objects

NumPy Reference, Release 1.23.0

Table 2 - continued from previous page

get I()

Returns the (multiplicative) inverse of invertible self.

getT()

Returns the transpose of the matrix.

get field(dtypel, offset])

Returns a field of the given array as a certain type.

1item(*args)

Copy an element of an array to a standard Python
scalar and return it.

itemset(*args)

Insert scalar into an array (scalar is cast to array’s
dtype, if possible)

ma x([axis, out])

Return the maximum value along an axis.

mean([axis, dtype, out])

Returns the average of the matrix elements along the
given axis.

min([axis, out])

Return the minimum value along an axis.

newbyteorder([new_order])

Return the array with the same data viewed with a dif-
ferent byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that
the value of the element in kth position is in the posi-
tion it would be in a sorted array.

prod([axis, dtype, out])

Return the product of the array elements over the given
axis.

ptp([axis, out])

Peak-to-peak (maximum - minimum) value along the
given axis.

put(indices, values[, mode])

Set a.flat[n] = values|[n] for all n in in-
dices.

ravel([order])

Return a flattened matrix.

repeat(repeats[, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given num-
ber of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in
a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, WRITE-
BACKIFCOPY, respectively.

sort([axis, kind, order])

Sort an array in-place.

squeeze([axis])

Return a possibly reshaped matrix.

std([axis, dtype, out, ddof])

Return the standard deviation of the array elements
along the given axis.

sum([axis, dtype, out])

Returns the sum of the matrix elements, along the
given axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 inter-
changed.

t ake(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

tobytes([order])

Construct Python bytes containing the raw data bytes
in the array.

tofile(fid, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the matrix as a (possibly nested) list.

continues on next page

1.6. Standard array subclasses

171

NumPy Reference, Release 1.23.0

Table 2 - continued from previous page

tostring([order])
same behavior.

A compatibility alias for tobytes, with exactly the

t race([offset, axisl, axis2, dtype, out])

Return the sum along diagonals of the array.

t ranspose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof])
given axis.

Returns the variance of the matrix elements, along the

view([dtype][, type])

New view of array with the same data.

method

matrix.all (axis=None, out=None)

Test whether all matrix elements along a given axis evaluate to True.

Parameters
See ‘numpy.all‘ for complete descriptions
See also:

numpy.all

Notes

This is the same as ndarray.all, butit returns a mat rix object.

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix ([[O, 1, 2, 3],
[4, 5, 6, 171,
[8 9 10, 1111)
>>>y = x[0]; ¥y
matrix ([[0, 1, 2, 311)
>>> (x == vYy)

matrix ([[True, True, True, True],
[False, False, False, False]
[False, False, False, False]

o~

)

>>> (x == vy).all()
False
>>> (x == vy).all(0)
matrix ([[False, False, False, Falsell])
>>> (x == vy).all(l)
matrix ([[Truel,
[False],
[Falsel])
method

matrix.any (axis=None, out=None)

Test whether any array element along a given axis evaluates to True.
Refer to numpy . any for full documentation.

Parameters

172

1. Array objects

NumPy Reference, Release 1.23.0

axis
[int, optional] Axis along which logical OR is performed
out

[ndarray, optional] Output to existing array instead of creating new one, must have same
shape as expected output

Returns

any

[bool, ndarray] Returns a single bool if axis is None; otherwise, returns ndarray

method

matrix.argmax (axis=None, out=None)

Indexes of the maximum values along an axis.

Return the indexes of the first occurrences of the maximum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See ‘numpy.argmax‘ for complete descriptions
See also:

numpy . argmax

Notes

This is the same as ndarray.argmax, but returns a mat rix object where ndarray. argmax would
return an ndarray.

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8, 9, 10, 1111)
>>> x.argmax ()
11
>>> x.argmax (0)
matrix ([[2, 2, 2, 2]1)
>>> x.argmax (1)

matrix ([[3],
[31,
[311)

method

1.6. Standard array subclasses 173

NumPy Reference, Release 1.23.0

matrix.argmin (axis=None, out=None)

Indexes of the minimum values along an axis.

Return the indexes of the first occurrences of the minimum values along the specified axis. If axis is None,

the index is for the flattened matrix.

Parameters
See ‘numpy.argmin‘ for complete descriptions.
See also:

numpy.argmin

Notes

This is the same as ndarray.argmin, but returns a mat rix object where ndarray.argmin would

return an ndarray.

Examples
>>> x = —np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[0, -1, -2, =31,

[-4, -5, -6, =71,
[-8, -9, -10, -1111)
>>> x.argmin ()
11
>>> x.argmin (0)
matrix ([[2, 2, 2, 2]11)
>>> x.argmin (1)

matrix ([[3],
[31,
[311)

method

matrix.argpartition (kth, axis=- 1, kind='introselect’, order=None)

Returns the indices that would partition this array.
Refer to numpy . argpartition for full documentation.
New in version 1.8.0.

See also:

numpy.argpartition

equivalent function

method

matrix.argsort (axis=- 1, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy . argsort for full documentation.

See also:

174

1. Array objects

NumPy Reference, Release 1.23.0

numpy .argsort

equivalent function

method
matrix.astype (dtype, order="K’, casting=unsafe’, subok="True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F" means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,

‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K.

casting

[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.

* ‘equiv’ means only byte-order changes are allowed.

* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
* ‘unsafe’ means any data conversions may be done.

subok

[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

Ccopy

[bool, optional] By default, astype always returns a newly allocated array. If this is set to

false, and the dt ype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

arr_t

[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype (t).

1.6. Standard array subclasses 175

NumPy Reference, Release 1.23.0

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string
dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.571)

>>> x.astype (int)
array ([1, 2, 2])

method

matrix.byteswap (inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters

inplace

[bool, optional] If True, swap bytes in-place, default is False.
Returns

out

[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> list (map (hex, A))

['Ox1', '0Ox100', '0x2233"']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=intl6)

>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322"]

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap ()
array ([b'ceg', b'fac'], dtype='|S3")

176 1. Array objects

NumPy Reference, Release 1.23.0

A.newbyteorder () .byteswap () produces an array with the same values

but different representation in memory

>>> A = np.array([1l, 2, 31)

>>> A.view(np.uint8)

array ([, o, o, 0, o, o, 0o, 0, 2, o, 0, o, o, 0, 0o, 0, 3, 0, 0, 0, 0, O,
0, 0], dtype=uints8)

>>> A.newbyteorder () .byteswap (inplace=True)

array ([1, 2, 31)

>>> A.view(np.uint8)

array((o, o, o0, o0, o, 0o, 0, 2, o, o, 0, o, o, o, 0, 2, 0, 0, 0, 0, 0, O,
0, 3], dtype=uint8)

method

matrix.choose (choices, out=None, mode="raise’)

Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.

See also:

numpy .choose

equivalent function

method

matrix.eclip (min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy . c11ip for full documentation.

See also:

numpy.clip

equivalent function

method

matrix.compress (condition, axis=None, out=None)

Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.

See also:

numpy.compress

equivalent function

method

matrix.conj ()

Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.

See also:

1.6. Standard array subclasses 177

NumPy Reference, Release 1.23.0

numpy.conjugate

equivalent function

method

matrix.conjugate ()

Return the complex conjugate, element-wise.

Refer to numpy . conjugat e for full documentation.

See also:

numpy.conjugate

equivalent function

method

Pall

matrix.copy (order="C’)
Return a copy of the array.

Parameters

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy . copy are very
similar but have different default values for their order= arguments, and this function always

passes sub-classes through.)
See also:

numpy . copy

Similar function with different default behavior

numpy . copyto

Notes

This function is the preferred method for creating an array copy. The function numpy . copy is similar, but

it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F")

EXEETT

’>>> x.£1i11(0)

>>> x
array ([[0, 0, 0]

178

1. Array objects

NumPy Reference, Release 1.23.0

>>> y.flags['C_CONTIGUOUS']
True

method

matrix.cumprod (axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy . cumprod for full documentation.

See also:

numpy . cumprod

equivalent function

method

matrix.cumsum (axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.

See also:

numpy . cumsum

equivalent function

method

matrix.diagonal (offset=0, axisl=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:

numpy .diagonal

equivalent function

method

matrix.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file
[str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

1.6. Standard array subclasses 179

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

matrix.dumps ()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.

Parameters
None

method

matrix.£ill (value)

Fill the array with a scalar value.

Parameters

value

[scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fi11(0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fi11 (1)

>>> a

array ([1., 1.1)

method

matrix.£flatten (order="C’)

Return a flattened copy of the matrix.
All N elements of the matrix are placed into a single row.

Parameters

order

[{‘C, ‘F, ‘A’, K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran-style) order. ‘A’ means to flatten in column-major order if
m is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten m in the
order the elements occur in memory. The default is ‘C’.

Returns

[matrix] A copy of the matrix, flattened to a (1, N) matrix where N is the number of elements
in the original matrix.

See also:

ravel

Return a flattened array.

180 1. Array objects

NumPy Reference, Release 1.23.0

flat

A 1-D flat iterator over the matrix.

Examples

>>> m = np.matrix ([[1,2], [3,4]1])
>>> m.flatten ()

matrix ([[1, 2, 3, 411)

>>> m.flatten('F")

matrix ([[1, 3, 2, 4]1)

method

matrix.getA()
Return self as an ndarray object.

Equivalent to np.asarray (self).

Parameters
None
Returns

ret

[ndarray] self as an ndarray

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

0

[4, 5 6, 71,
8, 9, 10, 1111)
(

method

matrix.getAl ()
Return self as a flattened ndarray.

Equivalent to np.asarray (x) .ravel ()

Parameters
None
Returns

ret

[ndarray] self, 1-D, as an ndarray

1.6. Standard array subclasses 181

NumPy Reference, Release 1.23.0

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8, 9, 10, 1111])
>>> x.getAl ()
array ([0, 1, 2, ..., 9, 10, 111)

method

matrix.getH()

Returns the (complex) conjugate transpose of self.
Equivalent to np . transpose (self) if self is real-valued.

Parameters
None
Returns

ret

[matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12) .reshape((3,4)))

>>> z = x - 13*x; z

matrix ([[+0.73, 1. -1.3, 2. =2.7, 3. =-3.31,

0

[4. -4.9, 5. -5.5, 6. —-6.5, 1. -7.31,
8. -8.3, 9. -9.9, 10.-10.3, 11.-11.311)
)

>>> z.getH

(
matrix([[0. -0.7, 4. +4.7, 8. +8.731,
[1. +1.3, 5. +5.3, 9. +9.31,
[2. +2.3, 6. +6.3, 10.+10.3],
[3. +3.3, 7. +7.73, 11.+11.310)

method

matrix.getI ()
Returns the (multiplicative) inverse of invertible self.

Parameters
None
Returns

ret

[matrix object] If self is non-singular, ret is such that ret * self ==self * ret ==
np.matrix (np.eye(self[0,:].size)) all return True.

Raises

182 1. Array objects

NumPy Reference, Release 1.23.0

numpy.linalg.LinAlgError: Singular matrix

If self is singular.
See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]"); m

matrix ([[1, 21,
(3, 411)

>>> m.getI ()

matrix([[-2. , 1.1,
[1.5, =-0.511)

>>> m.getI() * m

matrix([[1., 0.1, # may vary
[0., 1.11)

method

matrix.getT ()
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use . H.

Parameters
None
Returns

ret

[matrix object] The (non-conjugated) transpose of the matrix.
See also:

transpose, getH

Examples
>>> m = np.matrix('[1, 2; 3, 41")
>>> m
matrix ([[1, 21,
[3, 411)
>>> m.getT ()
matrix ([[1, 31,
(2, 411)
method

1.6. Standard array subclasses 183

NumPy Reference, Release 1.23.0

matrix.getfield (dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype

[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset

[int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.3]17*2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.73, 0.+0.731,
[0.+0.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.7,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

matrix.item (*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters

*args
[Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns

184

1. Array objects

NumPy Reference, Release 1.23.0

[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples
>>> np.random.seed(123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[2, 2, 6],
(1, 3, 6],
(1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

matrix.itemset (*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset (*args) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters

*args

[Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments:
the last argument is the value to be set and must be a scalar, the first argument specifies a
single array element location. It is either an int or a tuple.

1.6. Standard array subclasses 185

NumPy Reference, Release 1.23.0

Notes

Compared to indexing syntax, i temset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using i temset (and it em) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 61,
(1, 3, 61,
(1, 0, 111
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)

>>> X

array ([[2, 2, 61,
(1, 0, 61,
(1, 0, 911)

method

matrix.max (axis=None, out=None)

Return the maximum value along an axis.

Parameters
See ‘amax‘ for complete descriptions
See also:

amax, ndarray.max

Notes

This is the same as ndarray.max, but returns a mat rix object where ndarray.max would return an

ndarray.

Examples

>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix([{[0, 1, 2, 31,

(8 9, 10, 11]1])

0
[4, 5, 6, 71,
8
>>> x.max ()

11
>>> x.max (0)
matrix ([[8, 9, 10, 1111)

>>> x.max (1)
matrix ([[3],

(continues on next page)

186

1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

method

matrix.mean (axis=None, dtype=None, out=None)

Returns the average of the matrix elements along the given axis.
Refer to numpy . mean for full documentation.

See also:

numpy . mean

Notes

Same as ndarray.mean except that, where that returns an ndarray, this returns a mat r i x object.

Examples

>>> x = np.matrix(np.arange (12) .reshape((3, 4)))
>>> x
matrix ([[O, 1, 2, 37,
[4, 5, 6, 7]
[8
(

>>> X.mean

)

5.5
>>> x.mean (0)
matrix([[4., 5., 6., 7.11)
>>> x.mean (1)
matrix ([[1.571,
[5.51,
[9.511)
method

matrix.min (axis=None, out=None)

Return the minimum value along an axis.

Parameters
See ‘amin‘ for complete descriptions.
See also:

amin, ndarray.min

1.6. Standard array subclasses 187

NumPy Reference, Release 1.23.0

Notes

This is the same as ndarray.min, but returns a mat rix object where ndarray.min would return an

ndarray.

Examples

>>> x = —np.matrix(np.arange(12) .reshape((3,4))); x
matrix ([, -1, -2, =31,

0
_4/ _5/ _61 =71,
-8, -9, -10, -1111)

>>> x.min ()
-11
>>> x.min (0)
matrix([[-8, -9, -10, -1111)
>>> x.min (1)
matrix ([[—-371,
[=71,
[(-1111)
method

matrix.newbyteorder (new_order=17’, /)

Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order

[string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of’

* ‘S’ - swap dtype from current to opposite endian

{*<, 1ittle’} - little endian
* {*>’, ‘big’} - big endian

[3

, ‘native’} - native order, equivalent to sys .byteorder

* {I', T} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.
Returns

new_arr

[array] New array object with the dtype reflecting given change to the byte order.

method

188 1. Array objects

https://docs.python.org/3/library/sys.html#sys.byteorder

NumPy Reference, Release 1.23.0

matrix.nonzero ()

Return the indices of the elements that are non-zero.
Refer to numpy . nonzero for full documentation.

See also:

numpy.nonzero

equivalent function

method

matrix.partition (kth, axis=- 1, kind="introselect’, order=None)

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position
it would be in a sorted array. All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.

New in version 1.8.0.

Parameters

kth

[int or sequence of ints] Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of kth it will partition all elements indexed by kth of them into their sorted position
at once.

Deprecated since version 1.22.0: Passing booleans as index is deprecated.
axis

[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.
order

[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need to be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also:

numpy .partition

Return a partitioned copy of an array.
argpartition

Indirect partition.
sort

Full sort.

1.6. Standard array subclasses 189

NumPy Reference, Release 1.23.0

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
>>> a
array ([1, 2, 3, 41)

method

matrix.prod (axis=None, dtype=None, out=None)

Return the product of the array elements over the given axis.
Refer to prod for full documentation.

See also:

prod, ndarray.prod

Notes

Same as ndarray.prod, except, where that returns an ndarray, this returns a mat r i x object instead.

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix ([[O, 1, 2, 31,

(4, 5, 6, 71,
[8 9, 10, 1111)
>>> x.prod()

0
>>> x.prod(0)
matrix ([[0, 45, 120, 231]])
>>> x.prod (1)
matrix ([[0],
[84017,
[7920]11])
method

matrix.ptp (axis=None, out=None)

Peak-to-peak (maximum - minimum) value along the given axis.
Refer to numpy . ptp for full documentation.

See also:

numpy . ptp

190

1. Array objects

NumPy Reference, Release 1.23.0

Notes

Same as ndarray.ptp, except, where that would return an ndarray object, this returns a matrix

object.

Examples

>>> x = np.matrix(np.arange(12) .reshape((3,4))); x

matrix([[O, 1, 2, 3],
[4, 5, 6, 71,
[8, 9, 10, 1111)

>>> x.ptp ()

11

>>> x.ptp(0)

matrix ([[8, 8, 8, 8]1)

>>> x.ptp (1)

matrix ([[3],
[31,
[311)

method

matrix.put (indices, values, mode=raise’)

Seta.flat[n] = values[n] forall n in indices.
Refer to numpy . put for full documentation.

See also:

numpy . put

equivalent function

method

matrix.ravel (order="C’)

Return a flattened matrix.
Refer to numpy . ravel for more documentation.

Parameters

order

[{‘C, ‘F, ‘A’, K’}, optional] The elements of m are read using this index order. ‘C’ means
to index the elements in C-like order, with the last axis index changing fastest, back to the
first axis index changing slowest. ‘F’ means to index the elements in Fortran-like index order,
with the first index changing fastest, and the last index changing slowest. Note that the ‘C’
and ‘F’ options take no account of the memory layout of the underlying array, and only refer
to the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order if m
is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the elements in
the order they occur in memory, except for reversing the data when strides are negative. By
default, ‘C’ index order is used.

Returns

1.6. Standard array subclasses 191

NumPy Reference, Release 1.23.0

ret
[matrix] Return the matrix flattened to shape (1, N) where N is the number of elements in
the original matrix. A copy is made only if necessary.

See also:

matrix.flatten

returns a similar output matrix but always a copy
matrix.flat

a flat iterator on the array.
numpy . ravel

related function which returns an ndarray

method

matrix.repeat (repeats, axis=None)

Repeat elements of an array.
Refer to numpy . repeat for full documentation.

See also:

numpy . repeat

equivalent function

method

matrix.reshape (shape, order="C’)

Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.

See also:

numpy . reshape

equivalent function

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

matrix.resize (new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters

new_shape

[tuple of ints, or n ints] Shape of resized array.

192 1. Array objects

NumPy Reference, Release 1.23.0

refcheck

[bool, optional] If False, reference count will not be checked. Default is True.
Returns
None
Raises

ValueError

If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.
See also:

resize

Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array ([[0, 1], [2, 3]], order='C'")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 1], [2, 3]], order='F")
>>> a.resize((2, 1))
>>> a
array ([[0]

(211)

Enlarging an array: as above, but missing entries are filled with zeros:

1.6. Standard array subclasses 193

NumPy Reference, Release 1.23.0

>>> b = np.array([[0, 11, [2, 311)

>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> Db

array ([[0, 1, 2]

Referencing an array prevents resizing. ..

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a
array ([[0]])
>>> ¢

array ([[0]])

method

matrix.round (decimals=0, out=None)

Return a with each element rounded to the given number of decimals.
Refer to numpy . around for full documentation.

See also:

numpy . around

equivalent function

method

matrix.searchsorted (v, side=left’, sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted

See also:

numpy . searchsorted

equivalent function

method

matrix.setfield (val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dt ype and beginning offser bytes into the field.

Parameters

val

[object] Value to be placed in field.

194

1. Array objects

NumPy Reference, Release 1.23.0

dtype
[dtype object] Data-type of the field in which to place val.
offset

[int, optional] The number of bytes into the field at which to place val.
Returns
None
See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,
(0., 1., 0.1,
[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,
(3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]1])
>>> x.setfield(np.eye(3), np.int32)

>>> x
array ([[1., 0., 0.7,
[O’I 1 ’ O}r
(0., 0., 1.11)
method

matrix.set£flags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is
a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters

write
[bool, optional] Describes whether or not a can be written to.
align

[bool, optional] Describes whether or not a is aligned properly for its type.

1.6. Standard array subclasses 195

NumPy Reference, Release 1.23.0

uic

[bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, WRITEABLE,
and ALIGNED.

WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples
>>> vy = np.array ([[3, 1, 71,
[2, 0, 0],
[8, 5, 911
>>> vy
array ([[3, 1, 71,
[2, o, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

matrix.sort (axis=- 1, kind=None, order=None)

Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis

196

1. Array objects

NumPy Reference, Release 1.23.0

[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.
order

[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy . sort

Return a sorted copy of an array.
numpy .argsort

Indirect sort.
numpy . lexsort

Indirect stable sort on multiple keys.
numpy . searchsorted

Find elements in sorted array.
numpy.partition

Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,1]1])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
(1, 311)
>>> a.sort (axis=0)
>>> a
array([[1, 31,
(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

1.6. Standard array subclasses

197

NumPy Reference, Release 1.23.0

>>> a = np.array([('a', 2), ('c¢', 1)1, dtype=[('x', 'S1"), ('y', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x", 'S1"'), ('y', '<i8")])
method

matrix.squeeze (axis=None)

Return a possibly reshaped matrix.
Refer to numpy . squee ze for more documentation.
Parameters
axis

[None or int or tuple of ints, optional] Selects a subset of the axes of length one in the shape.
If an axis is selected with shape entry greater than one, an error is raised.

Returns

squeezed

[matrix] The matrix, but as a (1, N) matrix if it had shape (N, 1).
See also:

numpy . squeeze

related function
Notes
If m has a single column then that column is returned as the single row of a matrix. Otherwise m is returned.

The returned matrix is always either m itself or a view into m. Supplying an axis keyword argument will not
affect the returned matrix but it may cause an error to be raised.

Examples
>>> ¢ = np.matrix ([[1], [2]1])
>>> ¢
matrix ([[1],
[(211)
>>> c.squeeze ()
matrix ([[1, 211)
>>> r = c.T
>>> r
matrix ([[1, 211)
>>> r.squeeze ()
matrix ([[1, 211)
>>> m = np.matrix ([[1, 21, [3, 411)
>>> m.squeeze ()
matrix ([[1, 2],
[3, 411)

198 1. Array objects

NumPy Reference, Release 1.23.0

method

matrix.std (axis=None, dtype=None, out=None, ddof=0)
Return the standard deviation of the array elements along the given axis.

Refer to numpy . std for full documentation.

See also:

numpy . std

Notes

This is the same as ndarray. std, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix(np.arange (12) .reshape((3, 4)))
>>> x

matrix ([, 1, 2, 31,

[
[
[
>>> x.std ()

3.4520525295346629 # may vary

>>> x.std (0)

matrix([[3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary
>>> x.std (1)

matrix ([[1.11803399],

[1.11803399],

[1.1180339911)

0
4, 5, 6, T,
8, 9, 10, 1111)

method

matrix.sum (axis=None, dtype=None, out=None)

Returns the sum of the matrix elements, along the given axis.
Refer to numpy . sum for full documentation.

See also:

numpy . sum

Notes

This is the same as ndarray. sum, except that where an ndarray would be returned, a mat rix object
is returned instead.

1.6. Standard array subclasses 199

NumPy Reference, Release 1.23.0

Examples

>>> x = np.matrix([[1, 2], [4, 311)
>>> x.sum()
10
>>> x.sum(axis=1)
matrix ([[3],
[711)
>>> x.sum(axis=1, dtype='float")
matrix ([[3.],
[7.11)
>>> out = np.zeros((2, 1), dtype='float')
>>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
matrix ([[3.],
[7.11)

method

matrix.swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

numpy . swapaxes

equivalent function

method

matrix.take (indices, axis=None, out=None, mode="raise’)

Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.

See also:

numpy . take

equivalent function

method

matrix.tobytes (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters

order

[{‘C’, ‘F, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
Default is ‘C.

200 1. Array objects

NumPy Reference, Release 1.23.0

Returns

[bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

matrix.tofile (fid, sep=", format="%s’)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters

fid
[file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
sep

[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalentto file.write (a.tobytes ()).

format

[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support £ileno () (e.g., ByteslO).

method

1.6. Standard array subclasses 201

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

matrix.tolist ()

Return the matrix as a (possibly nested) list.
See ndarray.tolist for full documentation.

See also:

ndarray.tolist

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8, 9, 10, 1111])
>>> x.tolist ()
(ro, 1, 2, 31, I[4, 5, 6, 71, [8, 9, 10, 111]

method

matrix.tostring (order="C")

A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns byfes not st rs.
Deprecated since version 1.19.0.

method

matrix.trace (offset=0, axisl =0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.

See also:

numpy . trace

equivalent function

method

matrix.transpose (*axes)
Returns a view of the array with axes transposed.
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array

into a 2D column vector, an additional dimension must be added. np.atleast2d(a). T achieves this, as does a/,
np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their or-

der indicates how the axes are permuted (see Examples). If axes are not providedand a . shape = (i[0],
if1], ... i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], i[n-27,
ifi1, 1i101).
Parameters
axes

[None, tuple of ints, or z ints]

* None or no argument: reverses the order of the axes.

202 1. Array objects

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns

out

[ndarray] View of a, with axes suitably permuted.
See also:

transpose

Equivalent function
ndarray.T

Array property returning the array transposed.
ndarray.reshape

Give a new shape to an array without changing its data.

Examples
>>> a = np.array ([[1, 2], [3, 41])
>>> a
array ([[1, 21,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose (1, 0)
array ([[1, 31,
(2, 411)
method

matrix.var (axis=None, dtype=None, out=None, ddof=0)

Returns the variance of the matrix elements, along the given axis.
Refer to numpy . var for full documentation.

See also:

numpy .var

1.6. Standard array subclasses

203

NumPy Reference, Release 1.23.0

Notes

This is the same as ndarray. var, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12) .reshape((3, 4)))
>>> x

o, 1, 2, 3],

4, 5, 6, 7]
8

matrix ([[
[I
, 9, 10, 1171)

[
>>> x.var ()
11.916666666666666
>>> x.var (0)
matrix ([[10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary

>>> x.var (1)

matrix ([[1.257,
[1.257,
[1.25]1])

method

matrix.view ([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype (None) which is an alias for dtype (' float_"').

Parameters

dtype

[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the t ype parameter).

type
[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.

204

1. Array objects

NumPy Reference, Release 1.23.0

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis of a must be contiguous.
This axis will be resized in the result.

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view (dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

J 14

11, dtype=int8)
>>> xv.mean (0)
array([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)], dtype=[('a', 'il"), ('b', "i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([([1, 2, 31, [4, 5, 6]], dtype=np.intl6)
>>> y = x[:, ::2]
>>> vy
array ([[1, 31,
[4, 6]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl16), ('length', np.intl16)])

(continues on next page)

1.6. Standard array subclasses 205

NumPy Reference, Release 1.23.0

(continued from previous page)

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the last axis must be.

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl16), ('length', np.intl16)])
array ([[(1, 3)1,
[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8) .reshape (2, 3, 4)
>>> x.transpose(l, 0, 2).view(np.intl6)
array ([[[256, 77071,

[3340, 3854]7,

[[1284, 17987,
[4368, 488211,

[[2312, 28267,
[5396, 5910111, dtype=intl6)

ot ||

numpy .asmatrix (data, dtype=None)

Interpret the input as a matrix.

Unlike mat rix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix (data, copy=False).

Parameters

data
[array_like] Input data.
dtype
[data-type] Data-type of the output matrix.

Returns

mat

[matrix] data interpreted as a matrix.

206

1. Array objects

NumPy Reference, Release 1.23.0

Examples
’>>> x = np.array ([[1, 2], [3, 411)
>>> m = np.asmatrix(x)
’>>> x[0,0] =5
>>> m
matrix ([[5, 21,
[3, 411])

numpy . bmat (obj, ldict=None, gdict=None)

Build a matrix object from a string, nested sequence, or array.

Parameters

obj

[str or array_like] Input data. If a string, variables in the current scope may be referenced by
name.

Idict

[dict, optional] A dictionary that replaces local operands in current frame. Ignored if 0bj is not
a string or gdict is None.

gdict

[dict, optional] A dictionary that replaces global operands in current frame. Ignored if obj is
not a string.

Returns

out

[matrix] Returns a matrix object, which is a specialized 2-D array.
See also:

block

A generalization of this function for N-d arrays, that returns normal ndarrays.

Examples

>>> A = np.mat('1 1; 1 1")
>>> B = np.mat ('2 2; 2 2")
>>> C = np.mat ('3 4; 5 6")
>>> D = np.mat ('7 8; 9 0")

All the following expressions construct the same block matrix:

1.6. Standard array subclasses 207

NumPy Reference, Release 1.23.0

>>> np.bmat ([[A, B], [C, DI1])
matrix([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat (np.r_[np.c_[A, B] np.c_[C, DI1)
matrix([[1, 1, 2, 21,

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat ('A,B; C,D")
matrix ([[1, 1, 2, 2],

[1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)

Example 1: Matrix creation from a string

>>> a = np.mat ('l 2 3; 4 5 3")
>>> print ((a*a.T).I)

[[0.29239766 -0.13450292]

[-0.13450292 0.081871351]]

Example 2: Matrix creation from nested sequence

>>> np.mat ([[1,5,10],[1.0,3,4311)
matrix([[1.40.7, 5.+0.3, 10.+0.71,
[1.+0.73, 3.+0.73, 0.+4.311)

Example 3: Matrix creation from an array

>>> np.mat (np.random.rand(3,3)) .T

matrix ([[4.17022005e-01, 3.02332573e-01, 1.86260211e-01],
[7.20324493e-01, 1.46755891e-01, 3.45560727e-017,
[1.14374817e-04, 9.23385948e-02, 3.96767474e-0111)

1.6.3 Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout, without
reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data buffer of
the array. For small files, the over-head of reading the entire file into memory is typically not significant, however for
large files using memory mapping can save considerable resources.

Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): . f1ush () which
must be called manually by the user to ensure that any changes to the array actually get written to disk.

memmap(filename[, dtype, mode, offset, ...]) Create a memory-map to an array stored in a binary file
on disk.
memmap . f1ush() Write any changes in the array to the file on disk.

class numpy.memmap (filename, dtype=<class numpy.ubyte’>, mode="r+’, offset=0, shape=None, order="C")

Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire file
into memory. NumPy’s memmap’s are array-like objects. This differs from Python’s mmap module, which uses

208 1. Array objects

NumPy Reference, Release 1.23.0

file-like objects.

This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit properly
as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an ndarray
with ndarray.__new___ directly, passing the object created in its ‘buffer=" parameter.

This class may at some point be turned into a factory function which returns a view into an mmap buffer.

Flush the memmap instance to write the changes to the file. Currently there is no API to close the underlying mmap.
It is tricky to ensure the resource is actually closed, since it may be shared between different memmap instances.

Parameters

filename

[str, file-like object, or pathlib.Path instance] The file name or file object to be used as the array
data buffer.

dtype
[data-type, optional] The data-type used to interpret the file contents. Default is uint 8.
mode

[{r+, ‘T, ‘w4, ‘c’}, optional] The file is opened in this mode:

T Open existing file for reading only.

Open existing file for reading and writing.

Create or overwrite existing file for reading and writing.

c Copy-on-write: assignments affect data in memory, but changes are not saved to
disk. The file on disk is read-only.

Default is ‘r+’.
offset

[int, optional] In the file, array data starts at this offset. Since offset is measured in bytes,
it should normally be a multiple of the byte-size of dtype. When mode != 'r', even
positive offsets beyond end of file are valid; The file will be extended to accommodate the
additional data. By default, memmap will start at the beginning of the file, even if £ilename

is a file pointer fp and fp.tell () != 0.
shape
[tuple, optional] The desired shape of the array. If mode == 'r' and the number of remain-

ing bytes after offset is not a multiple of the byte-size of dt ype, you must specify shape.
By default, the returned array will be 1-D with the number of elements determined by file size
and data-type.

order

[{‘C’, ‘F’}, optional] Specify the order of the ndarray memory layout: row-major, C-style or
column-major, Fortran-style. This only has an effect if the shape is greater than 1-D. The
default order is ‘C’.

See also:

lib. format . open_memmap

Create or load a memory-mapped . npy file.

1.6. Standard array subclasses 209

NumPy Reference, Release 1.23.0

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance (fp,
numpy .ndarray) returns True.

Memory-mapped files cannot be larger than 2GB on 32-bit systems.

When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents of
the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled with
zero bytes.

Examples

>>> data = np.arange (12, dtype='float32")
>>> data.resize ((3,4))

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’
filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join (mkdtemp (), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap (filename, dtype='float32', mode='w+', shape=(3,4))

>>> fp
memmap ([[0., 0., 0., 0.7,
(0., 0., 0., 0.7,
[0., 0., 0., 0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = datal:]
>>> fp
memmap ([[0., 1., 2., 3.7,

[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Flushes memory changes to disk in order to read them back

>>> fp.flush{()

Load the memmap and verify data was stored:

>>> newfp = np.memmap (filename, dtype='float32', mode='r', shape=(3,4))

>>> newfp

memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.1], dtype=float32)

Read-only memmap:

210 1. Array objects

NumPy Reference, Release 1.23.0

>>> fpr = np.memmap (filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap (filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and
not written to disk:

>>> fpc
memmap ([[0., 1., 2., 3.7,
[4., 5., 6., 7.1,
[8 9., 10., 11.]], dtype=float32)
>>> fpc[0,:] =0
>>> fpc
memmap ([[O., 0., 0., 0.1,

[4., 5., 6., 7.1,
[8., 9., 10., 11.]1], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap ([[O., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]1], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap (filename, dtype='float32', mode='r', offset=106)

>>> fpo
memmap ([4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
Attributes
filename
[str or pathlib.Path instance] Path to the mapped file.
offset
[int] Offset position in the file.
mode

[str] File mode.

1.6. Standard array subclasses 211

NumPy Reference, Release 1.23.0

Methods

flush() Write any changes in the array to the file on disk.

method

memmap . £lush ()
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters
None
See also:
memmap

Example:

>>> a = np.memmap ('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> af[l10] = 10.0

>>> a[30] = 30.0

>>> del a

>>> b = np.fromfile('newfile.dat', dtype=float)

>>> print (b[10], b[30])

10.0 30.0

>>> a = np.memmap ('newfile.dat', dtype=float)

>>> print(a[l10], al30])

10.0 30.0

1.6.4 Character arrays (numpy . char)

See also:

Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new devel-
opment. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dt ype object_,
bytes_ or str_,and use the free functions in the numpy . char module for fast vectorized string operations.

These are enhanced arrays of either st r_ type or bytes_ type. These arrays inherit from the ndarray, but specially-
define the operations +, *, and % on a (broadcasting) element-by-element basis. These operations are not available on
the standard ndarray of character type. In addition, the chararray has all of the standard str (and bytes)
methods, executing them on an element-by-element basis. Perhaps the easiest way to create a chararray is to use self.
view (chararray) where self is an ndarray of str or unicode data-type. However, a chararray can also be created
using the numpy . chararray constructor, or via the numpy . char. array function:

chararray(shape[, itemsize, unicode, ...]) Provides a convenient view on arrays of string and uni-
code values.
core.defchararray.array(obj, itemsize, ...]) Create a chararray.

212 1. Array objects

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

NumPy Reference, Release 1.23.0

class numpy.chararray (shape, itemsize=1, unicode=False, buffer=None, offset=0, strides=None, order=None)

Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype
object_, string_or unicode_, and use the free functions in the numpy . char module for fast vectorized
string operations.

Versus a regular NumPy array of type st r or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values

3) vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",

n*n, n%u)

chararrays should be created using numpy . char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and st rides) if it is not None. If buffer is None,
then constructs a new array with st rides in “C order”, unless both 1en (shape) >= 2andorder='F',in
which case st rides is in “Fortran order”.

Parameters

shape

[tuple] Shape of the array.
itemsize

[int, optional] Length of each array element, in number of characters. Default is 1.
unicode

[bool, optional] Are the array elements of type unicode (True) or string (False). Default is
False.

buffer

[object exposing the buffer interface or str, optional] Memory address of the start of the array
data. Default is None, in which case a new array is created.

offset
[int, optional] Fixed stride displacement from the beginning of an axis? Default is 0. Needs to
be >=0.

strides

[array_like of ints, optional] Strides for the array (see ndarray. st rides for full descrip-
tion). Default is None.

order

[{‘C’, ‘F’}, optional] The order in which the array data is stored in memory: ‘C’ -> “row major”
order (the default), ‘F’ -> “column major” (Fortran) order.

1.6. Standard array subclasses 213

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

Examples
>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'

>>> charar

chararray([[b'a', b'a b'a'],
[b'a', b'a', b'a'l,
[b'a', b'a b'a']], dtype='|S1")

1o v

’

v
14

v

>>> charar = np.chararray (charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray ([[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc']], dtype='|S5")

Attributes

T
The transposed array.
base
Base object if memory is from some other object.

ctypes

An object to simplify the interaction of the array with the ctypes module.

data

Python buffer object pointing to the start of the array’s data.
dtype

Data-type of the array’s elements.
flags

Information about the memory layout of the array.
flat

A 1-D iterator over the array.
imag

The imaginary part of the array.
itemsize

Length of one array element in bytes.
nbytes

Total bytes consumed by the elements of the array.
ndim

Number of array dimensions.
real

The real part of the array.

214

1. Array objects

NumPy Reference, Release 1.23.0

shape

Tuple of array dimensions.

size

Number of elements in the array.

strides

Tuple of bytes to step in each dimension when traversing an array.

Methods

astype(dtypel, order, casting, subok, copy])

Copy of the array, cast to a specified type.

argsort([axis, kind, order])

Returns the indices that would sort this array.

copy([order])

Return a copy of the array.

count(subl, start, end])

Returns an array with the number of non-overlapping
occurrences of substring sub in the range [start, end].

decode([encoding, errors])

Calls str.decode element-wise.

dump(file)

Dump a pickle of the array to the specified file.

dumps()

Returns the pickle of the array as a string.

encode([encoding, errors])

Calls st r.encode element-wise.

endswi t h(suffix[, start, end])

Returns a boolean array which is True where the string
element in self ends with suffix, otherwise False.

expandtabs([tabsize])

Return a copy of each string element where all tab
characters are replaced by one or more spaces.

f11I(value)

Fill the array with a scalar value.

f1nd(sub[, start, end])

For each element, return the lowest index in the string
where substring sub is found.

flatten([order])

Return a copy of the array collapsed into one dimen-
sion.

get field(dtypel, offset])

Returns a field of the given array as a certain type.

1ndex(subl, start, end])

Like find, but raises ValueError when the substring
is not found.

isalnum()

Returns true for each element if all characters in the
string are alphanumeric and there is at least one char-
acter, false otherwise.

isalphal)

Returns true for each element if all characters in the
string are alphabetic and there is at least one character,
false otherwise.

isdecimal()

For each element in self, return True if there are only
decimal characters in the element.

isdigit()

Returns true for each element if all characters in the
string are digits and there is at least one character, false
otherwise.

islower()

Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric()

For each element in self, return True if there are only
numeric characters in the element.

continues on next page

1.6. Standard array subclasses

215

https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 1.23.0

Table 3 - continued from previous page

isspace()

Returns true for each element if there are only whites-
pace characters in the string and there is at least one
character, false otherwise.

istitle()

Returns true for each element if the element is a title-
cased string and there is at least one character, false
otherwise.

isupper()

Returns true for each element if all cased characters in
the string are uppercase and there is at least one char-
acter, false otherwise.

1tem(*args)

Copy an element of an array to a standard Python
scalar and return it.

join(seq)

Return a string which is the concatenation of the
strings in the sequence seq.

1 just(width[, fillchar])

Return an array with the elements of self left-justified
in a string of length width.

Tower() Return an array with the elements of self converted to
lowercase.

1strip([chars]) For each element in self, return a copy with the leading
characters removed.

nonzero() Return the indices of the elements that are non-zero.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

replace(old, new[, count])

For each element in self, return a copy of the string
with all occurrences of substring old replaced by new.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shapel, refcheck])

Change shape and size of array in-place.

rfind(subl, start, end])

For each element in self, return the highest index in
the string where substring sub is found, such that sub
is contained within [start, end].

rindex(subl, start, end])

Like r £ind, butraises ValueError when the substring
sub is not found.

rjust(width[, fillchar])

Return an array with the elements of self right-
justified in a string of length width.

rsplit([sep, maxsplit])

For each element in self, return a list of the words in
the string, using sep as the delimiter string.

rstrip([chars])

For each element in self, return a copy with the trailing
characters removed.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in
a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, WRITE-
BACKIFCOPY, respectively.

sort([axis, kind, order])

Sort an array in-place.

split([sep, maxsplit])

For each element in self, return a list of the words in
the string, using sep as the delimiter string.

splitlines([keepends])

For each element in self, return a list of the lines in the
element, breaking at line boundaries.

continues on next page

216

1. Array objects

NumPy Reference, Release 1.23.0

Table 3 - continued from previous page

squeeze([axis]) Remove axes of length one from a.

startswith(prefix[, start, end]) Returns a boolean array which is True where the string
element in self starts with prefix, otherwise False.

st rip([chars]) For each element in self, return a copy with the leading
and trailing characters removed.

swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 inter-
changed.

swapcase() For each element in self, return a copy of the string
with uppercase characters converted to lowercase and
vice versa.

t ake(indices[, axis, out, mode]) Return an array formed from the elements of a at the
given indices.

title() For each element in self, return a titlecased version of

the string: words start with uppercase characters, all
remaining cased characters are lowercase.

tofile(fid[, sep, format]) Write array to a file as text or binary (default).

tolist() Return the array as an a . ndim-levels deep nested list
of Python scalars.

tostring([order]) A compatibility alias for tobytes, with exactly the
same behavior.

translate(table[, deletechars]) For each element in self, return a copy of the string

where all characters occurring in the optional argu-
ment deletechars are removed, and the remaining char-
acters have been mapped through the given translation

table.
transpose(*axes) Returns a view of the array with axes transposed.
upper() Return an array with the elements of self converted to
uppercase.
view([dtypell, typel) New view of array with the same data.
zf11I1(width) Return the numeric string left-filled with zeros in a

string of length width.

method

chararray.astype (dtype, order="K’, casting=unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.
order

[{‘C, ‘F, ‘A’, 'K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K’.

casting

[{no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.

1.6. Standard array subclasses 217

NumPy Reference, Release 1.23.0

* ‘equiv’ means only byte-order changes are allowed.

* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
* ‘unsafe’ means any data conversions may be done.

subok

[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

Ccopy

[bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dt ype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

arr_t

[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype (t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for

“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string

dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2., 2.57)

>>> x.astype (int)
array ([1, 2, 2])

method

chararray.argsort (axis=- I, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy . argsort for full documentation.

See also:

218 1. Array objects

NumPy Reference, Release 1.23.0

numpy .argsort

equivalent function

method

chararray.copy (order="C’)

Return a copy of the array.

Parameters

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy . copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy . copy

Similar function with different default behavior

numpy .copyto

Notes

This function is the preferred method for creating an array copy. The function numpy . copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

’>>> x = np.array([[1,2,3],[4,5,6]], order='F")

’>>> y = x.copy()

>>> x.f111 (0)

>>> x
array ([[0, 0, 0]

>>> vy
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags['C_CONTIGUOUS']
True

method

1.6. Standard array subclasses 219

NumPy Reference, Release 1.23.0

chararray.count (sub, start=0, end=None)

Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

See also:
char.count

method

chararray.decode (encoding=None, errors=None)

Calls str.decode element-wise.

See also:
char.decode

method

chararray.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file
[str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

chararray.dumps ()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.

Parameters
None

method

chararray.encode (encoding=None, errors=None)

Calls st r.encode element-wise.

See also:
char.encode

method

chararray.endswith (suffix, start=0, end=None)

Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:
char.endswith

method

220

1. Array objects

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 1.23.0

chararray.expandtabs (fabsize=38)

Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:
char.expandtabs

method

chararray.£ill (value)

Fill the array with a scalar value.

Parameters

value

[scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fi11(0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fi11 (1)

>>> a

array ([1., 1.1)

method

chararray. £ind (sub, start=0, end=None)

For each element, return the lowest index in the string where substring sub is found.

See also:
char. find

method

chararray.flatten (order="C’)

Return a copy of the array collapsed into one dimension.

Parameters

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns

[ndarray] A copy of the input array, flattened to one dimension.

1.6. Standard array subclasses 221

NumPy Reference, Release 1.23.0

See also:

ravel
Return a flattened array.
flat

A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten ()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

chararray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype

[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset

[int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.3]1*2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.7, 0.+0.731,
[0.40.73, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.1,
(0., 4.11)

method

222 1. Array objects

NumPy Reference, Release 1.23.0

chararray.index (sub, start=0, end=None)

Like find, but raises ValueError when the substring is not found.

See also:
char. index

method

chararray.isalnum()

Returns true for each element if all characters in the string are alphanumeric and there is at least one character,
false otherwise.

See also:
char.isalnum

method

chararray.isalpha ()

Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:
char.isalpha

method

chararray.isdecimal ()
For each element in self, return True if there are only decimal characters in the element.

See also:
char.isdecimal

method

chararray.isdigit ()

Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.

See also:
char.isdigit

method

chararray.islower ()

Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

See also:
char.islower

method

1.6. Standard array subclasses 223

NumPy Reference, Release 1.23.0

chararray.isnumeric ()

For each element in self, return True if there are only numeric characters in the element.

See also:
char.isnumeric

method

chararray.isspace ()

Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See also:
char.isspace

method

chararray.istitle()

Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:
char.istitle

method

chararray.isupper ()

Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See also:
char. isupper

method

chararray.item (*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters

*args
[Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == I), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns

224 1. Array objects

NumPy Reference, Release 1.23.0

[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples
>>> np.random.seed(123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[2, 2, 6],
(1, 3, 6],
(1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

chararray.join (seq)

Return a string which is the concatenation of the strings in the sequence seq.

See also:
char. join

method

chararray.ljust (width, fillchar="")
Return an array with the elements of self left-justified in a string of length width.

See also:
char.ljust

method

chararray.lower ()

Return an array with the elements of self converted to lowercase.

See also:

1.6. Standard array subclasses 225

NumPy Reference, Release 1.23.0

char. lower

method

chararray.lstrip (chars=None)

For each element in self, return a copy with the leading characters removed.

See also:
char.lstrip

method

chararray.nonzero ()

Return the indices of the elements that are non-zero.
Refer to numpy . nonzero for full documentation.

See also:

numpy .nonzero

equivalent function

method

chararray.put (indices, values, mode=raise’)

Seta.flat[n] = values[n] forall n in indices.
Refer to numpy . put for full documentation.

See also:

numpy . put

equivalent function

method

chararray.ravel ([order])

Return a flattened array.
Refer to numpy . ravel for full documentation.

See also:

numpy .ravel
equivalent function
ndarray. flat

a flat iterator on the array.

method

chararray.repeat (repeats, axis=None)

Repeat elements of an array.
Refer to numpy . repeat for full documentation.

See also:

226

1. Array objects

NumPy Reference, Release 1.23.0

numpy . repeat

equivalent function

method

chararray.replace (old, new, count=None)

For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:
char.replace

method

chararray.reshape (shape, order="C’)

Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.

See also:

numpy . reshape

equivalent function

Notes

Unlike the free function numpy. reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

chararray.resize (new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters

new_shape
[tuple of ints, or n ints] Shape of resized array.
refcheck

[bool, optional] If False, reference count will not be checked. Default is True.
Returns
None
Raises

ValueError

If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

1.6. Standard array subclasses 227

NumPy Reference, Release 1.23.0

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.
See also:

resize

Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array ([[0, 11, [2, 3]], order='C")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 1], [2, 3]], order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing. ..

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

Unless refcheck is False:

228

1. Array objects

NumPy Reference, Release 1.23.0

>>> a.resize((1, 1), refcheck=False)
>>> a
array ([[0]])
>>> ¢
array ([[0]])
method

chararray.rfind (sub, start=0, end=None)

For each element in self, return the highest index in the string where substring sub is found, such that sub is
contained within [start, end)].

See also:
char.rfind

method

chararray.rindex (sub, start=0, end=None)

Like r1ind, but raises ValueError when the substring sub is not found.

See also:
char.rindex

method

chararray.rjust (width, fillchar="")
Return an array with the elements of self right-justified in a string of length width.

See also:
char.rjust

method

chararray.rsplit (sep=None, maxsplit=None)

For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:
char.rsplit

method

chararray.rstrip (chars=None)

For each element in self, return a copy with the trailing characters removed.

See also:
char.rstrip

method

1.6. Standard array subclasses 229

NumPy Reference, Release 1.23.0

chararray.searchsorted (v, side=left’, sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted

See also:

numpy . searchsorted

equivalent function

method

chararray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.

Parameters

val

[object] Value to be placed in field.
dtype

[dtype object] Data-type of the field in which to place val.
offset

[int, optional] The number of bytes into the field at which to place val.

Returns
None
See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,
(0., 1., 0.1,
(0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,
[3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]1])
>>> x.setfield(np.eye(3), np.int32)
>>> x

(continues on next page)

230

1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

array ([[1., 0., 0.1,
[O'I 1 14 O}r
[0., O., 1.11)

method

chararray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is
a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters

write

[bool, optional] Describes whether or not a can be written to.
align

[bool, optional] Describes whether or not a is aligned properly for its type.
uic

[bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, WRITEABLE,
and ALIGNED.

WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples
>>> y = np.array([[3, 1, 7],
(2, 0, 01,

[8, 5, 911)
>>> vy
array ([[3, 1, 71,

(2, 0, 01,

(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False

(continues on next page)

1.6. Standard array subclasses 231

NumPy Reference, Release 1.23.0

(continued from previous page)

OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

chararray.sort (axis=- 1, kind=None, order=None)

Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.
order

[str or list of str, optional] When « is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy . sort

Return a sorted copy of an array.
numpy .argsort

Indirect sort.
numpy . lexsort

Indirect stable sort on multiple keys.
numpy . searchsorted

Find elements in sorted array.

232

1. Array objects

NumPy Reference, Release 1.23.0

numpy .partition

Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)1, dtype=[('x', 'S1"), ('y', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1"), ('y', '<i8"')])
method

chararray.split (sep=None, maxsplit=None)

For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:
char.split

method

chararray.splitlines (keepends=None)

For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:
char.splitlines

method

chararray.squeeze (axis=None)

Remove axes of length one from a.
Refer to numpy . squeeze for full documentation.

See also:

1.6. Standard array subclasses 233

NumPy Reference, Release 1.23.0

numpy . squeeze

equivalent function

method

chararray.startswith (prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:
char.startswith

method

chararray.strip (chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

See also:
char.strip

method

chararray.swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

numpy . swapaxes

equivalent function

method

chararray.swapcase ()

For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:
char. swapcase

method

chararray .take (indices, axis=None, out=None, mode=raise’)

Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.

See also:

numpy . take

equivalent function

method

234 1. Array objects

NumPy Reference, Release 1.23.0

chararray.title()

For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:
char.title

method

chararray.tofile (fid, sep=", format="%s’)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters

fid
[file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
sep

[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalentto file.write (a.tobytes ()).

format

[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support £ileno () (e.g., ByteslO).

method

chararray.tolist ()

Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the i tem function.

If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters

none

1.6. Standard array subclasses 235

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

Returns

[object, or list of object, or list of list of object, or ...] The possibly nested list of array

elements.

Notes

The array may be recreated viaa = np.array(a.tolist ()), although this may sometimes lose pre-

cision.

Examples

Fora 1D array, a.tolist () isalmostthe sameas 1ist (a), exceptthat tolist changes numpy scalars

to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list (a)

>>> a_list

(1, 2]

>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist ()
>>> a_tolist

(1, 2]

>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array ([[1, 21, [3, 411)
>>> list (a)

l[array ([1, 2]1), array([3, 4]1)]

>>> a.tolist ()

(r1, 21, I3, 411

The base case for this recursion is a 0D array:

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

chararray.tostring (order="C’)

A compatibility alias for t obytes, with exactly the same behavior.

Despite its name, it returns byfes not st rs.
Deprecated since version 1.19.0.

method

236

1. Array objects

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

chararray.translate (table, deletechars=None)

For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation table.

See also:
char.translate

method
chararray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array
into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does af,
np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their or-

der indicates how the axes are permuted (see Examples). If axes are not providedand a . shape = (1[0],
if1], ... i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], i[n-27],
if1], i[0]).
Parameters
axes

[None, tuple of ints, or n ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns

out

[ndarray] View of a, with axes suitably permuted.
See also:

transpose

Equivalent function
ndarray.T

Array property returning the array transposed.
ndarray.reshape

Give a new shape to an array without changing its data.

1.6. Standard array subclasses 237

NumPy Reference, Release 1.23.0

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a
array ([[1, 21,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)
method

chararray.upper ()

Return an array with the elements of self converted to uppercase.

See also:
char.upper

method

chararray.view ([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype (None) which is an alias for dtype ('float_"').

Parameters

dtype

[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the t ype parameter).

type

[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

238 1. Array objects

NumPy Reference, Release 1.23.0

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.

Fora.view (some_dtype),if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis of a must be contiguous.
This axis will be resized in the result.

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl16)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)

>>> XV

array ([[1,

21,
[3, 4]], dtype=int38)
>>> xv.mean (0)
array([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)]1, dtype=[('a', 'il'"), ('b', '"i1')1)

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a

array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

1.6. Standard array subclasses 239

NumPy Reference, Release 1.23.0

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([([1, 2, 31, [4, 5, 6]], dtype=np.intl6)

>>> y = x[:, ::2]
>>> y
array ([[1, 31,
[4, 6]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl16), ('length', np.intl16)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the last axis must be.

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl16), ('length', np.intl16)])
array ([[(1, 3)1,
[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8) .reshape (2, 3, 4)
>>> x.transpose(l, 0, 2).view(np.intl6)
array ([[[256, 77071,

[3340, 3854]17,

[[1284, 1798],
[4368, 488211,

[[2312, 28267,
[5396, 591011], dtype=intl16)

method

chararray.z£ill (width)
Return the numeric string left-filled with zeros in a string of length width.

See also:
char.zfill

core.defchararray.array (obj, itemsize=None, copy=True, unicode=None, order=None)

Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type st ring_or unicode_ and use the free functions in numpy . char for
fast vectorized string operations instead.

Versus a regular NumPy array of type st r or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values

3) vectorized string operations are provided as methods (e.g. str.endswith) and infix operators (e.g. +,

*, %)

240 1. Array objects

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.endswith

NumPy Reference, Release 1.23.0

Parameters

obj
[array of str or unicode-like]
itemsize

[int, optional] itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and o0bj is an object array or a Python list, the itemsize will be automatically determined.
If itemsize is provided and obj is of type str or unicode, then the obj string will be chunked into
itemsize pieces.

Ccopy

[bool, optional] If true (default), then the object is copied. Otherwise, a copy will only be made
if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of
the other requirements (ifemsize, unicode, order, etc.).

unicode

[bool, optional] When true, the resulting chararray can contain Unicode characters, when
false only 8-bit characters. If unicode is None and obj is one of the following:

® achararray,

* an ndarray of type st r or unicode

* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.
order

[{‘C, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’ (default), then the array
will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned
array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then
the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous).

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by
Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

1.6.5 Record arrays (numpy . rec)

See also:
Creating record arrays (numpy.rec), Data type routines, Data type objects (dtype).

NumPy provides the recarray class which allows accessing the fields of a structured array as attributes, and a corre-
sponding scalar data type object record.

recarray(shape[, dtype, buf, offset, ...]) Construct an ndarray that allows field access using at-
tributes.

record A data-type scalar that allows field access as attribute
lookup.

1.6. Standard array subclasses 241

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

class numpy.recarray (shape, dtype=None, buf=None, offset=0, strides=None, formats=None, names=None,
titles=None, byteorder=None, aligned=False, order="C")

Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], where each entry in the array is a pair of (int, float). Normally, these attributes
are accessed using dictionary lookups such as arr ['x'] and arr ['y"']. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters

shape
[tuple] Shape of output array.
dtype

[data-type, optional] The desired data-type. By default, the data-type is determined from for-
mats, names, titles, aligned and byteorder.

formats

[list of data-types, optional] A list containing the data-types for the different columns, e.g.
["i4', '£8', 'i4']. formats does not support the new convention of using types di-
rectly,i.e. (int, float, int). Note that formats must be a list, not a tuple. Given that
formats is somewhat limited, we recommend specifying dt ype instead.

names
[tuple of str, optional] The name of each column,e.g. ('x', 'y', 'z').
buf

[buffer, optional] By default, a new array is created of the given shape and data-type. If buf
is specified and is an object exposing the buffer interface, the array will use the memory from
the existing buffer. In this case, the offser and st rides keywords are available.

Returns

rec

[recarray] Empty array of the given shape and type.
Other Parameters

titles

[tuple of str, optional] Aliases for column names. For example, if names were ('x', 'y',
'z') and tifles is ('x_coordinate', 'y_coordinate', 'z_coordinate'),
then arr ['x'] is equivalent to both arr.x and arr.x_coordinate.

byteorder

[{‘<, >, ="}, optional] Byte-order for all fields.
aligned

[bool, optional] Align the fields in memory as the C-compiler would.
strides

[tuple of ints, optional] Buffer (buf) is interpreted according to these strides (strides define
how many bytes each array element, row, column, etc. occupy in memory).

242 1. Array objects

NumPy Reference, Release 1.23.0

offset
[int, optional] Start reading buffer (buf) from this offset onwards.
order

[{‘C, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

core.records. fromrecords
Construct a record array from data.
record
fundamental data-type for recarray.
format_parser

determine a data-type from formats, names, titles.

Notes

This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create
a record array from data, use one of the following methods:

1. Create a standard ndarray and convert it to a record array, using arr .view (np.recarray)
2. Use the buf keyword.

3. Use np.rec.fromrecords.

Examples

Create an array with two fields, x and y:

>>> x = np.array ([(1.0, 2), (3.0, 4)], dtype=[('x"', '<f8'), ('y', '<i8")])
>>> X
array ([(1., 2), (3., 4)], dtype=[('x"', '<f8'"), ('y', '<i8')])

>>> x['x']
array ([1., 3.1)

View the array as a record array:

>>> x = x.view(np.recarray)

>>> xX.X
array ([1., 3.1)

>>> X.y

array([z2, 4])

Create a new, empty record array:

1.6. Standard array subclasses 243

NumPy Reference, Release 1.23.0

>>> np.recarray((2,),
dtype=[('x', int), ('y', float), ('z', int)])

rec.array ([(-1073741821, 1.2249118382103472e-301, 24547520),
(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x"', '<i4d4'), ('y', '<f8"'), ('z', '<id")])
Attributes
T

The transposed array.
base
Base object if memory is from some other object.

ctypes

An object to simplify the interaction of the array with the ctypes module.

data
Python buffer object pointing to the start of the array’s data.
dtype
Data-type of the array’s elements.
flags
Information about the memory layout of the array.
flat
A 1-D iterator over the array.
imag
The imaginary part of the array.
itemsize
Length of one array element in bytes.
nbytes
Total bytes consumed by the elements of the array.
ndim
Number of array dimensions.
real
The real part of the array.
shape
Tuple of array dimensions.
size
Number of elements in the array.
strides

Tuple of bytes to step in each dimension when traversing an array.

244

1. Array objects

NumPy Reference, Release 1.23.0

Methods

alI1([axis, out, keepdims, where])

Returns True if all elements evaluate to True.

anvy([axis, out, keepdims, where])

Returns True if any of the elements of a evaluate to
True.

argmax([axis, out, keepdims])

Return indices of the maximum values along the given
axis.

argmin([axis, out, keepdims])

Return indices of the minimum values along the given
axis.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtype[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set
of choices.

c11p([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

conij() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along
the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axisl, axis2])

Return specified diagonals.

dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
f£il1l(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimen-

sion.

get field(dtypel, offset])

Returns a field of the given array as a certain type.

1tem(*args)

Copy an element of an array to a standard Python
scalar and return it.

itemset(*args)

Insert scalar into an array (scalar is cast to array’s
dtype, if possible)

max([axis, out, keepdims, initial, where])

Return the maximum along a given axis.

mean([axis, dtype, out, keepdims, where])

Returns the average of the array elements along given
axis.

min([axis, out, keepdims, initial, where])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a dif-
ferent byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that
the value of the element in kth position is in the posi-
tion it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, ...])

Return the product of the array elements over the given
axis

ptp([axis, out, keepdims])

Peak to peak (maximum - minimum) value along a
given axis.

continues on next page

1.6. Standard array subclasses

245

NumPy Reference, Release 1.23.0

Table 4 - continued from previous page

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|[, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given num-
ber of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted in
a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, WRITE-
BACKIFCOPY, respectively.

sort([axis, kind, order])

Sort an array in-place.

squeeze([axis])

Remove axes of length one from a.

std([axis, dtype, out, ddof, keepdims, where])

Returns the standard deviation of the array elements
along given axis.

sum([axis, dtype, out, keepdims, initial, where])

Return the sum of the array elements over the given
axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 inter-
changed.

t ake(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

tobytes([order])

Construct Python bytes containing the raw data bytes
in the array.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as an a . ndim-levels deep nested list
of Python scalars.

tostring([order])

A compatibility alias for tobytes, with exactly the
same behavior.

t race([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

t ranspose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof, keepdims, where])

Returns the variance of the array elements, along given
axis.

view([dtype][, type])

New view of array with the same data.

method

recarray .all (axis=None, out=None, keepdims=False, *, where=True)

Returns True if all elements evaluate to True.

Refer to numpy . a11 for full documentation.

See also:

numpy.all

equivalent function

method

246

1. Array objects

NumPy Reference, Release 1.23.0

recarray .any (axis=None, out=None, keepdims=False, *, where=True)

Returns True if any of the elements of a evaluate to True.
Refer to numpy . any for full documentation.

See also:

numpy . any

equivalent function

method

recarray .argmax (axis=None, out=None, *, keepdims=False)

Return indices of the maximum values along the given axis.
Refer to numpy . argmax for full documentation.

See also:

numpy . argmax

equivalent function

method

recarray .argmin (axis=None, out=None, *, keepdims=False)

Return indices of the minimum values along the given axis.
Refer to numpy . argmin for detailed documentation.

See also:

numpy.argmin

equivalent function

method

recarray.argpartition (kth, axis=- 1, kind=introselect’, order=None)

Returns the indices that would partition this array.
Refer to numpy . argpartition for full documentation.
New in version 1.8.0.

See also:

numpy.argpartition

equivalent function

method

recarray .argsort (axis=- I, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy . argsort for full documentation.

See also:

1.6. Standard array subclasses 247

NumPy Reference, Release 1.23.0

numpy .argsort

equivalent function

method
recarray .astype (dtype, order="K’, casting= unsafe’, subok="True, copy="True)
Copy of the array, cast to a specified type.

Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F" means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,

‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K.

casting

[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.

* ‘equiv’ means only byte-order changes are allowed.

* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
* ‘unsafe’ means any data conversions may be done.

subok

[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

Ccopy

[bool, optional] By default, astype always returns a newly allocated array. If this is set to

false, and the dt ype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

arr_t

[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype (t).

248 1. Array objects

NumPy Reference, Release 1.23.0

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string
dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.571)

>>> x.astype (int)
array ([1, 2, 2])

method

recarray .byteswap (inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters

inplace

[bool, optional] If True, swap bytes in-place, default is False.
Returns

out

[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> list (map (hex, A))

['Ox1', '0Ox100', '0x2233"']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=intl6)

>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322"]

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap ()
array ([b'ceg', b'fac'], dtype='|S3")

1.6. Standard array subclasses 249

NumPy Reference, Release 1.23.0

A.newbyteorder () .byteswap () produces an array with the same values

but different representation in memory

>>> A = np.array([1l, 2, 31)

>>> A.view(np.uint8)

array ([, o, o, 0, o, o, 0o, 0, 2, o, 0, o, o, 0, 0o, 0, 3, 0, 0, 0, 0, O,
0, 0], dtype=uints8)

>>> A.newbyteorder () .byteswap (inplace=True)

array ([1, 2, 31)

>>> A.view(np.uint8)

array((o, o, o0, o0, o, 0o, 0, 2, o, o, 0, o, o, o, 0, 2, 0, 0, 0, 0, 0, O,
0, 3], dtype=uint8)

method

recarray . choose (choices, out=None, mode=raise’)

Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.

See also:

numpy .choose

equivalent function

method

recarray .clip (min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy . c11ip for full documentation.

See also:

numpy.clip

equivalent function

method

recarray .compress (condition, axis=None, out=None)

Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.

See also:

numpy.compress

equivalent function

method

recarray.conj ()

Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.

See also:

250 1. Array objects

NumPy Reference, Release 1.23.0

numpy.conjugate

equivalent function

method

recarray.conjugate ()

Return the complex conjugate, element-wise.
Refer to numpy . conjugat e for full documentation.

See also:

numpy.conjugate

equivalent function

method

Patl

recarray .copy (order="C’")

Return a copy of the array.

Parameters

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy . copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy . copy

Similar function with different default behavior

numpy . copyto

Notes

This function is the preferred method for creating an array copy. The function numpy . copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F")

EXEETT

’>>> x.£1i11(0)

>>> x
array ([[0, 0, 0]

1.6. Standard array subclasses 251

NumPy Reference, Release 1.23.0

>>> y.flags['C_CONTIGUOUS']
True

method

recarray . cumprod (axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy . cumprod for full documentation.

See also:

numpy . cumprod

equivalent function

method

recarray . cumsum (axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.

See also:

numpy . cumsum

equivalent function

method

recarray .diagonal (offset=0, axis]=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:

numpy .diagonal

equivalent function

method

recarray .dump (file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file
[str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

252 1. Array objects

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

recarray .dumps ()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.

Parameters
None

method

recarray.£ill (value)

Fill the array with a scalar value.

Parameters

value

[scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fi11(0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fi11 (1)

>>> a

array ([1., 1.1)

method

recarray. flatten (order="C’)

Return a copy of the array collapsed into one dimension.

Parameters

order

[{‘C, F, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns

[ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat

A 1-D flat iterator over the array.

1.6. Standard array subclasses

253

NumPy Reference, Release 1.23.0

Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

recarray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype

[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset

[int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.3]1%2)
>>> x[1, 1] = 2 + 4.7
>>> x
array ([[1.+1.73, 0.+0.731,
[0.+0.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

recarray.item (*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters

*args
[Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

254 1. Array objects

NumPy Reference, Release 1.23.0

* int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument

is interpreted as an nd-index into the array.

Returns

[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples
>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[2, 2, 6],
(1, 3, 61,
(1, 0, 111
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

recarray.itemset (*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (*args) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters

*args

[Arguments] If one argument: a scalar, only used in case a is of size 1. If two arguments:
the last argument is the value to be set and must be a scalar, the first argument specifies a
single array element location. It is either an int or a tuple.

1.6. Standard array subclasses 255

NumPy Reference, Release 1.23.0

Notes

Compared to indexing syntax, i temset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using i temset (and it em) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 61,
(1, 3, 61,
(1, 0, 111
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)

>>> X

array ([[2, 2, 61,
(1, 0, 61,
(1, 0, 911)

method

recarray .max (axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.
Refer to numpy . amax for full documentation.

See also:

numpy . amax

equivalent function

method

recarray .mean (axis=None, dtype=None, out=None, keepdims=False, *, where=True)

Returns the average of the array elements along given axis.
Refer to numpy . mean for full documentation.

See also:

numpy . mean

equivalent function

method

recarray .min (axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the minimum along a given axis.
Refer to numpy . amin for full documentation.

See also:

256 1. Array objects

NumPy Reference, Release 1.23.0

numpy .amin

equivalent function

method

recarray .newbyteorder (new_order=S’, /)

Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order

[string, optional] Byte order to force; a value from the byte order specifications below.
new_order codes can be any of:

* ‘S’ - swap dtype from current to opposite endian
o {‘<, ‘little’} - little endian
o {*>’, ‘big’} - big endian

[

e {*=, ‘native’} - native order, equivalent to sys .byteorder

e {I,T'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.

Returns

new_arr

[array] New array object with the dtype reflecting given change to the byte order.

method

recarray.nonzero ()

Return the indices of the elements that are non-zero.
Refer to numpy . nonzero for full documentation.

See also:

numpy .nonzero

equivalent function

method

recarray.partition (kth, axis=- 1, kind="introselect’, order=None)

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position
it would be in a sorted array. All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.

New in version 1.8.0.

Parameters

1.6. Standard array subclasses 257

https://docs.python.org/3/library/sys.html#sys.byteorder

NumPy Reference, Release 1.23.0

kth

[int or sequence of ints] Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of kth it will partition all elements indexed by kth of them into their sorted position
at once.

Deprecated since version 1.22.0: Passing booleans as index is deprecated.
axis

[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.
order

[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need to be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also:

numpy.partition

Return a partitioned copy of an array.
argpartition

Indirect partition.
sort

Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array ([3, 4, 2, 1])
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
>>> a
array ([1, 2, 3, 41)

method

258 1. Array objects

NumPy Reference, Release 1.23.0

recarray .prod (axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

Return the product of the array elements over the given axis
Refer to numpy . prod for full documentation.

See also:

numpy . prod

equivalent function

method

recarray .ptp (axis=None, out=None, keepdims=False)

Peak to peak (maximum - minimum) value along a given axis.
Refer to numpy . ptp for full documentation.

See also:

numpy . ptp

equivalent function

method

recarray .put (indices, values, mode=raise’)

Seta.flat[n] = values[n] forall n in indices.
Refer to numpy . put for full documentation.

See also:

numpy . put

equivalent function

method

recarray.ravel ([order])

Return a flattened array.
Refer to numpy . ravel for full documentation.

See also:

numpy . ravel
equivalent function
ndarray. flat

a flat iterator on the array.

method

recarray . repeat (repeats, axis=None)

Repeat elements of an array.
Refer to numpy . repeat for full documentation.

See also:

1.6. Standard array subclasses 259

NumPy Reference, Release 1.23.0

numpy . repeat

equivalent function

method

recarray .reshape (shape, order="C")

Returns an array containing the same data with a new shape.
Refer to numpy . reshape for full documentation.

See also:

numpy . reshape

equivalent function

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to

a.reshape ((10, 11)).
method

recarray.resize (new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters

new_shape
[tuple of ints, or n ints] Shape of resized array.
refcheck

[bool, optional] If False, reference count will not be checked. Default is True.
Returns
None
Raises

ValueError

If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.
See also:

resize

Return a new array with the specified shape.

260 1. Array objects

NumPy Reference, Release 1.23.0

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array ([[0, 1], [2, 3]], order='C'")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array([[0, 11, [2, 311, order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)

>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing. ..

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a

array ([[0]])

>>> C

array ([[0]])
method

recarray . round (decimals=0, out=None)

Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

1.6. Standard array subclasses 261

NumPy Reference, Release 1.23.0

See also:

numpy . around

equivalent function

method

recarray .searchsorted (v, side=left’, sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted

See also:

numpy . searchsorted

equivalent function

method

recarray.setfield (val, ditype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.

Parameters

val

[object] Value to be placed in field.
dtype

[dtype object] Data-type of the field in which to place val.
offset

[int, optional] The number of bytes into the field at which to place val.

Returns
None
See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,

(0., 1., 0.1,

[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,

(3, 3, 31,

(continues on next page)

262

1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

[3, 3, 311, dtype=int32)

>>> x

array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-3237,
[1.5e-323, 1.5e-323, 1.0e+000]1)

>>> x.setfield(np.eye(3), np.int32)

>>> X
array ([[1., 0., 0.1,
(0., 1., 0.1,
[0., 0., 1.11)
method

recarray .setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and flag can never be set to True. The flag WRITEABLE can only be set to True if the
array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is
a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters

write

[bool, optional] Describes whether or not a can be written to.
align

[bool, optional] Describes whether or not a is aligned properly for its type.
uic

[bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, WRITEABLE,
and ALIGNED.

WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.

All flags can be accessed using the single (upper case) letter as well as the full name.

1.6. Standard array subclasses 263

NumPy Reference, Release 1.23.0

Examples
>>> y = np.array([[3, 1, 71,
[2, o0, 01,

[8, 5, 911
>>> y
array ([[3, 1, 71,

(2, 0, 01,

(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method
recarray .sort (axis=- I, kind=None, order=None)

Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.
kind

[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.
order

[str or list of str, optional] When « is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy . sort

264

1. Array objects

NumPy Reference, Release 1.23.0

Return a sorted copy of an array.
numpy .argsort

Indirect sort.
numpy . lexsort

Indirect stable sort on multiple keys.
numpy . searchsorted

Find elements in sorted array.
numpy .partition

Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
[1, 311
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
[1, 411])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)1, dtype=[('x', 'S1"), ('y', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1"'), ('y', '<i8")])
method

recarray .squeeze (axis=None)

Remove axes of length one from a.
Refer to numpy . squee ze for full documentation.

See also:

numpy . squeeze

equivalent function

method

1.6. Standard array subclasses 265

NumPy Reference, Release 1.23.0

recarray . std (axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the standard deviation of the array elements along given axis.
Refer to numpy . std for full documentation.

See also:

numpy . std

equivalent function

method

recarray . sum (axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.

See also:

numpy . sum

equivalent function

method

recarray .swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

numpy . swapaxes

equivalent function

method

recarray . take (indices, axis=None, out=None, mode=raise’)

Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.

See also:

numpy . take

equivalent function

method

recarray .tobytes (order="C’)

Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters

266 1. Array objects

NumPy Reference, Release 1.23.0

order

[{‘C, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
Default is ‘C’.

Returns

[bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311, dtype='<u2'")
>>> x.tobytes|()
b'"\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

recarray.tofile (fid, sep=", format="%s’)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters

fid
[file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
sep

[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalentto file.write (a.tobytes()).

format

[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support £ileno () (e.g., ByteslO).

1.6. Standard array subclasses 267

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

method

recarray.tolist ()

Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the i t em function.

If a.ndimis 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none

Returns

[object, or list of object, or list of list of object, or ...] The possibly nested list of array
elements.

Notes

The array may be recreated viaa = np.array (a.tolist ()), although this may sometimes lose pre-
cision.

Examples

ForalDarray,a.tolist () isalmost the sameas 1ist (a),exceptthat tolist changes numpy scalars
to Python scalars:

>>> a = np.uint32([1, 2])
>>> g list = list (a)

>>> a_list

(1, 2]

>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist ()
>>> a_tolist

(1, 2]

>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array ([[1, 2], [3, 411)
>>> list (a)

l[array ([1, 2]1), array([3, 41)]
>>> a.tolist ()

(r1, 21, I3, 411

The base case for this recursion is a 0D array:

268

1. Array objects

NumPy Reference, Release 1.23.0

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

recarray.tostring (order="C’)
A compatibility alias for t obytes, with exactly the same behavior.
Despite its name, it returns bytes not st rs.
Deprecated since version 1.19.0.

method

recarray .trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.

See also:

numpy . trace

equivalent function

method

recarray.transpose (*axes)
Returns a view of the array with axes transposed.
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array

into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does af,
np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their or-

der indicates how the axes are permuted (see Examples). If axes are not provided and a . shape = (1[0],
if1], ... i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], i[n-27],
if1], 1[0]).
Parameters
axes

[None, tuple of ints, or 7 ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns

out

[ndarray] View of a, with axes suitably permuted.

1.6. Standard array subclasses 269

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

See also:

transpose

Equivalent function
ndarray.T

Array property returning the array transposed.
ndarray.reshape

Give a new shape to an array without changing its data.

Examples
>>> a = np.array([[1, 2], [3, 4]1)
>>> a
array ([[1, 21,
[3, 411)
>>> a.transpose ()
array ([[1, 31,
[2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
[2, 411)
>>> a.transpose (1, 0)
array ([[1, 31,
[2, 411)
method

recarray .var (axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the variance of the array elements, along given axis.
Refer to numpy . var for full documentation.

See also:

numpy .var

equivalent function

method

recarray .view ([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype (None) which is an alias for dtype ('float_"').

Parameters

dtype

[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument

270 1. Array objects

NumPy Reference, Release 1.23.0

can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the t ype parameter).

type

[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.

Fora.view (some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis of a must be contiguous.
This axis will be resized in the result.

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view (dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

Jl

1], dtype=int38)
>>> xv.mean (0)
3.1)

array ([2.,

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)], dtype=[('a', 'il"), ('b', "i1')])

Using a view to convert an array to a recarray:

1.6. Standard array subclasses 271

NumPy Reference, Release 1.23.0

>>> z = x.view(np.recarray)
>>> z.a
array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,

transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 31, [4, 5, 6]], dtype=np.intl6)
>>> y = x[:, :1:2]
>>> y
array ([[1, 31,
[4, 6]], dtype=int16)
>>> y.view (dtype=[('width', np.intl16), ('length', np.intl16)])

Traceback (most recent call last):

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl16), ('length', np.intl16)])
array ([[(1, 3)]1,
[(4, 6)]]1, dtype=[('width', '<i2'"), ('length', '<i2'")])

ValueError: To change to a dtype of a different size, the last axis must be.

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the

axes are not C-contiguous:

>>> x = np.arange (2 * 3 * 4, dtype=np.int8) .reshape(2, 3, 4)
>>> x.transpose(l, 0, 2).view(np.int16)
array ([[[256, 77071,

[3340, 385411,

[[1284, 17987,
[4368, 488211,

[[2312, 2826],
(5396, 5910111, dtype=int16)

dot
field

class numpy.record

A data-type scalar that allows field access as attribute lookup.

Attributes

T
Scalar attribute identical to the corresponding array attribute.
base

base object

272

1. Array objects

NumPy Reference, Release 1.23.0

data

Pointer to start of data.
dtype

dtype object
flags

integer value of flags
flat

A 1-D view of the scalar.
imag

The imaginary part of the scalar.
itemsize

The length of one element in bytes.
nbytes

The length of the scalar in bytes.
ndim

The number of array dimensions.
real

The real part of the scalar.
shape

Tuple of array dimensions.
size

The number of elements in the gentype.
strides

Tuple of bytes steps in each dimension.

Methods

all Scalar method identical to the corresponding array at-
tribute.

any Scalar method identical to the corresponding array at-
tribute.

argmax Scalar method identical to the corresponding array at-
tribute.

argmin Scalar method identical to the corresponding array at-
tribute.

argsort Scalar method identical to the corresponding array at-
tribute.

astype Scalar method identical to the corresponding array at-
tribute.

continues on next page

1.6. Standard array subclasses 273

NumPy Reference, Release 1.23.0

Table 5 - continued from previous page

byteswap Scalar method identical to the corresponding array at-
tribute.

choose Scalar method identical to the corresponding array at-
tribute.

clip Scalar method identical to the corresponding array at-
tribute.

compress Scalar method identical to the corresponding array at-
tribute.

conjugate Scalar method identical to the corresponding array at-
tribute.

copy Scalar method identical to the corresponding array at-
tribute.

cumprod Scalar method identical to the corresponding array at-
tribute.

cumsum Scalar method identical to the corresponding array at-
tribute.

diagonal Scalar method identical to the corresponding array at-
tribute.

dump Scalar method identical to the corresponding array at-
tribute.

dumps Scalar method identical to the corresponding array at-
tribute.

fill Scalar method identical to the corresponding array at-
tribute.

flatten Scalar method identical to the corresponding array at-
tribute.

getfield Scalar method identical to the corresponding array at-
tribute.

item Scalar method identical to the corresponding array at-
tribute.

itemset Scalar method identical to the corresponding array at-
tribute.

max Scalar method identical to the corresponding array at-
tribute.

mean Scalar method identical to the corresponding array at-
tribute.

min Scalar method identical to the corresponding array at-
tribute.

newbyteorder([new_order]) Return a new dt ype with a different byte order.

nonzero Scalar method identical to the corresponding array at-
tribute.

pprint() Pretty-print all fields.

prod Scalar method identical to the corresponding array at-
tribute.

ptp Scalar method identical to the corresponding array at-
tribute.

put Scalar method identical to the corresponding array at-
tribute.

ravel Scalar method identical to the corresponding array at-
tribute.

continues on next page

274 1. Array objects

NumPy Reference, Release 1.23.0

Table 5 - continued from previous page

repeat Scalar method identical to the corresponding array at-
tribute.

reshape Scalar method identical to the corresponding array at-
tribute.

resize Scalar method identical to the corresponding array at-
tribute.

round Scalar method identical to the corresponding array at-
tribute.

searchsorted Scalar method identical to the corresponding array at-
tribute.

setfield Scalar method identical to the corresponding array at-
tribute.

setflags Scalar method identical to the corresponding array at-
tribute.

sort Scalar method identical to the corresponding array at-
tribute.

squeeze Scalar method identical to the corresponding array at-
tribute.

std Scalar method identical to the corresponding array at-
tribute.

sum Scalar method identical to the corresponding array at-
tribute.

swapaxes Scalar method identical to the corresponding array at-
tribute.

take Scalar method identical to the corresponding array at-
tribute.

tofile Scalar method identical to the corresponding array at-
tribute.

tolist Scalar method identical to the corresponding array at-
tribute.

tostring Scalar method identical to the corresponding array at-
tribute.

trace Scalar method identical to the corresponding array at-
tribute.

transpose Scalar method identical to the corresponding array at-
tribute.

var Scalar method identical to the corresponding array at-
tribute.

view Scalar method identical to the corresponding array at-
tribute.

method

record.all ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.all.
method

record.any ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.any.

1.6. Standard array subclasses

275

NumPy Reference, Release 1.23.0

method

record.argmax ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.argmax.
method

record.argmin ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.argmin.
method

record.argsort ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.argsort.
method

record.astype ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.astype.
method

record.byteswap ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.byteswap.
method

record.choose ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.choose.
method

record.clip ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.clip.
method

record.compress ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.compress.
method

record.conjugate ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.conjugate.

method

276

1. Array objects

NumPy Reference, Release 1.23.0

record.copy ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. copy.
method

record.cumprod ()
Scalar method identical to the corresponding array attribute.

Please see ndarray. cumprod.
method

record.cumsum ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.cumsum.
method

record.diagonal ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.diagonal.
method

record.dump ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. dump.
method

record.dumps ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.dumps.
method

record.fill ()
Scalar method identical to the corresponding array attribute.

Please see ndarray. fill.
method

record. flatten ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.flatten.
method

record.getfield()
Scalar method identical to the corresponding array attribute.

Please see ndarray.getfield.

method

1.6. Standard array subclasses 277

NumPy Reference, Release 1.23.0

record.item/()

Scalar method identical to the corresponding array attribute.

Please see ndarray. item.
method

record.itemset ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.itemset.
method

record.max ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.max.
method

record.mean ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.mean.
method

record.min ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.min.
method

record.newbyteorder (new_order=1’, /)

Return a new dt ype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:
* ‘S’ - swap dtype from current to opposite endian
e {‘<, ‘little’} - little endian
e {*>’, ‘big’} - big endian

. , ‘native’} - native order

* {I", T} - ignore (no change to byte order)
Parameters

new_order

[str, optional] Byte order to force; a value from the byte order specifications above. The

default value (“S’) results in swapping the current byte order.

Returns

new_dtype

[dtype] New dt ype object with the given change to the byte order.

278

1. Array objects

NumPy Reference, Release 1.23.0

method

record.nonzero ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.nonzero.
method

record.pprint ()

Pretty-print all fields.
method

record.prod ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.prod.
method

record.ptp ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. ptp.
method

record.put ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. put.
method

record.ravel ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. ravel.
method

record.repeat ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. repeat.
method

record.reshape ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.reshape.
method

record.resize ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.resize.

method

1.6. Standard array subclasses 279

NumPy Reference, Release 1.23.0

record.round ()

Scalar method identical to the corresponding array attribute.

Please see ndarray. round.
method

record.searchsorted ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.searchsorted.
method

record.setfield ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.setfield.
method

record.setflags ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.setflags.
method

record.sort ()

Scalar method identical to the corresponding array attribute.

Please see ndarray. sort.
method

record.squeeze ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.squeeze.
method

record.std ()

Scalar method identical to the corresponding array attribute.

Please see ndarray. std.
method

record.sum()

Scalar method identical to the corresponding array attribute.

Please see ndarray. sum.
method

record.swapaxes ()

Scalar method identical to the corresponding array attribute.

Please see ndarray. swapaxes.

method

280

1. Array objects

NumPy Reference, Release 1.23.0

record.take ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.take.
method

record.tofile ()
Scalar method identical to the corresponding array attribute.

Please see ndarray.tofile.
method

record.tolist ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.tolist.
method

record.tostring ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.tostring.
method

record.trace ()

Scalar method identical to the corresponding array attribute.
Please see ndarray. trace.
method

record.transpose ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.transpose.
method

record.var ()

Scalar method identical to the corresponding array attribute.
Please see ndarray.var.
method

record.view ()

Scalar method identical to the corresponding array attribute.

Please see ndarray.view.

conj
tobytes

1.6. Standard array subclasses 281

NumPy Reference, Release 1.23.0

1.6.6 Masked arrays (numpy .ma)

See also:

Masked arrays

1.6.7 Standard container class

For backward compatibility and as a standard “container “class, the UserArray from Numeric has been brought over to
NumPy and named numpy. 1ib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the ndar-
ray itself and so it is included by default. It is not documented here beyond mentioning its existence because you are
encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(datal,..]) Standard container-class for easy multiple-inheritance.

class numpy.lib.user_array.container (data, dtype=None, copy=True)

Standard container-class for easy multiple-inheritance.

Methods

copy
tostring
byteswap
astype

1.6.8 Array Iterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter is
an iterator object, then the Python code:

for val in myiter:

some code involving val

calls val = next (myiter) repeatedly until StopIteration israised by the iterator. There are several ways to
iterate over an array that may be useful: default iteration, flat iteration, and N-dimensional enumeration.

Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in range(arr.shape[0]):
val = arr[i]

This default iterator selects a sub-array of dimension N — 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires N for-loops.

282 1. Array objects

https://docs.python.org/3/library/exceptions.html#StopIteration

NumPy Reference, Release 1.23.0

>>> a = np.arange (24) .reshape(3,2,4)+10
>>> for val in a:
C print ('item:', wval)
item: [[10 11 12 13]
[14 15 16 1711
item: [[18 19 20 21]
[22 23 24 25]]
item: [[26 27 28 29]
[30 31 32 3311

Flat iteration

ndarray.flat A 1-D iterator over the array.

As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

>>> for i, val in enumerate(a.flat):
.. if i%5 == 0: print (i, wval)

0 10

5 15

10 20
15 25
20 30

Here, I've used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> for i, val in np.ndenumerate(a) :

.. if sum (i) %5 == 0: print (i, wval)
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

~

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy.broadcast
Produce an object that mimics broadcasting.

Parameters

1.6. Standard array subclasses 283

NumPy Reference, Release 1.23.0

inl, in2, ...

[array_like] Input parameters.

Returns

See also:

b

[broadcast object] Broadcast the input parameters against one another, and return an object
that encapsulates the result. Amongst others, it has shape and nd properties, and may be

used as an iterator.

broadcast_arrays

broadcast_to

broadcast_shapes

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array ([[1], [2], [3]])
>>> y = np.array([4, 5, 61])

>>> b = np.broadcast (x, Vy)

>>> out = np.empty (b.shape)

>>> out.flat = [ut+v for (u,v) in Db]
>>> out

array ([[5., 6., 1,

Compare against built-in broadcasting:

>>> x + y

array ([[5, 6, 71,

Attributes

index

current index in broadcasted result
iters

tuple of iterators along self’s “components.”
nd

Number of dimensions of broadcasted result.
ndim

Number of dimensions of broadcasted result.

284

1. Array objects

NumPy Reference, Release 1.23.0

numiter

Number of iterators possessed by the broadcasted result.
shape

Shape of broadcasted result.
size

Total size of broadcasted result.

Methods

reset() Reset the broadcasted result’s iterator(s).

method

broadcast.reset ()

Reset the broadcasted result’s iterator(s).

Parameters
None
Returns

None

Examples

>>> x = np.array([1l, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast (x, vy)
>>> b.index

0

>>> next (b), next(b), next (b)
(1, 4), (2, 4), (3, 4))

>>> pb.index

3

>>> b.reset ()

>>> pb.index

0

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes N

objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the broadcasted
result.

>>> for val in np.broadcast ([[1,0],[2,311,100,1]1):
print (val)

)
)
)
)

w N O e
~ .
= O Pk O

1.6. Standard array subclasses 285

NumPy Reference, Release 1.23.0

1.7 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-alike
replacement for numpy that supports data arrays with masks.

1.7.1 The numpy .ma module
Rationale

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-alike
replacement for numpy that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may
have failed to record a data, or recorded an invalid value. The numpy . ma module provides a convenient way to address
this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy . ndarray and a mask. A mask is either noma sk, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).

The package ensures that masked entries are not used in computations.

As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1, 2, 3, -1, 5])

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean ()
2.75

The numpy .ma module

The main feature of the numpy . ma module is the MaskedArray class, which is a subclass of numpy.ndarray.
The class, its attributes and methods are described in more details in the MaskedArray class section.

The numpy . ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

286 1. Array objects

NumPy Reference, Release 1.23.0

’>>> y = ma.array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values close to 1.e20 are invalid, we would do:

’>>> z = ma.masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1.7.2 Using humpy.ma

Constructing masked arrays

There are several ways to construct a masked array.
* A first possibility is to directly invoke the MaskedArray class.

* A second possibility is to use the two masked array constructors, array and masked_array.

array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
masked_array alias of numpy.ma.core.MaskedArray

ma . array (data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True,
hard_mask=False, shrink=True, subok=True, ndmin=0)

An array class with possibly masked values.
Masked values of True exclude the corresponding element from any computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None)

Parameters

data
[array_like] Input data.
mask

[sequence, optional] Mask. Must be convertible to an array of booleans with the same shape
as data. True indicates a masked (i.e. invalid) data.

dtype

[dtype, optional] Data type of the output. If dt ype is None, the type of the data argument
(data.dtype)isused. If dtype is not None and different from data.dtype, a copy
is performed.

copy

[bool, optional] Whether to copy the input data (True), or to use a reference instead. Default
is False.

1.7. Masked arrays 287

NumPy Reference, Release 1.23.0

subok

[bool, optional] Whether to return a subclass of MaskedArray if possible (True) or a plain
MaskedArray. Default is True.

ndmin
[int, optional] Minimum number of dimensions. Default is O.
fill_value

[scalar, optional] Value used to fill in the masked values when necessary. If None, a default
based on the data-type is used.

keep_mask

[bool, optional] Whether to combine mask with the mask of the input data, if any (True), or
to use only mask for the output (False). Default is True.

hard_mask

[bool, optional] Whether to use a hard mask or not. With a hard mask, masked values cannot
be unmasked. Default is False.

shrink
[bool, optional] Whether to force compression of an empty mask. Default is True.
order

[{‘C, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’, then the array will be in
C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will
be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the
returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous),
unless a copy is required, in which case it will be C-contiguous.

Examples

The mask can be initialized with an array of boolean values with the same shape as data.

>>> data = np.arange (6) .reshape((2, 3))
>>> np.ma.MaskedArray (data, mask=[[False, True, False],
C.. [False, False, True]])
masked_array (
data=[[0, -—-, 21,
(3, 4, ——11,
mask=[[False, True, Falsel,
[False, False, Truell],
fill_value=999999)

Alternatively, the mask can be initialized to homogeneous boolean array with the same shape as data by
passing in a scalar boolean value:

>>> np.ma.MaskedArray (data, mask=False)
masked_array (
data=[[0, 1, 2],
(3, 4, 511,
mask=[[False, False, False],
[False, False, Falsell],
fill_value=999999)

288

1. Array objects

NumPy Reference, Release 1.23.0

>>> np.ma.MaskedArray (data, mask=True)
masked_array (
data=[[--, -=, —=1,
[——y —+ —11,
mask=[[True, True, True],
[True, True, Truel],
fill_value=999999,
dtype=int64)

Note: The recommended practice for initializing ma sk with a scalar boolean value is to use True/False
rather than np . True_/np.False_. The reason is nomask is represented internally as np.False_.

>>> np.False_ is np.ma.nomask
True

numpy .ma.masked_array

alias of numpy .ma.core.MaskedArray

* A third option is to take the view of an existing array. In that case, the mask of the view is set to nomask if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([1, 2, 31)
>>> x.view (ma.MaskedArray)
masked_array (data=[1, 2, 3],
mask=False,
fill_value=999999)
>>> x = np.array ([(1, 1.), (2, 2.)], dtype=[('a',int), ('b', float)])
>>> x.view(ma.MaskedArray)
masked_array (data=[(1, 1.0), (2, 2.0)1,
mask=[(False, False), (False, False)],
fill_value=(999999, 1.e+20),
dtype=[('a', '<i8"), ('b', '<f8"')])

* Yet another possibility is to use any of the following functions:

1.7. Masked arrays 289

NumPy Reference, Release 1.23.0

asarray(al, dtype, order])

Convert the input to a masked array of the given data-
type.

asanyarray(al, dtype])

Convert the input to a masked array, conserving sub-
classes.

fix_invalid(a[, mask, copy, fill_value])

Return input with invalid data masked and replaced by
a fill value.

masked_equal(x, value[, copy])

Mask an array where equal to a given value.

masked_greater(x, value[, copy])

Mask an array where greater than a given value.

masked_greater_equal(X, value[, copy])

Mask an array where greater than or equal to a given
value.

masked_inside(x, vl, v2[, copy])

Mask an array inside a given interval.

masked_invalid(al, copy])

Mask an array where invalid values occur (NaNs or
infs).

masked_1less(x, value[, copy])

Mask an array where less than a given value.

masked_less_equal(x, value[, copy])

Mask an array where less than or equal to a given value.

masked_not_equal(x, value[, copy])

Mask an array where not equal to a given value.

masked_object(x, value[, copy, shrink])

Mask the array x where the data are exactly equal to
value.

masked_outside(x, vl, v2[, copy])

Mask an array outside a given interval.

masked_values(x, value[, rtol, atol, copy, ...

Mask using floating point equality.

masked_where(condition, a[, copy])

Mask an array where a condition is met.

ma .asarray (a, dtype=None, order=None)

Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If ais a subclass of MaskedArray, a base class

MaskedArray is returned.

Parameters

[array_like] Input data, in any form that can be converted to a masked array. This includes
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype

[dtype, optional] By default, the data-type is inferred from the input data.

order

[{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (FORTRAN’) mem-

ory representation. Default is ‘C’.

Returns

out

[MaskedArray] Masked array interpretation of a.

See also:

asanyarray

Similar to asarray, but conserves subclasses.

290

1. Array objects

NumPy Reference, Release 1.23.0

Examples
>>> x = np.arange(10.) .reshape (2, 5)
>>> x

array ([[0., 1., 2., 3.,
[5., 6., 7., 8.,
>>> np.ma.asarray (x)
masked_array (
data=[[0., 1., 2., 3., 4.]
[5., 6., 7., 8., 9
mask=False,
fill _value=1e+20)
>>> type(np.ma.asarray (x))
<class 'numpy.ma.core.MaskedArray'>

ma .asanyarray (a, dtype=None)
Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an
ndarray.

Parameters

[array_like] Input data, in any form that can be converted to an array.
dtype
[dtype, optional] By default, the data-type is inferred from the input data.
order
[{‘C, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (FORTRAN’) mem-
ory representation. Default is ‘C’.

Returns

out

[MaskedArray] MaskedArray interpretation of a.
See also:
asarray

Similar to asanyarray, but does not conserve subclass.

Examples

>>> x = np.arange (10.) .reshape (2, 5)
>>> x
array ([[0., 1., 2., 3., 4.1,
[5., 6., 7., 8., 9.11)

>>> np.ma.asanyarray (x)
masked_array (

data=[[0., 1., 2., 3., 4.]

9

(continues on next page)

1.7. Masked arrays 291

NumPy Reference, Release 1.23.0

(continued from previous page)

mask=False,

fill_value=1e+20)
>>> type (np.ma.asanyarray (x))
<class 'numpy.ma.core.MaskedArray'>

ma . fix_invalid (a, mask=False, copy=True, fill_value=None)

Return input with invalid data masked and replaced by a fill value.
Invalid data means values of nan, inf, etc.

Parameters

[array_like] Input array, a (subclass of) ndarray.
mask

[sequence, optional] Mask. Must be convertible to an array of booleans with the same shape
as data. True indicates a masked (i.e. invalid) data.

Copy

[bool, optional] Whether to use a copy of a (True) or to fix a in place (False). Default is
True.

fill_value

[scalar, optional] Value used for fixing invalid data. Default is None, in which case the a .
£fi11l_value is used.

Returns

b
[MaskedArray] The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1l., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x

masked_array (data=[--, -1.0, nan, inf],

mask=[True, False, False, False],
fill _value=1le+20)
>>> np.ma.fix_invalid (x)
masked_array (data=[--, -1.0, --, —-1,
mask=[True, False, True, Truel,
fill_value=1e+20)

292 1. Array objects

NumPy Reference, Release 1.23.0

>>> fixed = np.ma.fix_invalid(x)

>>> fixed.data

array ([1.e+00, -1.e+00, 1.e+20, 1.e+20])
>>> x.data

array ([1., -1., nan, inf]

ma .masked_equal (x, value, copy=True)
Mask an array where equal to a given value.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays,
consider using masked_values (x, value).

See also:

masked_where
Mask where a condition is met.
masked_values

Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_equal (a, 2)
masked_array (data=[0, 1, --, 31,
mask=[False, False, True, False],
fill value=2)

ma .masked_greater (x, value, copy=True)

Mask an array where greater than a given value.
This function is a shortcut to masked_where, with condition = (x > value).

See also:

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> 3
array ([0, 1, 2, 31)
>>> ma.masked_greater (a, 2)
masked_array (data=[0, 1, 2, --],
mask=[False, False, False, Truel,
fill_value=999999)

1.7. Masked arrays 293

NumPy Reference, Release 1.23.0

ma .masked_greater_equal (x, value, copy=True)

Mask an array where greater than or equal to a given value.
This function is a shortcut to masked_where, with condition = (x >= value).

See also:

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_greater_equal (a, 2)
masked_array (data=[0, 1, --, —-1,
mask=[False, False, True, True],
fill value=999999)

ma .masked_inside (x, vi, v2, copy=True)

Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (vl <= x <=v2). The
boundaries v/ and v2 can be given in either order.

See also:

masked_where

Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside (x, -0.3, 0.3)
masked_array (data=[(0.31, 1.2, --, -——-, -0.4, -1.1],
mask=[False, False, True, True, False, False],
fill value=1le+20)

The order of vI and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array (data=[0.31, 1.2, -—-, ——, -0.4, -1.17,
mask=[False, False, True, True, False, False],
fill value=1le+20)

294

1. Array objects

NumPy Reference, Release 1.23.0

ma .masked_invalid (a, copy=True)

Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask is
conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but
accepts any array_like object.

See also:

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.arange (5, dtype=float)

>>> al[2] = np.NaN

>>> a[3] = np.PINF

>>> a

array ([0., 1., nan, inf, 4.])

>>> ma.masked_invalid(a)

masked_array (data=[0.0, 1.0, --, ——, 4.0],

mask=[False, False, True, True, False],

fill_value=1e+20)

ma .masked_1less (x, value, copy=True)

Mask an array where less than a given value.
This function is a shortcut to masked_where, with condition = (x < value).

See also:

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_less(a, 2)
masked_array (data=[-—-, -—, 2, 31,
mask=[True, True, False, False],
fill value=999999)

ma .masked_less_equal (x, value, copy=True)

Mask an array where less than or equal to a given value.
This function is a shortcut to masked_where, with condition = (x <= value).

See also:

1.7. Masked arrays 295

NumPy Reference, Release 1.23.0

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a np.arange (4)

>>> a
array ([0, 1, 2, 31)
>>> ma.masked_less_equal (a, 2)
masked_array (data=[--, --, -—, 31,

mask=[True, True, True, False],
fill_value=999999)

ma .masked_not_equal (x, value, copy=True)

Mask an array where not equal to a given value.
This function is a shortcut to masked_where, with condition = (x != value).

See also:

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_not_equal (a, 2)
masked_array (data=[--, --, 2, —-1,
mask=[True, True, False, True],
fill_value=999999)

ma .masked_object (x, value, copy=True, shrink=True)

Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use
masked_values instead.

Parameters

[array_like] Array to mask
value
[object] Comparison value

copy
[{True, False}, optional] Whether to return a copy of x.

296 1. Array objects

NumPy Reference, Release 1.23.0

shrink

[{True, False}, optional] Whether to collapse a mask full of False to nomask
Returns

result

[MaskedArray] The result of masking x where equal to value.
See also:

masked_where

Mask where a condition is met.
masked_equal

Mask where equal to a given value (integers).
masked_values

Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object (food, 'green_eggs')
>>> eat
masked_array(data=[--, 'ham'],
mask=[True, False],
fill_value='green_eggs',
dtype=object)
>>> # plain ol' ham is boring

>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object (fresh_food, 'green_eggs')

>>> eat

masked_array (data=["'cheese', 'ham', 'pineapple'],

mask=False,
fill_value='green_eggs',
dtype=object)

Note that mask is set to nomask if possible.

>>> eat
masked_array (data=['cheese', 'ham', 'pineapple'],
mask=False,
fill_value='green_eggs',
dtype=object)

ma .masked_outside (x, vI, v2, copy=True)

Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < vD)I(x > v2).
The boundaries v/ and v2 can be given in either order.

See also:

1.7. Masked arrays 297

NumPy Reference, Release 1.23.0

masked_where

Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma

>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array (data=[--, --, 0.01, 0.2, --, —-1,
mask=[True, True, False, False, True, Truel,

fill_value=1e+20)

The order of vI and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array (data=[--, --, 0.01, 0.2, —--, —-1,
mask=[True, True, False, False, True, True],
fill_value=1e+20)

ma .masked_values (x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using
isclose. The default tolerances for masked values are the same as those for i sclose.

For integer types, exact equality is used, in the same way as masked_equal.
The fill_value is set to value and the mask is set to nomask if possible.

Parameters

[array_like] Array to mask.
value
[float] Masking value.
rtol, atol
[float, optional] Tolerance parameters passed on to i sclose
copy
[bool, optional] Whether to return a copy of x.
shrink

[bool, optional] Whether to collapse a mask full of False to nomask.
Returns

result

[MaskedArray] The result of masking x where approximately equal to value.

298 1. Array objects

NumPy Reference, Release 1.23.0

See also:

masked_where
Mask where a condition is met.
masked_equal

Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([(1, 1.1, 2, 1.1, 31)
>>> ma.masked_values(x, 1.1)
masked_array (data=[1.0, --, 2.0, --, 3.0],
mask=[False, True, False, True, False],
fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values (x, 1.5)
masked_array (data=[1. , 1.1, 2. , 1.1, 3. 1,
mask=False,
fill_value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange (5)
>>> x
array ([0, 1, 2, 3, 41)
>>> ma.masked_values (x, 2)
masked_array (data=[0, 1, --, 3, 4],
mask=[False, False, True, False, False],
fill_value=2)
>>> ma.masked_equal (x, 2)
masked_array (data=[0, 1, --, 3, 4],
mask=[False, False, True, False, False],
fill_value=2)

ma .masked_where (condition, a, copy=True)

Mask an array where a condition is met.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked
in the output.

Parameters

condition

[array_like] Masking condition. When condition tests floating point values for equality, con-
sider using masked_values instead.

[array_like] Array to mask.

Copy

1.7. Masked arrays 299

NumPy Reference, Release 1.23.0

[bool] If True (default) make a copy of a in the result. If False modify a in place and return
a view.

Returns

result

[MaskedArray] The result of masking a where condition is True.
See also:

masked_values

Mask using floating point equality.
masked_equal

Mask where equal to a given value.
masked_not_equal

Mask where not equal to a given value.
masked_less_equal

Mask where less than or equal to a given value.
masked_greater_equal

Mask where greater than or equal to a given value.
masked_less

Mask where less than a given value.
masked_greater

Mask where greater than a given value.
masked_inside

Mask inside a given interval.
masked_outside

Mask outside a given interval.
masked_invalid

Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_where(a <= 2, a)
masked_array (data=[--, --, -—, 31,
mask=[True, True, True, False],
fill_value=999999)

Mask array b conditional on a.

300

1. Array objects

NumPy Reference, Release 1.23.0

fill_value=999999)

>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array (data=['a', 'b', —-, 'd'],
mask=[False, False, True, False],
fill_value='N/A"',
dtype='<U1")
Effect of the copy argument.
>>> ¢ = ma.masked_where(a <= 2, a)
>>> ¢
masked_array (data=[--, —--, --, 31,
mask=[True, True, True, False],
fill _value=999999)
>>> ¢c[0] = 99
>>> ¢
masked_array (data=[99, --, —--, 31,
mask=[False, True, True, False],
fill value=999999)
>>> a
array ([0, 1, 2, 31)
>>> ¢ = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> ¢
masked_array (data=[99, --, --, 31,
mask=[False, True, True, False],
fill _value=999999)
>>> a
array ([99, 1, 2, 31)
When condition or a contain masked values.
>>> a = np.arange (4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array (data=[0, 1, --, 31,
mask=[False, False, True, False],
fill value=999999)
>>> b = np.arange (4)
>>> b = ma.masked_where(b == 0, b)
>>> Db
masked_array (data=[--, 1, 2, 3],
mask=[True, False, False, False],
fill _value=999999)
>>> ma.masked_where(a == 3, Db)
masked_array (data=[--, 1, ——, —-1,
mask=[True, False, True, Truel,

1.7. Masked arrays

301

NumPy Reference, Release 1.23.0

Accessing the data

The underlying data of a masked array can be accessed in several ways:

* through the data attribute. The output is a view of the array as a numpy . ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

 throughthe __array__ method. The output is then a numpy . ndarray.

* by directly taking a view of the masked array as a numpy . ndarray or one of its subclass (which is actually what
using the data attribute does).

* by using the getdat a function.

None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule, where a
representation of the array is required without any masked entries, it is recommended to fill the array with the i1 led
method.

Accessing the mask

The mask of a masked array is accessible through its ma sk attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.

Another possibility is to use the getmask and getmaskarray functions. getmask (x) outputs the mask of x if
x is a masked array, and the special value noma sk otherwise. getmaskarray (x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with as
many elements as x.

Accessing only the valid entries

To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be calculated
with the numpy . logical_not function or simply with the ~ operator:

>>> x = ma.array ([[1, 2], [3, 4]1], mask=[[0, 11, [1, O11)
>>> x[~x.mask]
masked_array (data=[1, 4],
mask=[False, False],
fill_value=999999)

Another way to retrieve the valid data is to use the compressed method, which returns a one-dimensional ndarray
(or one of its subclasses, depending on the value of the baseclass attribute):

>>> x.compressed ()
array ([1, 41])

Note that the output of compressed is always 1D.

302 1. Array objects

NumPy Reference, Release 1.23.0

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special value
masked to them:

>>> x = ma.array ([1, 2, 31)
>>> x[0] = ma.masked
>>> x
masked_array (data=[--, 2, 31,
mask=[True, False, False],

fill_value=999999)

>>> y = ma.array ([[1, 2, 31, [4, 5, 61, [7, 8, 911)
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array (

data=[[1, --, 31,
4, 5, ——-1,
-—, 8, 911,
False, True, False],
False, False, True],

[True, False, Falsel]],

fill_value=999999)

>>> 7z = ma.array([1l, 2, 3, 4])

mask=[

[
(
[
[

>>> z[:-2] = ma.masked
>>> 7
masked_array (data=[--, —--, 3, 4],

mask=[True, True, False, False],
fill_value=999999)

A second possibility is to modify the ma sk directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the special
value nomask, that corresponds roughly to the boolean False. Trying to set an element of nomask will fail with a
TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> x = ma.array([1l, 2, 3], mask=[0, O, 11)

>>> x.mask = True
>>> x
masked_array (data=[--, --, --1,
mask=[True, True, Truel,

fill_value=999999,
dtype=int64)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans:

>>> x = ma.array([1l, 2, 31)
>>> x.mask = [0, 1, O]

>>> x

masked_array (data=[1, --, 31,

mask=[False, True, False],
fill_value=999999)

1.7. Masked arrays 303

https://docs.python.org/3/library/exceptions.html#TypeError

NumPy Reference, Release 1.23.0

Unmasking an entry

To unmask one or several specific entries, we can just assign one or several new valid values to them:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 11])
>>> x
masked_array (data=[1, 2, --1,

mask=[False, False, True],
fill_value=999999)
>>> x[-1] = 5
>>> x
masked_array (data=[1, 2, 5],
mask=[False, False, False],
fill_value=999999)

Note: Unmasking an entry by direct assignment will silently fail if the masked array has a hard mask, as shown by
the hardmask attribute. This feature was introduced to prevent overwriting the mask. To force the unmasking of an
entry where the array has a hard mask, the mask must first to be softened using the soften_mask method before the
allocation. It can be re-hardened with harden_mask:

>>> x = ma.array([1l, 2, 3], mask=[0, 0, 1], hard_mask=True)
>>> x
masked_array (data=[1, 2, --1,

mask=[False, False, Truel,
fill_value=999999)
>>> x[-1] = 5
>>> x
masked_array (data=[1, 2, —--1,
mask=[False, False, Truel,
fill_value=999999)
>>> x.soften_mask ()
masked_array (data=[1, 2, --],
mask=[False, False, Truel,
fill_value=999999)
>>> x[-1] = 5
>>> x
masked_array (data=[1, 2, 5],
mask=[False, False, False],
fill_value=999999)
>>> x.harden_mask ()
masked_array (data=[1, 2, 5],
mask=[False, False, False],
fill_value=999999)

To unmask all masked entries of a masked array (provided the mask isn’t a hard mask), the simplest solution is to assign
the constant noma sk to the mask:

>>> x = ma.array([1l, 2, 3], mask=[0, O, 17])

>>> x
masked_array (data=[1, 2, —--1,
mask=[False, False, Truel,
fill_value=999999)
>>> x.mask = ma.nomask
>>> x

masked_array (data=[1, 2, 3],
mask=[False, False, False],

(continues on next page)

304 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

fill value=999999)

Indexing and slicing

As a MaskedArray is asubclass of numpy . ndarray, it inherits its mechanisms for indexing and slicing.

When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding
entry of the mask is False) or the special value masked (if the corresponding entry of the mask is True):

>>> x = ma.array([1l, 2, 3], mask=[0, O, 17])
>>> x[0]

1

>>> x[-1]

masked

>>> x[-1] is ma.masked

True

If the masked array has named fields, accessing a single entry returns a numpy . void object if none of the fields are
masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.

>>> y = ma.masked_array ([(1,2), (3, 4

)1,
mask=[(0, 0), (0, 1)1,
C. dtype=[('a', int), ('b', int)])
>>> y[0]
(1, 2)
>>> y[-1]
(3, =)

When accessing a slice, the output is a masked array whose dat a attribute is a view of the original data, and whose mask
is either noma sk (if there was no invalid entries in the original array) or a view of the corresponding slice of the original
mask. The view is required to ensure propagation of any modification of the mask to the original.

>>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, 0O, 0, 11)

>>> mx = x[:3]
>>> mx
masked_array (data=[1, --, 3],

mask=[False, True, False],
fill_value=999999)
>>> mx[1] = -1
>>> mx
masked_array (data=[1, -1, 3],
mask=[False, False, False],
fill_value=999999)
>>> x.mask
array ([False, False, False, False, Truel)
>>> x.data
array ([1, -1, 3, 4, 51)

Accessing a field of a masked array with structured datatype returns a MaskedArray.

1.7. Masked arrays 305

NumPy Reference, Release 1.23.0

Operations on masked arrays

Arithmetic and comparison operations are supported by masked arrays. As much as possible, invalid entries of a masked
array are not processed, meaning that the corresponding dat a entries should be the same before and after the operation.

Warning: We need to stress that this behavior may not be systematic, that masked data may be affected by the
operation in some cases and therefore users should not rely on this data remaining unchanged.

The numpy . ma module comes with a specific implementation of most ufuncs. Unary and binary functions that have a
validity domain (such as 1 og or divide) return the masked constant whenever the input is masked or falls outside the
validity domain:

>>> ma.log([-1, 0, 1, 21)
masked_array (data=[--, -—-, 0.0, 0.6931471805599453],
mask=[True, True, False, False],
fill value=1le+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is
masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If the
ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments and its
domain), the context is processed and entries of the output masked array are masked wherever the corresponding input
fall outside the validity domain:

>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, O, O, 0, 11)
>>> np.log(x)
masked_array (data=[--, 0.0, -—-, 0.6931471805599453, --],
mask=[True, False, True, False, True],
fill value=1e+20)

1.7.3 Examples

Data with a given value representing missing data

Let’s consider a list of elements, x, where values of -9999. represent missing data. We wish to compute the average value
of the data and the vector of anomalies (deviations from the average):

>>> import numpy.ma as ma
>>> x = [0.,1.,-9999.,3.,4.]

>>> mx = ma.masked_values (x, —9999.)
>>> print (mx.mean())

2.0

>>> print (mx — mx.mean())

[-2.0 -1.0 —=— 1.0 2.0]

>>> print (mx.anom())

[-2.0 -1.0 —— 1.0 2.0]

306 1. Array objects

NumPy Reference, Release 1.23.0

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print (mx.filled (mx.mean()))
[0. 1. 2. 3. 4.]

Numerical operations

Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots of
negative numbers, etc.:

>>> import numpy.ma as ma

>>> x = ma.array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,01)
>>> y = ma.array([(1., 2., 0., 4., 5., 6.1, mask=[0,0,0,0,0,11)
>>> print (ma.sqrt(x/y))

[1.0 —— == 1.0 —— —-]

Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second
from the division by zero, and the last two where the inputs were masked.

Ignoring extreme values

Let’s consider an array d of floats between 0 and 1. We wish to compute the average of the values of d while ignoring
any data outside the range [0.2, 0.9]:

>>> d = np.linspace (0, 1, 20)
>>> print (d.mean () - ma.masked_outside(d, 0.2, 0.9).mean())
-0.05263157894736836

1.7.4 Constants of the numpy .ma module

In addition to the MaskedArray class, the numpy . ma module defines several constants.

numpy .ma .masked

The ma sked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to test
whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

>>> x = ma.array([1l, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array (data=[1, --, —-1,
mask=[False, True, True],
fill_value=999999)

numpy .ma.nomask
Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations
when the mask is not needed. It is represented internally as np.False_.

numpy .ma .masked_print_options
String used in lieu of missing data when a masked array is printed. By default, this stringis ' ——"'.

1.7. Masked arrays 307

NumPy Reference, Release 1.23.0

1.7.5 The MaskedArray class

class numpy.ma.MaskedArray

A subclass of ndarray designed to manipulate numerical arrays with missing data.
An instance of MaskedArray can be thought as the combination of several elements:
e The data, as aregular numpy . ndarray of any shape or datatype (the data).

* A boolean ma sk with the same shape as the data, where a True value indicates that the corresponding element
of the data is invalid. The special value noma sk is also acceptable for arrays without named fields, and indicates
that no data is invalid.

e A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy .
ndarray.

Attributes and properties of masked arrays

See also:
Array Attributes

MaskedArray.data
Returns the underlying data, as a view of the masked array.

If the underlying data is a subclass of numpy . ndarray, it is returned as such.

>>> x = np.ma.array (np.matrix ([[1, 2], [3, 41]1), mask=[[0, 11, [1, O011)
>>> x.data
matrix ([[1, 21,

[3, 411)

The type of the data can be accessed through the baseclass attribute.
MaskedArray.mask

Current mask.

MaskedArray.recordmask

Get or set the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans where
entries are True if all the fields are masked, False otherwise:

>>> x = np.ma.array ([(1, 1), (2, 2), (3, 3), (4, 4), (5, 51,
mask=[(0, 0), (1, 0), (1, 1), (O, 1), (0, O)1,

c dtype=[('a', int), ('b', int)])

>>> x.recordmask

array ([False, False, True, False, False])

MaskedArray.fill_value

The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

308 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complexl128]:
np.ma.array ([0, 1], dtype=dt) .get_fill_value()

999999

999999

1e+20
(1e+20+079)

>>> x = np.ma.array ([0, 1.], fill_value=-np.inf)
>>> x.fill_value

—-inf

>>> x.fill_value = np.pi

>>> x.fill_value

3.1415926535897931 # may vary

Reset to default:

>>> x.fill_value = None
>>> x.fill_value
le+20

MaskedArray.baseclass
Class of the underlying data (read-only).

MaskedArray.sharedmask
Share status of the mask (read-only).

MaskedArray.hardmask

Specifies whether values can be unmasked through assignments.

By default, assigning definite values to masked array entries will unmask them. When hardmask is True, the

mask will not change through assignments.

See also:

ma .MaskedArray.harden_mask

ma.MaskedArray.soften_mask

Examples
>>> x = np.arange (10)
>>> m = np.ma.masked_array(x, x>5)

>>> assert not m.hardmask

Since m has a soft mask, assigning an element value unmasks that element:

>>> m[8] = 42
>>> m
masked_array (data=[0, 1, 2, 3, 4, 5, —-——, ——, 42, —-1,

mask=[False, False, False, False, False, False,
True, True, False, Truel,
fill_value=999999)

After hardening, the mask is not affected by assignments:

1.7. Masked arrays

309

NumPy Reference, Release 1.23.0

>>> hardened np.ma.harden_mask (m)
>>> assert m.hardmask and hardened is m

fill_value=999999)

>>> m[:] = 23
>>> m
masked_array (data=[23, 23, 23, 23, 23, 23, ——, -—, 23, ——1,
mask=[False, False, False, False, False, False,
True, True, False, True],

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a

ndarray instance.

MaskedArray.base Base object if memory is from some other object.

MaskedArray.ctypes An object to simplify the interaction of the array with the
ctypes module.

MaskedArray.dtype Data-type of the array’s elements.

MaskedArray.flags Information about the memory layout of the array.

MaskedArray.itemsize Length of one array element in bytes.

MaskedArray.nbytes Total bytes consumed by the elements of the array.

MaskedArray.ndim Number of array dimensions.

MaskedArray.shape Tuple of array dimensions.

MaskedArray.size Number of elements in the array.

MaskedArray.strides Tuple of bytes to step in each dimension when traversing
an array.

MaskedArray.imag The imaginary part of the masked array.

MaskedArray.real The real part of the masked array.

MaskedArray.flat Return a flat iterator, or set a flattened version of self to
value.

MaskedArray.__array_priority_

attribute

ma.MaskedArray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

attribute

310

1. Array objects

NumPy Reference, Release 1.23.0

ma.MaskedArray.ctypes
An object to simplify the interaction of the array with the ctypes module.
This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module.

The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return
ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns

[Python object] Possessing attributes data, shape, strides, etc.
See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

_ctypes.data
A pointer to the memory area of the array as a Python integer. This memory area may contain data that is
not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and
data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble
that can include Python crashing. User Beware! The value of this attribute is exactly the same as self.
_array_interface_['data'] [0].

Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p ((a
+ b) .ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + Db) .
ctypes.data_as (ctypes.c_void_p)

_ctypes.shape

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding
to dtype ('p') on this platform (see c_intp). This base-type could be ctypes.c_int, ctypes.
c_long, or ctypes.c_longlong depending on the platform. The ctypes array contains the shape of
the underlying array.

_ctypes.strides

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape at-
tribute. This ctypes array contains the strides information from the underlying array. This strides information
is important for showing how many bytes must be jumped to get to the next element in the array.

_ctypes.data_as (obj)

Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_
isequivalentto self.data_as (ctypes.c_void_p) . Perhaps you want to use the data as a pointer to
a ctypes array of floating-point data: self.data_as (ctypes.POINTER (ctypes.c_double)).

The returned pointer will keep a reference to the array.

1.7. Masked arrays 311

https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 1.23.0

_ctypes.shape_as (0bj)

Return the shape tuple as an array of some other c-types type. For example: self.shape_as (ctypes.

c_shor

t).

_ctypes.strides_as (0bj)

Return the strides tuple as an array of some other c-types type.

stride

s_as (ctypes.c_longlong).

For example: self.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import
>>> x = np.
>>> x
array ([[0,
[2!

31962608 #

c_uint (0)

ctypes
array ([[0, 11, [2, 3]], dtype=np.int32)

1],
3]], dtype=int32)

>>> x.ctypes.data

may vary

>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fcl1fc200> # may vary
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_uint32)) .contents

>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_uint64)) .contents
c_ulong (4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fclfce60> # may vary
>>> x.ctypes.strides

<numpy.core._internal.c_long_Array_2 object at 0x7ff2fclff320> # may vary

property

property ma.MaskedArray.dtype

Data-type of the array’s elements.

Warning: Setting arr.dtype is discouraged and may be deprecated in the future. Setting will replace the
dt ype without modifying the memory (see also ndarray.viewand ndarray.astype).

Parameters

Non

Returns

d

See also:

€

[numpy dtype object]

ndarray.astype

Cast the values contained in the array to a new data-type.

312

1. Array objects

NumPy Reference, Release 1.23.0

ndarray.view

Create a view of the same data but a different data-type.

numpy . dtype

Examples

>>> X

array ([[0, 17,
(2, 311

>>> x.dtype

dtype ('"int32")

>>> type (x.dtype)
<type 'numpy.dtype'>

attribute

ma.MaskedArray.flags
Information about the memory layout of the array.

Notes
The f1ags object can be accessed dictionary-like (as in a. flags ['WRITEABLE']), or by using lowercased
attribute names (asin a.flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
* WRITEBACKIFCOPY can only be set False.
* ALIGNED can only be set True if the data is truly aligned.

e WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but
can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape [dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] ==
self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-
style contiguous arrays is true.

Attributes

C_CONTIGUOLUS (C)

The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F)

The data is in a single, Fortran-style contiguous segment.
OWNDATA (0)

The array owns the memory it uses or borrows it from another object.

1.7. Masked arrays 313

NumPy Reference, Release 1.23.0

WRITEABLE (W)

The data area can be written to. Setting this to False locks the data, making it read-only. A
view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of
a writeable array may be subsequently locked while the base array remains writeable. (The
opposite is not true, in that a view of a locked array may not be made writeable. However,
currently, locking a base object does not lock any views that already reference it, so under
that circumstance it is possible to alter the contents of a locked array via a previously created
writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError

exception.

ALIGNED (A)

The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X)

This array is a copy of some other

C-API function

PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array

will be updated with the contents of this array.
FNC

F_CONTIGUOUS and not C_CONTIGUOUS.
FORC

F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B)

ALIGNED and WRITEABLE.
CARRAY (CA)

BEHAVED and C_CONTIGUOUS.
FARRAY (FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

attribute

ma.MaskedArray.itemsize

Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1,2,3], dtype=np.complexl128)
>>> x.itemsize

16

attribute

ma.MaskedArray.nbytes

Total bytes consumed by the elements of the array.

314

1. Array objects

NumPy Reference, Release 1.23.0

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl128)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

attribute

ma.MaskedArray.ndim

Number of array dimensions.

Examples

>>> x = np.array([l, 2, 31)
>>> x.ndim

>>> y = np.zeros((2, 3, 4))
>>> y.ndim

property

property ma.MaskedArray.shape
Tuple of array dimensions.
The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-
place by assigning a tuple of array dimensions to it. As with numpy . reshape, one of the new shape dimensions

can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping
an array in-place will fail if a copy is required.

Warning: Setting arr . shape is discouraged and may be deprecated in the future. Using ndarray.
reshape is the preferred approach.

See also:

numpy . shape

Equivalent getter function.
numpy . reshape

Function similar to setting shape.
ndarray.reshape

Method similar to setting shape.

1.7. Masked arrays 315

NumPy Reference, Release 1.23.0

Examples

>>> x = np.array([l, 2, 3, 41)
>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))
>>> y.shape

(2, 3, 4)
>>> y.shape = (3, 8)
>>> vy

array ([[0., O 0. . . . 0
[o., o., 0., 0., 0., 0., 0., 0.]
[0., O 0. 0
>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2] .shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: Incompatible shape for in-place modification. Use
" .reshape () to make a copy with the desired shape.

.7

attribute

ma.MaskedArray.size

Number of elements in the array.

Equal to np.prod (a.shape), i.e., the product of the array’s dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of ob-
taining the same value (like the suggested np.prod (a.shape), which returns an instance of np.int_), and
may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl128)
>>> x.size

30

>>> np.prod(x.shape)

30

attribute

ma.MaskedArray.strides

Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (1 [0], i[1], ., 1[n]) inan array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

316

1. Array objects

NumPy Reference, Release 1.23.0

Warning: Setting arr.strides is discouraged and may be deprecated in the future. numpy.I1ib.
stride_tricks.as_strided should be preferred to create a new view of the same data in a safer way.

See also:

numpy.lib.stride tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 41,
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to
the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape (np.arange (2*3*4), (2,3,4))
>>> y
o, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
2, 13, 14, 15
6, 17, 18, 191,
(20, 21, 22, 23111)
>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange(5*6*7*8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

>>> 1 = np.array([3,5,2,2])

>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

property

property ma.MaskedArray.imag

The imaginary part of the masked array.

This property is a view on the imaginary part of this MaskedArray.

1.7. Masked arrays 317

NumPy Reference, Release 1.23.0

See also:

real

Examples

>>> x = np.ma.array([1+1.3, -23j, 3.45+1.63], mask=[False, True, False])
>>> x.imag
masked_array (data=[1.0, --, 1.6],
mask=[False, True, False],
fill value=1e+20)

property
property ma.MaskedArray.real
The real part of the masked array.

This property is a view on the real part of this MaskedArray.

See also:

imag

Examples

>>> x = np.ma.array([1+1.3, -23j, 3.45+1.63j], mask=[False, True, False])
>>> x.real
masked_array (data=[1.0, --, 3.45],
mask=[False, True, False],
fill value=le+20)

property
property ma.MaskedArray.flat
Return a flat iterator, or set a flattened version of self to value.

attribute

ma.MaskedArray.__array_priority _ = 15

1.7.6 MaskedArray methods

See also:

Array methods

318 1. Array objects

NumPy Reference, Release 1.23.0

Conversion

MaskedArray.__float_ ()

Convert to float.

MaskedArray.__int_ ()

Convert to int.

MaskedArray.view([dtype, type, fill_value])

Return a view of the MaskedArray data.

MaskedArray.astype(dtypel, order, casting, ...

D

Copy of the array, cast to a specified type.

MaskedArray.byteswap([inplace])

Swap the bytes of the array elements

MaskedArray.compressed()

Return all the non-masked data as a 1-D array.

MaskedArray.filled([fill_value])

Return a copy of self, with masked values filled with a
given value.

MaskedArray.tofile(fid[, sep, format])

Save a masked array to a file in binary format.

MaskedArray.toflex()

Transforms a masked array into a flexible-type array.

MaskedArray.tolist([fill_value])

Return the data portion of the masked array as a hierar-
chical Python list.

MaskedArray.torecords()

Transforms a masked array into a flexible-type array.

MaskedArray.tostring([fill_value, order])

A compatibility alias for tobytes, with exactly the same
behavior.

MaskedArray.tobytes([fill_value, order])

Return the array data as a string containing the raw bytes
in the array.

method

ma.MaskedArray.__float__ ()

Convert to float.
method

ma.MaskedArray.__int

Convert to int.

method

0

ma.MaskedArray.view (dfype=None, type=None, fill_value=None)

Return a view of the MaskedArray data.

Parameters

dtype

[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. The default, None, results in the view having the same data-type as a. As with
ndarray.view, dtype can also be specified as an ndarray sub-class, which then specifies
the type of the returned object (this is equivalent to setting the t ype parameter).

type

[Python type, optional] Type of the returned view, either ndarray or a subclass. The default

None results in type preservation.

fill_value

[scalar, optional] The value to use for invalid entries (None by default). If None, then this
argument is inferred from the passed dt ype, or in its absence the original array, as discussed

in the notes below.

See also:

1.7. Masked arrays

319

NumPy Reference, Release 1.23.0

numpy.ndarray.view

Equivalent method on ndarray object.

Notes

a.view () is used two different ways:

a.view (some_dtype) or a.view (dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view (type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

If fi11_wvalue is not specified, but dt ype is specified (and is not an ndarray sub-class), the fi11_ value
of the MaskedArray will be reset. If neither £i11_value nor dt ype are specified (or if dt ype is an ndarray
sub-class), then the fill value is preserved. Finally, if £i11_value is specified, but dt ype is not, the fill value
is set to the specified value.

Fora.view (some_dtype),if some_dtype has a different number of bytes per entry than the previous dtype
(for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted
just from the superficial appearance of a (shown by print (a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view
may give different results.

method

ma.MaskedArray.astype (dtype, order="K’, casting=unsafe’, subok="True, copy=True)

Copy of the array, cast to a specified type.

Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.
order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’
order otherwise, and ‘K’ means as close to the order the array elements appear in memory as
possible. Default is ‘K.

casting

[{'no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.
¢ ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.
* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
* ‘unsafe’ means any data conversions may be done.
subok

[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

320

1. Array objects

NumPy Reference, Release 1.23.0

Copy

[bool, optional] By default, astype always returns a newly allocated array. If this is set to false,
and the dt ype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns

arr_t

[ndarray] Unless copy is False and the other conditions for returning the input array are sat-
isfied (see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype (t).

Notes
Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for “unsafe”
casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string dtype
length is long enough to store the max integer/float value converted.

Examples
>>> x = np.array([1, 2, 2.5])
>>> x

array ([1. , 2., 2.51)

>>> x.astype (int)
array ([1, 2, 21)

method

ma.MaskedArray .byteswap (inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters

inplace

[bool, optional] If True, swap bytes in-place, default is False.

Returns

1.7. Masked arrays 321

NumPy Reference, Release 1.23.0

out

[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1l, 256, 8755], dtype=np.intl16)
>>> list (map (hex, A))

['Ox1', '0x100', '0x2233']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=int16)

>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap ()
array ([b'ceg', b'fac'], dtype='|S3")

A.newbyteorder () .byteswap () produces an array with the same values

but different representation in memory

>>> A = np.array([l, 2, 31)

>>> A.view(np.uint8)

array([(1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0O, O, O, 3, 0O, O, 0O, 0, O,
0, 0], dtype=uint8)

>>> A.newbyteorder () .byteswap (inplace=True)

array ([1, 2, 3])

>>> A.view(np.uint8)

array((o, o, o, o0, o, o, 0, 2, o, o, 0o, 0, 0, o, 0, 2, 0, 0, 0, 0, 0, O,
0, 3], dtype=uint8)

method

ma.MaskedArray.compressed ()

Return all the non-masked data as a 1-D array.

Returns

data

[ndarray] A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

322 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> x = np.ma.array(np.arange (5), mask=[0]*2 + [1]*3)
>>> x.compressed ()

array ([0, 1])

>>> type (x.compressed())

<class 'numpy.ndarray'>

method

ma.MaskedArray.filled (fill_value=None)

Return a copy of self, with masked values filled with a given value. However, if there are no masked values to fill,
self will be returned instead as an ndarray.

Parameters

fill_value

[array_like, optional] The value to use for invalid entries. Can be scalar or non-scalar. If non-
scalar, the resulting ndarray must be broadcastable over input array. Default is None, in which
case, the £111_value attribute of the array is used instead.

Returns

filled_array

[ndarray] A copy of self with invalid entries replaced by fill_value (be it the function argu-
ment or the attribute of self), or self itself as an ndarray if there are no invalid entries to
be replaced.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()

array ([1, 2, -999, 4, -999])
>>> x.filled(fill_value=1000)
array ([1, 2, 1000, 4, 10007])

>>> type(x.filled())
<class 'numpy.ndarray'>

Subclassing is preserved. This means that if, e.g., the data part of the masked array is a recarray, 71 11ed returns

a recarray:
>>> x = np.array ([(-1, 2), (-3, 4)], dtype='18,18") .view(np.recarray)
>>> m = np.ma.array(x, mask=[(True, False), (False, True)])
>>> m.filled()
rec.array ([(999999, 2), «(-3, 999999)17,
dtype=[('f0', '<i8"), ('f1', '<ig8")])
method

1.7. Masked arrays 323

NumPy Reference, Release 1.23.0

ma.MaskedArray.tofile (fid, sep=", format="%s’)

Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

Raises

NotImplementedError

When tofileis called.

method

ma.MaskedArray.toflex ()

Transforms a masked array into a flexible-type array.
The flexible type array that is returned will have two fields:
* the _data field stores the _data part of the array.

¢ the _mask field stores the _mask part of the array.
Parameters
None
Returns

record

[ndarray] A new flexible-type ndarray with two fields: the first element containing a value,
the second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (£111_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],1[14,5,6]1,17,8,9]1, mask=[0] + [1,0]*4)
>>> x
masked_array (
data=[[1, --, 31,
=, 5, ——1,
7, ——, 911,
False, True, False],
True, False, Truel,
[False, True, Falsel],
fill_value=999999)
>>> x.toflex ()
array ([[(1, False), (2, True), (3, False)],

mask=[

(
[
[
(

(continues on next page)

324

1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

[(4, True), (5, False), (6, True)],
[(7, False), (8, True), (9, False)ll,
dtype=[('_data', '<i8'), ('_mask', '?')1)

method

ma.MaskedArray.tolist (fill_value=None)
Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type. Masked values are converted to fi11_value.

If fi11_valueis None, the corresponding entries in the output list will be None.

Parameters

fill_value

[scalar, optional] The value to use for invalid entries. Default is None.
Returns

result

[list] The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6]1, [7,8,9]], mask=[0] + [1,0]1%*4)
>>> x.tolist ()

[[1, None, 3], [None, 5, None], [7, None, 9]]

>>> x.tolist (-999)

[r1, -999, 31, [-999, 5, -9991, [7, -999, 911

method

ma.MaskedArray.torecords ()
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:
 the _data field stores the _data part of the array.

e the _mask field stores the _mask part of the array.
Parameters
None
Returns

record

[ndarray] A new flexible-type ndarray with two fields: the first element containing a value,
the second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

1.7. Masked arrays

NumPy Reference, Release 1.23.0

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (f111_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,31,[4,5,6]1,[7,8,91]1, mask=[0] + [1,0]%*4)
>>> x
masked_array (
data=[[1, --, 31,
-—=, 5, ——1,
7, ——, 911,
False, True, Falsel],
True, False, True]
[False, True, False]
fill_value=999999)
>>> x.toflex ()
array ([[(1, False), (2, True), (3)
[(4, True), (5, False), (6, True)
(8 (9)

mask=][

[
(
[
[

o~

4

[(7, False), , True),
dtype=[('_data', '<i8"), ('_l

method

ma.MaskedArray.tostring (fill_value=None, order="C’)

A compatibility alias for t obytes, with exactly the same behavior.
Despite its name, it returns byfes not st rs.

Deprecated since version 1.19.0.

method

ma.MaskedArray.tobytes (fill_value=None, order="C")

Return the array data as a string containing the raw bytes in the array.
The array is filled with a fill value before the string conversion.
New in version 1.9.0.

Parameters

fill_value

[scalar, optional] Value used to fill in the masked values. Default is None, in which case
MaskedArray.fill_value is used.

order
[{‘C’,’F’A’}, optional] Order of the data item in the copy. Default is ‘C’.
¢ ‘C’ - C order (row major).
* ‘F’ — Fortran order (column major).
¢ ‘A’ — Any, current order of array.

¢ None — Same as ‘A’.

See also:

326

1. Array objects

https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 1.23.0

numpy .ndarray . tobytes
tolist, tofile

Notes

Asfor ndarray. tobytes, information about the shape, dtype, etc., but also about £i11_value, will be lost.

Examples

>>> x = np.ma.array(np.array ([[1, 2], [3, 4]1]), mask=[[0, 1], [1, O011])

>>> x.tobytes ()
b'\x01\x00\x00\x00\x00\x00\x00\x00?B\x0f\x00\x00\x00\x00\x00?B\x0f\x00\x00\=x00\
—x00\x00\x04\x00\x00\x00\x00\x00\x00\x00"

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted

as an n-tuple.

MaskedArray. flatten([order]) Return a copy of the array collapsed into one dimension.
MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
MaskedArray.reshape(*s, ¥*kwargs) Give a new shape to the array without changing its data.

MaskedArray. resize(newshape[, refcheck, order])

MaskedArray.squeeze([axis]) Remove axes of length one from a.
MaskedArray.swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 inter-
changed.
MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.
MaskedArray.T The transposed array.
method

ma.MaskedArray.flatten (order="C")

Return a copy of the array collapsed into one dimension.

Parameters

order

[{‘C, F, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns

[ndarray] A copy of the input array, flattened to one dimension.

See also:

1.7. Masked arrays

327

NumPy Reference, Release 1.23.0

ravel
Return a flattened array.
flat

A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,4]1])
>>> a.flatten()
array ([1, 2, 3,
>>> a.flatten('F
array ([1, 3, 2, 4

41)

o~

)

method

ma.MaskedArray.ravel (order="C’)

Returns a 1D version of self, as a view.

Parameters

order

[{‘C, F, ‘A’, 'K’}, optional] The elements of a are read using this index order. ‘C’ means
to index the elements in C-like order, with the last axis index changing fastest, back to the
first axis index changing slowest. ‘F" means to index the elements in Fortran-like index order,
with the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer to
the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order if m
is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the elements in
the order they occur in memory, except for reversing the data when strides are negative. By
default, ‘C’ index order is used.

Returns

MaskedArray

Output view is of shape (self.size,) (or (np.ma.product (self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3]1,[4,5,6]1,[17,8,91]1, mask=[0] + [1,0]%*4)
>>> x
masked_array (
data=[[1, --, 31,
[-——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel,
[False, True, Falsel]],
fill_value=999999)
>>> x.ravel ()
masked_array (data=[(1, --, 3, -—-, 5, ——, 7, ——, 91,
mask=[False, True, False, True, False, True, False, True,

(continues on next page)

328 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

False],
fill_value=999999)

method

ma.MaskedArray.reshape (*s, **kwargs)

Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape. The result is a view on the original array;
if this is not possible, a ValueError is raised.

Parameters

shape

[int or tuple of ints] The new shape should be compatible with the original shape. If an integer
is supplied, then the result will be a 1-D array of that length.

order
[{‘C, ‘F’}, optional] Determines whether the array data should be viewed as in C (row-major)
or FORTRAN (column-major) order.

Returns

reshaped_array

[array] A new view on the array.
See also:

reshape

Equivalent function in the masked array module.
numpy .ndarray.reshape

Equivalent method on ndarray object.
numpy . reshape

Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use a . shape
= s

1.7. Masked arrays 329

NumPy Reference, Release 1.23.0

Examples

>>> x = np.ma.array([[1,2],([3,4]], mask=[1,0,0,1])

>>> x
masked_array (
data=[[-—-, 2],
(3, ——11,
mask=[[True, False]

[False, Truell],
fill_value=999999)
>>> x = x.reshape((4,1))
>>> x
masked_array (

data=[[--1,
(21,
(31,
[——=11,

mask=[[True],
[False],
[False],
[Truell,

fill value=999999)

method

ma.MaskedArray.resize (newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own its
data and therefore cannot safely be resized in place. Use the numpy . ma . resize function instead.

This method is difficult to implement safely and may be deprecated in future releases of NumPy.
method

ma.MaskedArray.squeeze (axis=None)

Remove axes of length one from a.
Refer to numpy . squeeze for full documentation.

See also:

numpy . squeeze

equivalent function

method

ma.MaskedArray.swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

numpy . swapaxes

equivalent function

330 1. Array objects

NumPy Reference, Release 1.23.0

method

ma.MaskedArray.transpose (*axes)
Returns a view of the array with axes transposed.
For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D

column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does af:, np.newaxis].
For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their order indicates

how the axes are permuted (see Examples). If axes are not provided and a . shape = (i[0], i[1],
i[n-2], i[n-1]),thena.transpose().shape = (i[n-1], i[n-2], ... if[11, 411[01).
Parameters
axes

[None, tuple of ints, or 7 ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns

out

[ndarray] View of a, with axes suitably permuted.
See also:

transpose

Equivalent function
ndarray.T

Array property returning the array transposed.
ndarray.reshape

Give a new shape to an array without changing its data.

Examples

>>> a = np.array ([[1, 2], [3, 411)

>>> a
array ([[1, 2],

[3, 411)
>>> a.transpose ()
array ([[1, 31,

[2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,

[2, 411)
>>> a.transpose (1, 0)
array ([[1, 31,

[2, 411)

1.7. Masked arrays 331

NumPy Reference, Release 1.23.0

property
property ma.MaskedArray.T

The transposed array.

Same as self.transpose ().

See also:
transpose
Examples
>>> x = np.array ([[1.,2.],[3.,4.11])
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1.,2.,3.,4.])
>>> x
array ([1., 2., 3., 4.71)
>>> x.T
array ([1., 2., 3., 4.71)

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

MaskedArray.argmax([axis, fill_value, out, ...]) Returns array of indices of the maximum values along the
given axis.

MaskedArray.argmin([axis, fill_value, out, ...]) Return array of indices to the minimum values along the
given axis.

MaskedArray.argsort([axis, kind, order, ...]) Return an ndarray of indices that sort the array along the
specified axis.

MaskedArray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of
choices.

MaskedArray.compress(condition[, axis, out]) Return a where condition is True.

MaskedArray.diagonal([offset, axisl, axis2]) Return specified diagonals.

MaskedArray. fill(value) Fill the array with a scalar value.

MaskedArray.item(*args) Copy an element of an array to a standard Python scalar
and return it.

MaskedArray.nonzero() Return the indices of unmasked elements that are not
Zero.

MaskedArray.put(indices, values[, mode]) Set storage-indexed locations to corresponding values.

MaskedArray. repeat(repeats[, axis]) Repeat elements of an array.

MaskedArray.searchsorted(vl], side, sorter]) Find indices where elements of v should be inserted in a
to maintain order.

MaskedArray. sort([axis, kind, order, ...]) Sort the array, in-place

MaskedArray . take(indices[, axis, out, mode])

332 1. Array objects

NumPy Reference, Release 1.23.0

method

ma.MaskedArray.argmax (axis=None, fill_value=None, out=None, *, keepdims=<no value>)

Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the
value fill_value.

Parameters

axis

[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value

[scalar or None, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out

[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns

index_array

[{integer_array}]

Examples

>>> a = np.arange (6) .reshape (2, 3)
>>> a.argmax ()

5

>>> a.argmax (0)

array ([1, 1, 1])

>>> a.argmax (1)

array ([2, 2])

method

ma.MaskedArray.argmin (axis=None, fill_value=None, out=None, *, keepdims=<no value>)

Return array of indices to the minimum values along the given axis.

Parameters

axis

[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value

[scalar or None, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out

[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

1.7. Masked arrays 333

NumPy Reference, Release 1.23.0

Returns

ndarray or scalar

If multi-dimension input, returns a new ndarray of indices to the minimum values along the
given axis. Otherwise, returns a scalar of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array (np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> x
masked_array (
data=[[-—-, ——-],
(2, 311,
mask=[[True, True],
[False, Falsell],
fill_value=999999)
>>> x.argmin (axis=0, fill_value=-1)
array ([0, 0])
>>> x.argmin (axis=0, fill_value=9)
array ([1, 11)

method

ma.MaskedArray.argsort (axis=<no value>, kind=None, order=None, endwith=True, fill_value=None)

Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to

fill value.

Parameters

axis
[int, optional] Axis along which to sort. If None, the default, the flattened array is used.

Changed in version 1.13.0: Previously, the default was documented to be -1, but that was in
error. At some future date, the default will change to -1, as originally intended. Until then, the
axis should be given explicitly when arr.ndim > 1, to avoid a FutureWarning.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.
order

[list, optional] When a is an array with fields defined, this argument specifies which fields to
compare first, second, etc. Not all fields need be specified.

endwith

[{True, False}, optional] Whether missing values (if any) should be treated as the largest values
(True) or the smallest values (False) When the array contains unmasked values at the same
extremes of the datatype, the ordering of these values and the masked values is undefined.

fill_value

[scalar or None, optional] Value used internally for the masked values. If £ill_value is
not None, it supersedes endwith.

Returns

334 1. Array objects

NumPy Reference, Release 1.23.0

index_array
[ndarray, int] Array of indices that sort a along the specified axis. In other words,
al[index_array] yields a sorted a.

See also:

ma.MaskedArray.sort

Describes sorting algorithms used.
lexsort

Indirect stable sort with multiple keys.
numpy .ndarray. sort

Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array (data=[3, 2, —--1,
mask=[False, False, Truel,
fill_value=999999)
>>> a.argsort ()
array ([1, 0, 2])

method

ma.MaskedArray.choose (choices, out=None, mode=raise’)

Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.

See also:

numpy .choose

equivalent function

method

ma.MaskedArray.compress (condition, axis=None, out=None)

Return a where condition is True.
If condition is a MaskedArray, missing values are considered as False.

Parameters

condition

[var] Boolean 1-d array selecting which entries to return. If len(condition) is less than the size
of a along the axis, then output is truncated to length of condition array.

1.7. Masked arrays 335

NumPy Reference, Release 1.23.0

axis
[{None, int}, optional] Axis along which the operation must be performed.
out

[{None, ndarray}, optional] Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if necessary.

Returns

result

[MaskedArray] A MaskedArray object.

Notes

Please note the difference with compressed ! The output of compress has a mask, the output of
compressed does not.

Examples

>>> x = np.ma.array([[1,2,3]1,[4,5,6]1,[17,8,91], mask=[0] + [1,0]%*4)
>>> x
masked_array (
data=[[1, --, 31,
[-——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel,
[False, True, Falsel],
fill_value=999999)
>>> x.compress ([1, 0, 11)
masked_array (data=[1, 31,
mask=[False, False],
fill_value=999999)

>>> x.compress([1l, 0, 1], axis=1)
masked_array (
data=[[1, 3],
[——» =1,
(7, 911,
mask=[[False, False],
[True, True],
[False, False]l,
fill_value=999999)

method

ma.MaskedArray.diagonal (offset=0, axisl =0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous
NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:

336 1. Array objects

NumPy Reference, Release 1.23.0

numpy .diagonal

equivalent function

method

ma.MaskedArray.£ill (value)

Fill the array with a scalar value.

Parameters

value

[scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 21)
>>> a.fill (0)

>>> a

array ([0, 0])

>>> a = np.empty(2)

>>> a.fill (1)

>>> a

array ([1., 1.1)

method

ma.MaskedArray.item (*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters

*args

[Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which element

to copy and return.

« tuple of int_types: functions as does a single int_type argument, except that the argument is

interpreted as an nd-index into the array.

Returns

[Standard Python scalar object] A copy of the specified element of the array as a suitable

Python scalar

1.7. Masked arrays

337

NumPy Reference, Release 1.23.0

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields
are defined, in which case a tuple is returned.

1itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be
useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s
optimized math.

Examples
>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 6],
[1, 3, 6],
[1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

ma.MaskedArray.nonzero ()

Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension.
The corresponding non-zero values can be obtained with:

’a[a.nonzero()}

To group the indices by element, rather than dimension, use instead:

’np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None
Returns

tuple_of_arrays

[tuple] Indices of elements that are non-zero.
See also:

numpy.nonzero

338 1. Array objects

NumPy Reference, Release 1.23.0

Function operating on ndarrays.
flatnonzero

Return indices that are non-zero in the flattened version of the input array.
numpy .ndarray.nonzero

Equivalent ndarray method.
count_nonzero

Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array (
data=[[1., 0., O
[0., 1., 0.]
[0., 0., 1
mask=False,
fill _value=1e+20)
>>> x.nonzero ()
(array ([0, 1, 21), array ([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array (
data=[[1.0, 0.0, 0.07],
-—, 0.071,
0.0, 1.011,
False, False, False],
False, True, False],
[False, False, False]],
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 2]1), array ([0, 21))

0.0,
0.0

mask=[

[
[
[
[

Indices can also be grouped by element.

>>> np.transpose (x.nonzero())
array ([[0, 0],
(2, 211

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the a
where the condition is true.

>>> a = ma.array ([[1,2,31,14,5,6]1,17,8,911)
>>> a > 3
masked_array (
data=[[False, False, False],
[True, True, Truel],

(continues on next page)

1.7. Masked arrays 339

NumPy Reference, Release 1.23.0

(continued from previous page)

[True, True, Truel],
mask=False,
fill_value=True)
>>> ma.nonzero(a > 3)
(array([12, 2, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero ()
(array (a1, 2, 1, 2, 2, 21), array ([0, 1, 2, 0, 1, 21))

method

ma.MaskedArray.put (indices, values, mode="raise’)

Set storage-indexed locations to corresponding values.

Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat.
If values has some masked values, the initial mask is updated in consequence, else the corresponding values are
unmasked.

Parameters

indices

[1-D array_like] Target indices, interpreted as integers.
values

[array_like] Values to place in self._data copy at target indices.
mode

[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave. ‘raise’ :
raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> x = np.ma.array([[1,2,3]1,1[4,5,6]1,17,8,911, mask=[0] + [1,0]%*4)
>>> x
masked_array (

data=[[1, --, 31,

[777 5! 77}/

[71 T 9]}!
mask=[[False, True, False],

[

True, False, True],
[False, True, Falsel],
fill _value=999999)
>>> x.put([0,4,8],[10,20,307)
>>> x
masked_array (
data=[[10, --, 31,
[-——, 20, —-1,

(continues on next page)

1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

[30]]/

fill _value=999999)

[7
mask=[[False, True, False],
[True, False, Truel],
[False, True, Falsel],
fill_value=999999)
>>> x.put (4,999)
>>> x
masked_array (
data=[[10, --, 31,
[-—, 999,
(7, ——, 3011,
mask=[[False, True, False],
[True, False, Truel],
[False, True, Falsel]]

’

method

ma.MaskedArray.repeat (repeats, axis=None)

Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:

numpy . repeat

equivalent function

method

ma.MaskedArray.searchsorted (v, side=left’, sorter=None)

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:

numpy . searchsorted

equivalent function

method

ma.MaskedArray.sort (axis=- 1, kind=None, order=None, endwith="True, fill_value=None)

Sort the array, in-place

Parameters

[array_like] Array to be sorted.

axis

[int, optional] Axis along which to sort. If None, the array is flattened before sorting. The

default is -1, which sorts along the last axis.

1.7. Masked arrays

341

NumPy Reference, Release 1.23.0

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.
order

[list, optional] When a is a structured array, this argument specifies which fields to compare
first, second, and so on. This list does not need to include all of the fields.

endwith

[{True, False}, optional] Whether missing values (if any) should be treated as the largest values
(True) or the smallest values (False) When the array contains unmasked values sorting at the
same extremes of the datatype, the ordering of these values and the masked values is undefined.

fill_value
[scalar or None, optional] Value used internally for the masked values. If £i11 value is
not None, it supersedes endwith.

Returns

sorted_array

[ndarray] Array of the same type and shape as a.
See also:

numpy .ndarray.sort

Method to sort an array in-place.
argsort

Indirect sort.
lexsort

Indirect stable sort on multiple keys.
searchsorted

Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # Default
>>> a.sort ()
>>> a
masked_array (data=[1, 3, 5, --, ——1,
mask=[False, False, False, True, True],
fill _value=999999)

342 1. Array objects

NumPy Reference, Release 1.23.0

>>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # Put missing values in the front
>>> a.sort (endwith=False)
>>> a
masked_array (data=[--, --, 1, 3, 5],
mask=[True, True, False, False, False],
fill_value=999999)
>>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # fill_value takes over endwith
>>> a.sort (endwith=False, fill_value=3)
>>> a
masked_array(data=[(1, --, --, 3, 51,
mask=[False, True, True, False, False],
fill_value=999999)
method

ma.MaskedArray .take (indices, axis=None, out=None, mode=raise’)

Pickling and copy

MaskedArray.copy([order])

Return a copy of the array.

MaskedArray.dump(file)

Dump a pickle of the array to the specified file.

MaskedArray.dumps()

Returns the pickle of the array as a string.

method

ma.MaskedArray.copy (order="C’)

Return a copy of the array.

Parameters

order

[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible. (Note that this function and numpy . copy are very similar
but have different default values for their order= arguments, and this function always passes

sub-classes through.)

See also:

numpy . copy

Similar function with different default behavior

numpy . copyto

1.7. Masked arrays

343

NumPy Reference, Release 1.23.0

Notes

This function is the preferred method for creating an array copy. The function numpy. copy is similar, but it
defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

’>>> x = np.array([[1,2,3]1,[4,5,6]], order='F")

>>> y = x.copy ()

’>>> x.£111(0)

>>> x
array ([[0, 0, 0],
[0, 0, 01])

>>> y
array ([[1, 2, 3]

>>> y.flags['C_CONTIGUOUS']
True

method

ma.MaskedArray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters

file
[str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

ma.MaskedArray.dumps ()
Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.

Parameters

None

344 1. Array objects

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

Calculations

MaskedArray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.

MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

MaskedArray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min,
max].

MaskedArray.conj() Complex-conjugate all elements.

MaskedArray.conjugate() Return the complex conjugate, element-wise.

MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the array elements over
the given axis.

MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the array elements over the
given axis.

MaskedArray.max([axis, out, fill_value, ...]) Return the maximum along a given axis.

MaskedArray .mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given
axis.

MaskedArray.min([axis, out, fill_value, ...]) Return the minimum along a given axis.

MaskedArray.prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given
axis.

MaskedArray.product([axis, dtype, out, keep- Return the product of the array elements over the given

dims]) axis.

MaskedArray.ptp([axis, out, fill_value, ...]) Return (maximum - minimum) along the given dimension
(i.e.

MaskedArray. round([decimals, out]) Return each element rounded to the given number of dec-
imals.

MaskedArray . std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along
given axis.

MaskedArray . sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.

MaskedArray.trace([offset, axis], axis2, ...]) Return the sum along diagonals of the array.

MaskedArray . var([axis, dtype, out, ddof, ...]) Compute the variance along the specified axis.

method

ma.MaskedArray.all (axis=None, out=None, keepdims=<no value>)

Returns True if all elements evaluate to True.

The output array is masked where all the values along the given axis are masked: if the output would have been a
scalar and that all the values are masked, then the output is masked.

Refer to numpy . a1 for full documentation.

See also:

numpy.ndarray.all

corresponding function for ndarrays

numpy.all

equivalent function

1.7. Masked arrays

345

NumPy Reference, Release 1.23.0

Examples
>>> np.ma.array ([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True
method

ma .MaskedArray.anom (axis=None, dtype=None)

Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along
the given axis.

Parameters

axis

[int, optional] Axis over which the anomalies are taken. The default is to use the mean of the
flattened array as reference.

dtype
[dtype, optional]
Type to use in computing the variance. For arrays of integer type

the default is float32; for arrays of float types it is the same as the array type.
See also:

mean

Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array (data=[-1., 0., 1.1,
mask=False,
fill_value=1e+20)

method

ma .MaskedArray .any (axis=None, out=None, keepdims=<no value>)

Returns True if any of the elements of a evaluate to True.
Masked values are considered as False during computation.
Refer to numpy . any for full documentation.

See also:

numpy .ndarray.any

corresponding function for ndarrays

346 1. Array objects

NumPy Reference, Release 1.23.0

numpy . any

equivalent function

method

ma.MaskedArray.clip (min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy . c11p for full documentation.

See also:

numpy.clip

equivalent function

method

ma.MaskedArray.conj ()

Complex-conjugate all elements.
Refer to numpy . con jugate for full documentation.

See also:

numpy.conjugate

equivalent function

method

ma.MaskedArray.conjugate ()

Return the complex conjugate, element-wise.
Refer to numpy . conjugate for full documentation.

See also:

numpy.conjugate

equivalent function

method

ma.MaskedArray.cumprod (axis=None, dtype=None, out=None)

Return the cumulative product of the array elements over the given axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.

Refer to numpy . cumprod for full documentation.

See also:

numpy .ndarray . cumprod
corresponding function for ndarrays
numpy . cumprod

equivalent function

1.7. Masked arrays 347

NumPy Reference, Release 1.23.0

Notes

The mask is lost if out is not a valid MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.
method

ma .MaskedArray . cumsum (axis=None, dtype=None, out=None)

Return the cumulative sum of the array elements over the given axis.

Masked values are set to 0 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.

Refer to numpy . cumsum for full documentation.

See also:

numpy .ndarray.cumsum
corresponding function for ndarrays
numpy . cumsum

equivalent function

Notes

The mask is lost if out is not a valid ma . MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[(0,0,0,1,1,1,0,0,0,01)
>>> marr.cumsum ()
masked_array(data=[(0, 1, 3, -—-, --, ——, 9, 16, 24, 331,
mask=[False, False, False, True, True, True, False, False,
False, False],
fill_value=999999)

method

ma .MaskedArray .max (axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the maximum along a given axis.

Parameters

axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axi s is None
and the flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the maximum
is selected over multiple axes, instead of a single axis or all the axes as before.

out

[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

348 1. Array objects

NumPy Reference, Release 1.23.0

fill_value

[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

amax

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.maximum fill value

Returns the maximum filling value for a given datatype.

method

ma .MaskedArray .mean (axis=None, dtype=None, out=None, keepdims=<no value>)

Returns the average of the array elements along given axis.
Masked entries are ignored, and result elements which are not finite will be masked.
Refer to numpy . mean for full documentation.

See also:

numpy .ndarray.mean
corresponding function for ndarrays
numpy . mean
Equivalent function
numpy .ma.average

Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array (data=[1, 2, —--],
mask=[False, False, True],
fill_value=999999)
>>> a.mean ()
1.5

method

1.7. Masked arrays 349

NumPy Reference, Release 1.23.0

ma .MaskedArray .min (axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the minimum along a given axis.

Parameters

axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axis is None
and the flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the minimum
is selected over multiple axes, instead of a single axis or all the axes as before.

out

[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value

[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

amin

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.minimum fill value

Returns the minimum filling value for a given datatype.

method

ma.MaskedArray .prod (axis=None, dtype=None, out=None, keepdims=<no value>)

Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.
Refer to numpy . prod for full documentation.

See also:

numpy .ndarray . prod
corresponding function for ndarrays
numpy . prod

equivalent function

350 1. Array objects

NumPy Reference, Release 1.23.0

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

method

ma.MaskedArray.product (axis=None, dtype=None, out=None, keepdims=<no value>)

Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.
Refer to numpy . prod for full documentation.

See also:

numpy .ndarray.prod
corresponding function for ndarrays
numpy . prod

equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

method

ma.MaskedArray . ptp (axis=None, out=None, fill_value=None, keepdims=False)

Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Warning: ptp preserves the data type of the array. This means the return value for an input of signed integers
with n bits (e.g. np.int8, np.int16, etc) is also a signed integer with n bits. In that case, peak-to-peak values
greater than 2** (n—1) -1 will be returned as negative values. An example with a work-around is shown

below.
Parameters
axis
[{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened array
is used.
out
[{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.
fill_value
[scalar or None, optional] Value used to fill in the masked values.
keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.
Returns

1.7. Masked arrays 351

NumPy Reference, Release 1.23.0

ptp

[ndarray.] A new array holding the result, unless out was specified, in which case a reference

to out is returned.

Examples

>>> x = np.ma.MaskedArray([[4, 9, 2, 101,
[6, 9, 7, 1211)

>>> x.ptp(axis=1)
masked_array (data=[8, 6],
mask=False,
fill_value=999999)

>>> x.ptp (axis=0)
masked_array (data=[2, 0, 5, 2],
mask=False,
fill _value=999999)

>>> x.ptp ()
10

This example shows that a negative value can be returned when the input is an array of signed integers.

>>> y = np.ma.MaskedArray ([[1, 127],
[0, 12771,
[-1, 127

>>> y.ptp (axis=1)
masked_array (data=[126, 127, =128, -1271],
mask=False,
fill_value=999999,
dtype=int8)

1,
[-2, 12711, dtype=np.int8)

A work-around is to use the view() method to view the result as unsigned integers with the same bit width:

>>> y.ptp(axis=1) .view(np.uint8)
masked_array (data=[126, 127, 128, 129],
mask=False,
fill_value=999999,
dtype=uint8)

method

ma.MaskedArray . round (decimals=0, out=None)

Return each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

See also:

numpy .ndarray . round

corresponding function for ndarrays

352

1. Array objects

NumPy Reference, Release 1.23.0

numpy . around

equivalent function

method

ma.MaskedArray . std (axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)

Returns the standard deviation of the array elements along given axis.
Masked entries are ignored.
Refer to numpy . std for full documentation.

See also:

numpy.ndarray.std
corresponding function for ndarrays
numpy . std

Equivalent function

method

ma .MaskedArray . sum (axis=None, dtype=None, out=None, keepdims=<no value>)

Return the sum of the array elements over the given axis.
Masked elements are set to O internally.
Refer to numpy . sum for full documentation.

See also:

numpy .ndarray.sum
corresponding function for ndarrays
numpy . sum

equivalent function

Examples

>>> x = np.ma.array([[1,2,3]1,1[4,5,6]1,[17,8,91], mask=[0] + [1,0]%*4)
>>> x
masked_array (
data=[[1, --, 31,
[-——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel,
[False, True, Falsel],
fill_value=999999)
>>> x.sum/()
25
>>> x.sum(axis=1)
masked_array(data=[4, 5, 16],
mask=[False, False, False],
fill_value=999999)

(continues on next page)

1.7. Masked arrays 353

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> x.sum(axis=0)
masked_array (data=[8, 5, 127,
mask=[False, False, False],
fill value=999999)
>>> print (type(x.sum(axis=0, dtype=np.int64) [0]))
<class 'numpy.int64'>

method

ma.MaskedArray .trace (offset=0, axis] =0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.

See also:

numpy . trace

equivalent function

method

ma.MaskedArray .var (axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)

Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for
the flattened array by default, otherwise over the specified axis.

Parameters

[array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis

[None or int or tuple of ints, optional] Axis or axes along which the variance is computed. The
default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or
all the axes as before.

dtype

[data-type, optional] Type to use in computing the variance. For arrays of integer type the
default is f1oat 64; for arrays of float types it is the same as the array type.

out

[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof

[int, optional] “Delta Degrees of Freedom”: the divisor used in the calculationis N — ddof,
where N represents the number of elements. By default ddof is zero.

354 1. Array objects

NumPy Reference, Release 1.23.0

keepdims

[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the variance. See reduce for details.

New in version 1.20.0.
Returns

variance
[ndarray, see dtype parameter above] If out=None, returns a new array containing the vari-
ance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

ufuncs-output-type

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (x),where x = abs (a
— a.mean()) **2.

The mean is typically calculated as x.sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator of the
variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the variance
for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for 1 oat 32 (see example below). Specifying a higher-
accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 4]1)
>>> np.var (a)

1.25

>>> np.var (a, axis=0)

array ([1., 1.1)

>>> np.var (a, axis=1)

array ([0.25, 0.257)

In single precision, var() can be inaccurate:

1.7. Masked arrays 355

NumPy Reference, Release 1.23.0

>>> a = np.zeros((2, 512*512),
>>> a[0, :] = 1.0

>>> af[l, :]1 = 0.1

>>> np.var (a)

0.20250003

dtype=np.float32)

Computing the variance in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932944759 # may vary

>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Specifying a where argument:

>>> a = np.array([[14, 8, 11, 101, [7,
>>> np.var(a)

6.833333333333333 # may vary

>>> np.var (a, where=[[True], [True],
4.0

9, 10, 111, [10, 15, 5, 1011)

[False]])

Arithmetic and comparison operations

Comparison operators:

MaskedArray.__ 1t__ (value,/) Return self<value.

MaskedArray.___le__ (value,/) Return self<=value.

MaskedArray.__gt__(value,/) Return self>value.

MaskedArray.___ge__ (value,/) Return self>=value.

MaskedArray.__eq__(other) Check whether other equals self elementwise.

MaskedArray.__ne__(other) Check whether other does not equal self elementwise.
method

ma.MaskedArray._ 1t_ (value, /)
Return self<value.

method

ma.MaskedArray.__le__ (value, /)

Return self<=value.
method

ma.MaskedArray.__gt__ (value, /)
Return self>value.

method

ma.MaskedArray.__ge__ (value, /)

Return self>=value.

method

356

1. Array objects

NumPy Reference, Release 1.23.0

ma.MaskedArray.__eq__ (other)

Check whether other equals self elementwise.

When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were
masked, with self and other considered equal only if both were fully masked.

method

ma.MaskedArray.__ne__ (other)

Check whether other does not equal self elementwise.

When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were
masked, with self and other considered equal only if both were fully masked.

Truth value of an array (bool ()):

MaskedArray._ _bool_ (/) True if self else False

method

ma.MaskedArray.__bool__ (/)

True if self else False

1.7. Masked arrays 357

NumPy Reference, Release 1.23.0

Arithmetic:

MaskedArray.___abs__(self)

MaskedArray.___add__ (other)

Add self to other, and return a new masked array.

MaskedArray.___radd__ (other)

Add other to self, and return a new masked array.

MaskedArray.__ sub__ (other)

Subtract other from self, and return a new masked array.

MaskedArray.__rsub__ (other)

Subtract self from other, and return a new masked array.

MaskedArray.___mul__ (other)

Multiply self by other, and return a new masked array.

MaskedArray.__rmul__ (other)

Multiply other by self, and return a new masked array.

MaskedArray.__div__ (other)

Divide other into self, and return a new masked array.

MaskedArray.__ truediv__ (other)

Divide other into self, and return a new masked array.

MaskedArray.__rtruediv__ (other)

Divide self into other, and return a new masked array.

MaskedArray.__ floordiv__ (other)

Divide other into self, and return a new masked array.

MaskedArray.__rfloordiv__ (other)

Divide self into other, and return a new masked array.

MaskedArray.___mod__ (value,/)

Return self %value.

MaskedArray.___rmod__ (value,/)

Return value%self.

MaskedArray.__divmod__ (value, /)

Return divmod(self, value).

MaskedArray.___rdivmod__ (value,/)

Return divmod(value, self).

MaskedArray.__pow__ (other)

Raise self to the power other, masking the potential

NaNs/Infs

MaskedArray.__ rpow__ (other)

Raise other to the power self, masking the potential

NaNs/Infs

MaskedArray.___lshift__(value,/)

Return self«value.

MaskedArray.__ rlshift__ (value,/)

Return value«self.

MaskedArray.___rshift__(value,/)

Return self»value.

MaskedArray._ rrshift__ (value,/)

Return value»self.

MaskedArray.__and__ (value,/)

Return self &value.

MaskedArray.__rand__ (value,/)

Return value&self.

MaskedArray.__or__ (value,/)

Return selflvalue.

MaskedArray._ ror__ (value,/)

Return valuelself.

MaskedArray.__ xor__(value,/)

Return self*value.

MaskedArray.__rxor__(value,/)

Return value”self.

method

ma.MaskedArray.__abs__ (self)

method

ma.MaskedArray.__add__ (other)

Add self to other, and return a new masked array.

method

ma.MaskedArray._ radd__ (other)

Add other to self, and return a new masked array.

method

ma.MaskedArray.__sub__ (other)

Subtract other from self, and return a new masked array.

method

358

1. Array objects

NumPy Reference, Release 1.23.0

ma.MaskedArray.__rsub__ (other)

Subtract self from other, and return a new masked array.
method

ma.MaskedArray.__mul__ (other)

Multiply self by other, and return a new masked array.
method

ma.MaskedArray.__rmul__ (other)

Multiply other by self, and return a new masked array.
method

ma.MaskedArray.__div__ (other)

Divide other into self, and return a new masked array.
method

ma.MaskedArray.__truediv__ (other)

Divide other into self, and return a new masked array.
method

ma.MaskedArray.__rtruediv__ (other)

Divide self into other, and return a new masked array.
method

ma.MaskedArray.__floordiv__ (other)

Divide other into self, and return a new masked array.
method

ma.MaskedArray.__rfloordiv__ (other)

Divide self into other, and return a new masked array.
method

ma.MaskedArray.__mod__ (value, /)

Return self %value.
method

ma.MaskedArray.__rmod__ (value, /)

Return value%self.
method

ma.MaskedArray.__divmod__ (value, /)

Return divmod(self, value).
method

ma.MaskedArray.__rdivmod__ (value, /)

Return divmod(value, self).

method

1.7. Masked arrays

359

NumPy Reference, Release 1.23.0

ma.MaskedArray.__pow___ (other)

Raise self to the power other, masking the potential NaNs/Infs

method

ma.MaskedArray.__rpow__ (other)

Raise other to the power self, masking the potential NaNs/Infs

method

ma.MaskedArray.__1shift__ (value, /)

Return self «value.

method

ma.MaskedArray.__rlshift__ (value, /)

Return value«self.

method

ma.MaskedArray.__rshift__ (value, /)

Return self»value.

method

ma.MaskedArray.__rrshift__ (value, /)

Return value»self.
method

ma.MaskedArray.__and__ (value,/)

Return self &value.
method

ma.MaskedArray.__rand__ (value,/)

Return value&self.
method

ma.MaskedArray.__or__ (value, /)

Return selflvalue.
method

ma.MaskedArray.__ror__ (value,/)

Return valuelself.
method

ma.MaskedArray.__xor__ (value,/)

Return self”value.
method

ma.MaskedArray.__rxor__ (value,/)

Return value”self.

360

1. Array objects

NumPy Reference, Release 1.23.0

Arithmetic, in-place:

MaskedArray.___iadd__ (other) Add other to self in-place.
MaskedArray.__ isub__(other) Subtract other from self in-place.
MaskedArray.___imul__ (other) Multiply self by other in-place.
MaskedArray.__ idiv__ (other) Divide self by other in-place.
MaskedArray.__itruediv__ (other) True divide self by other in-place.
MaskedArray._ _ifloordiv__ (other) Floor divide self by other in-place.
MaskedArray.___imod__(value,/) Return self %=value.
MaskedArray.__ipow__(other) Raise self to the power other, in place.
MaskedArray.__ilshift__ (value,/) Return self «=value.
MaskedArray._irshift__ (value,/) Return self»=value.
MaskedArray.___iand__ (value,/) Return self &=value.
MaskedArray.___ior__ (value,/) Return selfl=value.
MaskedArray.__ixor__ (value,/) Return selfA=value.

method

ma.MaskedArray.__iadd__ (other)
Add other to self in-place.

method

ma.MaskedArray.__isub__ (other)

Subtract other from self in-place.
method

ma.MaskedArray.__imul__ (other)

Multiply self by other in-place.
method

ma.MaskedArray._ _idiv__ (other)

Divide self by other in-place.
method

ma.MaskedArray.__itruediv__ (other)

True divide self by other in-place.
method

ma.MaskedArray.__ifloordiv__ (other)

Floor divide self by other in-place.
method

ma.MaskedArray.__imod__ (value, /)

Return self %=value.
method

ma.MaskedArray.__ipow___ (other)

Raise self to the power other, in place.

method

1.7. Masked arrays 361

NumPy Reference, Release 1.23.0

ma.MaskedArray.__ilshift__ (value, /)

Return self «=value.

method

ma.MaskedArray.__irshift__ (value, /)

Return self»=value.

method

ma.MaskedArray.__iand__ (value,/)

Return self &=value.

method

ma.MaskedArray.__ior__ (value,/)

Return selfl=value.

method

ma.MaskedArray.__ixor__ (value,/)

Return selfA=value.

Representation

MaskedArray.__repr_ ()

Literal string representation.

MaskedArray.__str_ ()

Return str(self).

MaskedArray.ids()

Return the addresses of the data and mask areas.

MaskedArray.iscontiguous()

Return a boolean indicating whether the data is contigu-

ous.

method

ma.MaskedArray.__repr__ ()
Literal string representation.

method

ma.MaskedArray.__str
Return str(self).

0

method

ma.MaskedArray.ids ()

Return the addresses of the data and mask areas.

Parameters

None

362

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> x = np.ma.array([1l, 2, 3], mask=[0,
>>> x.ids ()
(166670640, 166659832) # may vary

1, 11

If the array has no mask, the address of nomask is returned. This address is typically not close to the data in

memory:

>>> x = np.ma.array([1l, 2, 31])
>>> x.ids ()
(166691080, 3083169284) # may vary

method

ma.MaskedArray.iscontiguous ()

Return a boolean indicating whether the data is contiguous.

Parameters

None

Examples

>>> x = np.ma.array([1, 2, 31)
>>> x.iscontiguous ()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

Special methods

For standard library functions:

MaskedArray.__copy_ ()

Used if copy . copy is called on an array.

MaskedArray._ _deepcopy__ (memo, /)

Used if copy . deepcopy is called on an array.

MaskedArray._ _getstate_ ()

Return the internal state of the masked array, for pickling
purposes.

MaskedArray.__reduce_ ()

Return a 3-tuple for pickling a MaskedArray.

MaskedArray._ _setstate__ (state)

Restore the internal state of the masked array, for pickling
purposes.

method

1.7. Masked arrays

363

https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.23.0

ma.MaskedArray.__copy__ ()

Used if copy . copy is called on an array. Returns a copy of the array.
Equivalent to a . copy (order="K").
method

ma.MaskedArray._ deepcopy__ (memo,/) — Deep copy of array.
Used if copy . deepcopy is called on an array.

method

ma.MaskedArray.__getstate__ ()

Return the internal state of the masked array, for pickling purposes.
method

ma.MaskedArray.__reduce__ ()

Return a 3-tuple for pickling a MaskedArray.
method

ma.MaskedArray.__setstate__ (state)

Restore the internal state of the masked array, for pickling purposes.

__getstate__ output, and is a 5-tuple:
e class name
* atuple giving the shape of the data
* a typecode for the data
* a binary string for the data
* a binary string for the mask.

Basic customization:

state is typically the output of the

MaskedArray.___new__(cls[, data, mask, ...]) Create a new masked array from scratch.

MaskedArray.__array__ ([dtypel,/) Returns either a new reference to self if dtype is not given
or a new array of provided data type if dtype is different
from the current dtype of the array.

MaskedArray.__array_wrap__(obj[, context]) Special hook for ufuncs.

method

static ma.MaskedArray.__new__ (cls, data=None, mask=False, dtype=None, copy=False, subok="True,
ndmin=0, fill_value=None, keep_mask="True, hard_mask=None,

shrink="True, order=None)

Create a new masked array from scratch.

364

1. Array objects

https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.23.0

Notes

A masked array can also be created by taking a .view(MaskedArray).
method

ma.MaskedArray.__array__ ([a’type] , /) — reference if type unchanged, copy otherwise.

Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different
from the current dtype of the array.

method

ma.MaskedArray.__array_wrap__ (obj, context=None)

Special hook for ufuncs.
Wraps the numpy array and sets the mask according to context.

Container customization: (see Indexing)

MaskedArray.__ _len_ (/) Return len(self).
MaskedArray.___getitem _ (indx) x.__getitem__(y) <==> x[y]
MaskedArray._ setitem__ (indx, value) X.__setitem__(i, y) <==> x[i]=y
MaskedArray.__delitem__(key,/) Delete self[key].
MaskedArray.__contains__(key,/) Return key in self.

method

ma.MaskedArray.__len__ (/)

Return len(self).
method

ma.MaskedArray.__getitem__ (indx)
X.__getitem__(y) <==> x[y]
Return the item described by i, as a masked array.
method
ma.MaskedArray.__setitem__ (indx, value)

X.__setitem__(i, y) <==> x[i]=y

Set item described by index. If value is masked, masks those locations.
method

ma.MaskedArray.__delitem__ (key,/)
Delete self[key].

method

ma.MaskedArray.__contains__ (key,/)

Return key in self.

1.7. Masked arrays 365

NumPy Reference, Release 1.23.0

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.___setmask__(mask[, copy]) Set the mask.

MaskedArray.harden_mask() Force the mask to hard, preventing unmasking by assign-
ment.

MaskedArray.soften_mask() Force the mask to soft (default), allowing unmasking by
assignment.

MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.

MaskedArray.shrink_mask() Reduce a mask to nomask when possible.

method

ma.MaskedArray.__setmask__ (mask, copy=False)
Set the mask.

method

ma.MaskedArray.harden_mask ()

Force the mask to hard, preventing unmasking by assignment.

Whether the mask of a masked array is hard or soft is determined by its ha rdma sk property. harden_mask
sets hardmask to True (and returns the modified self).

See also:

ma.MaskedArray. hardmask

ma.MaskedArray.soften mask

method

ma.MaskedArray.soften_mask ()
Force the mask to soft (default), allowing unmasking by assignment.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False (and returns the modified self).

See also:

ma.MaskedArray. hardmask

ma.MaskedArray.harden_mask

method

ma.MaskedArray.unshare_mask ()

Copy the mask and set the sharedmask flagto False.

Whether the mask is shared between masked arrays can be seen from the sharedmask property.
unshare_mask ensures the mask is not shared. A copy of the mask is only made if it was shared.

See also:

sharedmask

366 1. Array objects

NumPy Reference, Release 1.23.0

method

ma.MaskedArray.shrink_mask ()

Reduce a mask to nomask when possible.

Parameters
None
Returns

None

Examples

>>> x = np.ma.array ([[1,2 1, [3, 4]], mask=[0]*4)
>>> x.mask
array ([[False, False],
[False, False]l])
>>> x.shrink_mask ()
masked_array (
data=[[1, 2],

(3, 411,
mask=False,
fill_value=999999)

>>> x.mask
False

Handling the fill_value

MaskedArray.get_fill_value()

The filling value of the masked array is a scalar.

MaskedArray.set_fill_value([value])

method

ma.MaskedArray.get_£fill_value ()

The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

Examples

999999
999999
1e+20
(1e+20+07)

>>> for dt in [np.int32, np.int64, np.float64, np.complexl28]:
np.ma.array ([0, 1], dtype=dt) .get_fill_value()

>>> x = np.ma.array ([0, 1.], fill_value=-np.inf)
>>> x.fill_value

—-inf

>>> x.fill _value = np.pi

(continues on next page)

1.7. Masked arrays

367

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> x.fi1ll value
3.1415926535897931 # may vary

Reset to default:

>>> x.fill_value = None
>>> x.fill_value
le+20

method

ma.MaskedArray.set_£fill_wvalue (value=None)

Counting the missing elements

MaskedArray.count([axis, keepdims]) Count the non-masked elements of the array along the
given axis.

method

ma .MaskedArray . count (axis=None, keepdims=<no value>)

Count the non-masked elements of the array along the given axis.

Parameters

axis

[None or int or tuple of ints, optional] Axis or axes along which the count is performed. The
default, None, performs the count over all the dimensions of the input array. axis may be
negative, in which case it counts from the last to the first axis.

New in version 1.10.0.

If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or all
the axes as before.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

result

[ndarray or scalar] An array with the same shape as the input array, with the specified axis
removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

ma.count_masked

Count masked elements in array or along a given axis.

368 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma

>>> a[l, :] = ma.masked
>>> a
masked_array (
data=[[0, 1, 2],
[——» —+ ——11,

fill_value=999999)
>>> a.count ()
3

>>> a = ma.arange (6) .reshape((2,

mask=[[False, False, False]
[True, True, True]

3))

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array ([1, 1, 1])
>>> a.count (axis=1)
array ([3, 0])

1.7.7 Masked array operations

Constants

ma.MaskType

alias of numpy.bool__

numpy .ma .MaskType
alias of numpy.bool_

Creation

From existing data

ma.masked_array

alias of numpy .ma.core.MaskedArray

ma . array(data[, dtype, copy, order, mask, ...])

An array class with possibly masked values.

ma . copy(self, *args, **params) a.copy(order=)

Return a copy of the array.

ma . frombuf fer(buffer], dtype, count, ...])

Interpret a buffer as a 1-dimensional array.

ma . fromfunct ion(function, shape, **dtype)

Construct an array by executing a function over each co-
ordinate.

ma.MaskedArray.copy([order])

Return a copy of the array.

ma . copy (self, *args, **params) a.copy(order="C’) = <numpy.ma.core._frommethod object>

Return a copy of the array.
Parameters

order

1.7. Masked arrays

369

NumPy Reference, Release 1.23.0

[{’C, F, ‘A’, K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible. (Note that this function and numpy . copy are very similar
but have different default values for their order= arguments, and this function always passes
sub-classes through.)

See also:

numpy . copy

Similar function with different default behavior

numpy . copyto

Notes

This function is the preferred method for creating an array copy. The function numpy . copy is similar, but it
defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

’>>> x = np.array([[1,2,3]1,[4,5,6]], order='F") ‘

’>>> y = x.copy ()

’>>> x.£1i11(0) ‘

>>> x
array ([[0, 0, 0],
[0, 0, 0I1)

>>> y
array ([[1, 2, 31,
[4, 5, 6]1)

>>> y.flags['C_CONTIGUOUS']
True

ma . frombuffer (buffer, dtype=float, count=- 1, offset=0, *, like=None) =
<numpy .ma.core._convert2ma object>

Interpret a buffer as a 1-dimensional array.

Parameters

buffer

[buffer_like] An object that exposes the buffer interface.
dtype

[data-type, optional] Data-type of the returned array; default: float.
count

[int, optional] Number of items to read. —1 means all data in the buffer.

370 1. Array objects

NumPy Reference, Release 1.23.0

offset
[int, optional] Start reading the buffer from this offset (in bytes); default: 0.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out: MaskedArray

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype (int)
>>> dt = dt.newbyteorder ('>")
>>> np.frombuffer (buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

This function creates a view into the original object. This should be safe in general, but it may make sense to copy
the result when the original object is mutable or untrusted.

Examples

>>> s = b'hello world'
>>> np.frombuffer (s, dtype='Sl', count=5, offset=6)
array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1'")

>>> np.frombuffer (b'\x01\x02', dtype=np.uint8)

array ([1, 2], dtype=uint8)

>>> np.frombuffer (b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array ([1, 2, 3], dtype=uint8)

ma . fromfunction (function, shape, **dtype) = <numpy.ma.core._convert2ma object>

Construct an array by executing a function over each coordinate.
The resulting array therefore has a value fn (x, vy, z) atcoordinate (x, vy, z).

Parameters

function

[callable] The function is called with N parameters, where N is the rank of shape. Each
parameter represents the coordinates of the array varying along a specific axis. For example,
if shape were (2, 2), then the parameters would be array ([[0, 01, [1, 111)
and array ([[0, 1], [0, 1]11)

1.7. Masked arrays 371

NumPy Reference, Release 1.23.0

shape

[(N,) tuple of ints] Shape of the output array, which also determines the shape of the coordinate
arrays passed to function.

dtype

[data-type, optional] Data-type of the coordinate arrays passed to function. By default, dt ype
is float.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

fromfunction: MaskedArray

The result of the call to function is passed back directly. Therefore the shape of
fromfunction is completely determined by function. If function returns a scalar value,
the shape of fromfunction would not match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dt ype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float)
array ([[0., 0.7,
(1., 1.11)

>>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float)

array ([[0., 1.1,

[0., 1.11)
>>> np.fromfunction(lambda i, j: 1 == j, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, Truel])

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array ([[0, 1, 21,

1, 2, 31,

(2, 3, 411)

372 1. Array objects

NumPy Reference, Release 1.23.0

Ones and zeros

ma . empt y(shape[, dtype, order, like]) Return a new array of given shape and type, without ini-
tializing entries.

ma . empty_11ike(prototype[, dtype, order, ...]) Return a new array with the same shape and type as a
given array.

ma.masked_al l(shape[, dtype]) Empty masked array with all elements masked.

ma.masked_all_1ike(arr) Empty masked array with the properties of an existing
array.

ma . ones(shapel, dtype, order]) Return a new array of given shape and type, filled with
ones.

ma.ones_11ke(*args, ¥*kwargs) Return an array of ones with the same shape and type as
a given array.

ma . zeros(shapel[, dtype, order, like]) Return a new array of given shape and type, filled with
ZEeros.

ma.zeros_11ke(*args, **kwargs) Return an array of zeros with the same shape and type as

a given array.

ma . empty (shape, dtype=float, order="C’, *, like=None) = <numpy.ma.core._convert2ma object>

Return a new array of given shape and type, without initializing entries.

Parameters

shape
[int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.
dtype

[data-type, optional] Desired output data-type for the array, e.g, numpy. int8. Default is
numpy.float64.

order

[{‘C, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.
Returns
out
[MaskedArray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order.
Object arrays will be initialized to None.
See also:
empty_like

Return an empty array with shape and type of input.

1.7. Masked arrays 373

NumPy Reference, Release 1.23.0

ones
Return a new array setting values to one.
zeros
Return a new array setting values to zero.
full

Return a new array of given shape filled with value.

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other
hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array ([[—-9.74499359e+001, 6.69583040e-3097,
[2.13182611e-314, 3.06959433e-30911) #uninitialized

>>> np.empty ([2, 2], dtype=int)
array ([[-1073741821, -10679491337,
[496041986, 1924976011) #uninitialized

ma .empty_like (prototype, dtype=None, order="K’, subok=True, shape=None) =
<numpy .ma.core._convert2ma object>

Return a new array with the same shape and type as a given array.

Parameters

prototype

[array_like] The shape and data-type of prototype define these same attributes of the returned
array.

dtype
[data-type, optional] Overrides the data type of the result.
New in version 1.6.0.

order

[{‘C, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F if prototype is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of prototype as closely as possible.

New in version 1.6.0.
subok

[bool, optional.] If True, then the newly created array will use the sub-class type of prototype,
otherwise it will be a base-class array. Defaults to True.

374 1. Array objects

NumPy Reference, Release 1.23.0

shape

[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns

out
[MaskedArray] Array of uninitialized (arbitrary) data with the same shape and type as proto-
type.

See also:

ones_like

Return an array of ones with shape and type of input.
zeros_like

Return an array of zeros with shape and type of input.
full like

Return a new array with shape of input filled with value.
empty

Return a new uninitialized array.

Notes

This function does not initialize the returned array; to do that use zeros_1ike or ones_ 11ike instead. It may
be marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,61) # a is array-like
>>> np.empty_like (a)

array ([[-1073741821, -1073741821, 3] # uninitialized

[0, 0, -107374182111)
>>> a = np.array ([[1., 2., 3.1,[4.,5.,6.11)
>>> np.empty_like (a)
array ([[—-2.00000715e+000, 1.48219694e-323, -2.00000572e+000]

, # uninitialized
[4.38791518e-305, -2.00000715e+000, 4.17269252e-309]11])

ma .masked_all (shape, dtype=<class float’>)
Empty masked array with all elements masked.

Return an empty masked array of the given shape and dtype, where all the data are masked.

Parameters

shape
[int or tuple of ints] Shape of the required MaskedArray, e.g., (2, 3) or 2.

1.7. Masked arrays 375

NumPy Reference, Release 1.23.0

dtype
[dtype, optional] Data type of the output.

Returns

[MaskedArray] A masked array with all data masked.
See also:

masked _all_like

Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all ((3, 3))
masked_array (

data=[[--, -, —-1,
== == =1,
[——y —+ —11,

mask=[[True, True, Truel,
[True, True, Truel],
[True, True, Truel],

fill_value=1le+20,
dtype=float64)

The dt ype parameter defines the underlying data type.

>>> a = ma.masked_all ((3, 3))

>>> a.dtype

dtype ('float64")

>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype

dtype ('int32")

ma .masked_all_like (arr)

Empty masked array with the properties of an existing array.
Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked.

Parameters

arr

[ndarray] An array describing the shape and dtype of the required MaskedArray.

Returns

[MaskedArray] A masked array with all data masked.

Raises

376 1. Array objects

NumPy Reference, Release 1.23.0

AttributeError

If arr doesn’t have a shape attribute (i.e. not an ndarray)
See also:

masked _all

Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma

>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr

array ([[0., 0., 0.1,

[0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array (

data=[[--, -=, --1],
(== == --11,
mask=[[True, True, Truel],
[True, True, Truel],
fill_value=1e+20,
dtype=float32)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype

dtype ('float32")

>>> ma.masked_all_like(arr) .dtype
dtype ('float32")

ma . ones (shape, dtype=None, order="C’) = <numpy.ma.core._convert2ma object>

Return a new array of given shape and type, filled with ones.

Parameters

shape
[int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.
dtype

[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order

[{C, ‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major (C-style)
or column-major (Fortran-style) order in memory.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,

the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.

1.7. Masked arrays 377

NumPy Reference, Release 1.23.0

Returns

out

[MaskedArray] Array of ones with the given shape, dtype, and order.
See also:

ones_like
Return an array of ones with shape and type of input.
empty
Return a new uninitialized array.
zeros
Return a new array setting values to zero.
full

Return a new array of given shape filled with value.

Examples

>>> np.ones (5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array ([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array ([[1.],
[(1.11)

>>> s = (2,2)

>>> np.ones(s)

array ([[1., 1.1,
[1., 1.11)

ma .ones_like (*args, ¥**kwargs) = <numpy.ma.core._convert2ma object>

Return an array of ones with the same shape and type as a given array.

Parameters

[array_like] The shape and data-type of a define these same attributes of the returned array.
dtype

[data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order

378 1. Array objects

NumPy Reference, Release 1.23.0

[{‘C, ‘F, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

New in version 1.6.0.
subok

[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape

[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns

out

[MaskedArray] Array of ones with the same shape and type as a.
See also:

empty_like

Return an empty array with shape and type of input.
zeros_like

Return an array of zeros with shape and type of input.
full like

Return a new array with shape of input filled with value.
ones

Return a new array setting values to one.

Examples

>>> x = np.arange (6)

>>> x = x.reshape((2, 3))
>>> X

array ([[0, 1, 2],

[3, 4, 511)
>>> np.ones_like (x)
array ([[1, 1, 11,

(1, 1, 111)

>>> y

= np.arange (3, dtype=float)
>>> y

array ([0., 1., 2.1)

>>> np.ones_like (y)

array ([1., 1., 1.1)

1.7. Masked arrays 379

NumPy Reference, Release 1.23.0

ma . zeros (shape, dtype=float, order="C’, *, like=None) = <numpy.ma.core._convert2ma object>

Return a new array of given shape and type, filled with zeros.

Parameters

shape
[int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.
dtype

[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order

[{‘C, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[MaskedArray] Array of zeros with the given shape, dtype, and order.
See also:

zeros_like
Return an array of zeros with shape and type of input.
empty
Return a new uninitialized array.
ones
Return a new array setting values to one.
full

Return a new array of given shape filled with value.

380 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> np.zeros (5)
array ([0., 0., 0., 0., 0.1)

>>> np.zeros((5,), dtype=int)
array ([0, 0, 0, O, 0])

>>> np.zeros((2, 1))

array ([[0.1,
[0.11)
>>> s = (2,2)
>>> np.zeros(s)
array ([[0., 0.1,
0., 0.11)
>>> np.zeros((2,), dtype=[('x', 'i4"), ('y', '"i4'")]) # custom dtype
array ([(0, 0), (0, 0)],
dtype=[('x"', '<id4"), ('y', '<i4")1])
ma.zeros_like (*args, **kwargs) = <numpy.ma.core._convert2ma object>

Return an array of zeros with the same shape and type as a given array.

Parameters

[array_like] The shape and data-type of a define these same attributes of the returned array.
dtype

[data-type, optional] Overrides the data type of the result.

New in version 1.6.0.
order

[{‘C, ‘F, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

New in version 1.6.0.
subok

[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape

[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns

out

[MaskedArray] Array of zeros with the same shape and type as a.

1.7. Masked arrays 381

NumPy Reference, Release 1.23.0

See also:

empty like

Return an empty array with shape and type of input.
ones_like

Return an array of ones with shape and type of input.
full like

Return a new array with shape of input filled with value.
zeros

Return a new array setting values to zero.

Examples
>>> x = np.arange (6)
>>> x = x.reshape ((2, 3))
>>> x
array ([[0, 1, 21,
[3, 4, 5]11)

>>> np.zeros_like (x)
array ([[0, 0, 0],
[0, 0, 01D

>>> y = np.arange (3, dtype=float)
>>> y

array ([0., 1., 2.1)

>>> np.zeros_like (y)

array ([0., 0., 0.1)

382

1. Array objects

NumPy Reference, Release 1.23.0

Inspecting the array

ma . all(self[, axis, out, keepdims]) Returns True if all elements evaluate to True.

ma . any(self[, axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

ma . count(self[, axis, keepdims]) Count the non-masked elements of the array along the
given axis.

ma.count_masked(arr[, axis]) Count the number of masked elements along the given
axis.

ma.getmask(a) Return the mask of a masked array, or nomask.

ma.qgetmaskarray(arr) Return the mask of a masked array, or full boolean array
of False.

ma . getdata(a[, subok]) Return the data of a masked array as an ndarray.

ma . nonzero(self) Return the indices of unmasked elements that are not
Zero.

ma . shape(obj) Return the shape of an array.

ma . s1ze(obj[, axis]) Return the number of elements along a given axis.

ma.is_masked(x) Determine whether input has masked values.

ma.is_mask(m) Return True if m is a valid, standard mask.

ma.isMaskedArray(x) Test whether input is an instance of MaskedArray.

ma . 1 sMA(X) Test whether input is an instance of MaskedArray.

ma.isarray(x) Test whether input is an instance of MaskedArray.

ma.MaskedArray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.

ma.MaskedArray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

ma.MaskedArray.count([axis, keepdims]) Count the non-masked elements of the array along the
given axis.

ma.MaskedArray.nonzero() Return the indices of unmasked elements that are not
zZero.

ma . shape(obj) Return the shape of an array.

ma . size(obj[, axis]) Return the number of elements along a given axis.

ma . all (self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core._frommethod object>

Returns True if all elements evaluate to True.

The output array is masked where all the values along the given axis are masked: if the output would have been a
scalar and that all the values are masked, then the output is masked.

Refer to numpy . a1 for full documentation.

See also:

numpy.ndarray.all

corresponding function for ndarrays

numpy.all

equivalent function

1.7. Masked arrays

383

NumPy Reference, Release 1.23.0

Examples
>>> np.ma.array ([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True
ma . any (self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core._frommethod object>

Returns True if any of the elements of a evaluate to True.
Masked values are considered as False during computation.
Refer to numpy . any for full documentation.

See also:

numpy . ndarray . any
corresponding function for ndarrays

numpy . any

equivalent function

ma . count (self, axis=None, keepdims=<no value>) = <numpy.ma.core._frommethod object>

Count the non-masked elements of the array along the given axis.

Parameters

axis

[None or int or tuple of ints, optional] Axis or axes along which the count is performed. The
default, None, performs the count over all the dimensions of the input array. axis may be
negative, in which case it counts from the last to the first axis.

New in version 1.10.0.

If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or all
the axes as before.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

result

[ndarray or scalar] An array with the same shape as the input array, with the specified axis
removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

ma.count_masked

Count masked elements in array or along a given axis.

384 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> a = ma.arange (6) .reshape ((2, 3))
>>> a[l, :] = ma.masked
>>> a
masked_array (
data=[[0, 1, 2],
[——» —+ ——11,
mask=[[False, False, False],
[True, True, True]ll,
fill_value=999999)
>>> a.count ()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array ([1, 1, 1])
>>> a.count (axis=1)
array ([3, 0])

ma . count_masked (arr, axis=None)

Count the number of masked elements along the given axis.

Parameters

arr
[array_like] An array with (possibly) masked elements.

axis
[int, optional] Axis along which to count. If None (default), a flattened version of the array is
used.

Returns

count

[int, ndarray] The total number of masked elements (axis=None) or the number of masked
elements along each slice of the given axis.

See also:

MaskedArray.count

Count non-masked elements.

1.7. Masked arrays 385

NumPy Reference, Release 1.23.0

Examples

>>> a[1, 0]
>>> a[l, 2]
>>> a[2, 1]

3

>>> import numpy.ma as ma
>>> a = np.arange (9) .reshape ((3,3))
>>> a = ma.array(a)

ma.masked
ma.masked
ma.masked

>>> a
masked_array (
data=[[0, 1, 2],
[-——, 4, —-1,
(6, ——, 811,
mask=[[False, False, False],
[True, False, Truel,
[False, True, False]]

4

fill_value=999999)
>>> ma.count_masked (a)

When the axis keyword is used an array is returned.

array ([1, 1,

array ([0, 2,

>>> ma.count_masked (a, axis=0)

1])

>>> ma.count_masked(a, axis=1)

11)

ma .getmask (a)

Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask.

To guarantee a full array of booleans of the same shape as a, use getmaskarray.

Parameters

[array_like] Input MaskedArray for which the mask is required.

See also:

getdata

Return the data of a masked array as an ndarray.

getmaskarray

Return the mask of a masked array, or full array of False.

386

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_equal ([[1,2],1[3,411, 2)
>>> a
masked_array (
data=[[1, —--],
(3, 411,
mask=[[False, True]

[False, Falsell],
fill_value=2)
>>> ma.getmask (a)
array ([[False, True],
[False, False]l])

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array ([[False, Truel,
[False, False]l])

Result when mask == nomask

>>> b = ma.masked_array ([[1,2],[3,4]1])
>>> b
masked_array (

data=[[1, 2],

(3, 411,

mask=False,

fill_value=999999)
>>> ma.nomask

False

>>> ma.getmask (b) == ma.nomask
True

>>> b.mask == ma.nomask

True

ma .getmaskarray (arr)

Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters

arr

[array_like] Input MaskedArray for which the mask is required.
See also:

getmask
Return the mask of a masked array, or nomask.
getdata

Return the data of a masked array as an ndarray.

1.7. Masked arrays 387

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal ([[1,2],1[3,411, 2)
>>> a
masked_array (
data=[[1, —--1,
(3, 411,
mask=[[False, Truel,
[False, False]l],
fill_value=2)
>>> ma.getmaskarray (a)
array ([[False, True],
[False, False]l])

Result when mask == nomask

>>> b = ma.masked_array ([[1,2],1[3,4]1])
>>> Db
masked_array (
data=[[1, 21,
[3, 411,
mask=False,
fill_value=999999)
>>> ma.getmaskarray (b)
array ([[False, False],
[False, False]l])

ma .getdata (a, subok=True)

Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a isaMaskedArray, else return a as a ndarray or subclass (depending
on subok) if not.

Parameters

[array_like] Input MaskedArray, alternatively a ndarray or a subclass thereof.

subok
[bool] Whether to force the output to be a pure ndarray (False) or to return a subclass of ndarray
if appropriate (True, default).

See also:

getmask
Return the mask of a masked array, or nomask.
getmaskarray

Return the mask of a masked array, or full array of False.

388 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_equal ([[1,2],1[3,411, 2)
>>> a
masked_array (
data=[[1, —--],
(3, 411,
mask=[[False, True]

[False, False]l],
fill_value=2)
>>> ma.getdata (a)
array ([[1, 21,
[3, 411)

Equivalently use the MaskedArray data attribute.

>>> a.data
array ([[1, 2],
[3, 411)

ma.nonzero (self) = <numpy.ma.core._frommethod object>

Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices o
The corresponding non-zero values can be obtained with:

f the non-zero elements in that dimension.

’a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

’np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None
Returns

tuple_of _arrays

[tuple] Indices of elements that are non-zero.
See also:

numpy .nonzero
Function operating on ndarrays.

flatnonzero

Return indices that are non-zero in the flattened version of the input array.

numpy .ndarray.nonzero

Equivalent ndarray method.

1.7. Masked arrays

389

NumPy Reference, Release 1.23.0

count_nonzero

Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array (np.eye(3))
>>> x
masked_array (
data=[[1., 0., O
[0., 1., 0.]
[0., 0., 1
mask=False,
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 1, 21), array ([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array (
data=[[1.0, 0.0, 0.07],
(0.0, ——, 0.07,
(0.0, 0.0, 1.011,
mask=[[False, False, False],
[False, True, False],
[False, False, False]ll],
fill value=1e+20)
>>> x.nonzero ()
(array ([0, 21), array ([0, 21))

Indices can also be grouped by element.

>>> np.transpose (x.nonzero())
array ([[0, O],
(2, 211

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the a

where the condition is true.

>>> a = ma.array ([[1,2,31,104,5,61,17,8,911)
>>> a > 3
masked_array (
data=[[False, False, False],
[True, True, True],
[True, True, Truel],
mask=False,
fill_value=True)
>>> ma.nonzero(a > 3)
(array (2, 2, 1, 2, 2, 21), array([0, 1, 2, O,

The nonzero method of the condition array can also be called.

390

1. Array objects

NumPy Reference, Release 1.23.0

>>> (a > 3) .nonzero ()
(array(lt, 1, 1, 2, 2, 21]), array(lo, 1, 2, 0, 1, 21]))

ma . shape (obj)
Return the shape of an array.

Parameters

[array_like] Input array.
Returns

shape
[tuple of ints] The elements of the shape tuple give the lengths of the corresponding array
dimensions.

See also:

len
len (a) isequivalent to np. shape (a) [0] for N-D arrays with N>=1.
ndarray. shape

Equivalent array method.

Examples

>>> np.shape (np.eye(3))
(3, 3)

>>> np.shape ([[1, 311])
(1, 2)

>>> np.shape ([0])

(1,)

>>> np.shape (0)

()

>>> a = np.array ([(1, 2), (3, 4), (5, 6)1,

- dtype=[('x"', 'i4"), ('y', 'i4")1])
>>> np.shape (a)

(3,)

>>> a.shape

(3,)

ma . size (obj, axis=None)

Return the number of elements along a given axis.

Parameters

[array_like] Input data.

1.7. Masked arrays 391

https://docs.python.org/3/library/functions.html#len

NumPy Reference, Release 1.23.0

axis
[int, optional] Axis along which the elements are counted. By default, give the total number
of elements.

Returns

element_count

[int] Number of elements along the specified axis.
See also:

shape
dimensions of array
ndarray. shape
dimensions of array
ndarray.size

number of elements in array

Examples

>>> a = np.array ([[1,2,3],[4,5,61])
>>> np.size(a)

6

>>> np.size(a, 1)

3

>>> np.size(a,0)

2

ma.is_masked (x)

Determine whether input has masked values.
Accepts any object as input, but always returns False unless the input is a Masked Array containing masked values.

Parameters

[array_like] Array to check for masked values.
Returns

result

[bool] True if x is a MaskedArray with masked values, False otherwise.

392 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> x = ma.masked_equal ([0, 1, O, 2, 31, 0)
>>> x
masked_array (data=[--, 1, --, 2, 31,
mask=[True, False, True, False, False],
fill_value=0)
>>> ma.is_masked (x)
True
>>> x = ma.masked_equal ([0, 1, 0, 2, 31, 42)
>>> x
masked_array(data=[0, 1, 0, 2, 31,
mask=False,
fill_value=42)
>>> ma.is_masked (x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.is_masked (x)

False

>>> x = 'a string'

>>> ma.is_masked (x)

False

ma.is_mask (m)

Return True if m is a valid, standard mask.

This function does not check the contents of the input, only that the type is MaskType. In particular, this function
returns False if the mask has a flexible dtype.

Parameters

[array_like] Array to test.
Returns

result

[bool] True if m.dtype.type is MaskType, False otherwise.
See also:

ma.isMaskedArray

Test whether input is an instance of MaskedArray.

1.7. Masked arrays 393

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> m = ma.masked_equal ([0, 1, O, 2, 31, 0)
>>> m
masked_array (data=[--, 1, --, 2, 31,
mask=[True, False, True, False, False],
fill_value=0)
>>> ma.is_mask (m)
False
>>> ma.ils_mask (m.mask)
True

Input must be an ndarray (or have similar attributes) for it to be considered a valid mask.

>>> m = [False, True, False]

>>> ma.ils_mask (m)

False

>>> m = np.array([False, True, False])
>>> m

array ([False, True, False])
>>> ma.is_mask (m)
True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],
C. 'formats': [bool, bool]})

>>> dtype

dtype ([("monty', 'Ibl'"), ('pithon', '|bl'")])

>>> m = np.array ([(True, False), (False, True), (True, False)],
Ce dtype=dtype)
>>> m

array ([(True, False), (False, True), (True, False)],
dtype=[('monty', '?'), ('pithon', '2')1])

>>> ma.is_mask (m)

False

ma .isMaskedArray (x)

Test whether input is an instance of MaskedArray.

This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted
as input.

Parameters

[object] Object to test.
Returns

result

[bool] True if x is a MaskedArray.

See also:

394

1. Array objects

NumPy Reference, Release 1.23.0

isMA
Alias to isMaskedArray.
isarray

Alias to isMaskedArray.

Examples

>>> import numpy.ma as ma
>>> a = np.eye(3, 3)

>>> a
array ([[1., 0., 0.1,
[o., 1., 0.7,
[0., 0., 1.11)
>>> m = ma.masked_values(a, 0)
>>> m
masked_array (
data=[[1.0, —-——, ——1,
[-——, 1.0, --1,
[(——, ——, 1.011,
mask=[[False, True, Truel,
[

True, False, True],

[True, True, Falsell],
fill value=0.0)

>>> ma.isMaskedArray (a)

False

>>> ma.isMaskedArray (m)

True

>>> ma.isMaskedArray ([0, 1, 2])

False

ma.isMA (x)

Test whether input is an instance of MaskedArray.

This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted

as input.

Parameters

[object] Object to test.
Returns

result

[bool] True if x is a MaskedArray.

See also:
isMA
Alias to isMaskedArray.

isarray

Alias to isMaskedArray.

1.7. Masked arrays

395

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> a = np.eye (3, 3)

>>> a
array ([[1., 0., 0.1,
[o., 1., 0.1,
[0., 0., 1.11)
>>> m = ma.masked_values(a, 0)
>>> m
masked_array (
data=[[1.0, ——, —-1,
, 1.0, —-1,

-—, ——, 1.011,
False, True, Truel,
True, False, True],
[True, True, Falsel],
fill_value=0.0)
>>> ma.isMaskedArray (a)

mask=[

[
(
[
[

False

>>> ma.isMaskedArray (m)

True

>>> ma.isMaskedArray ([0, 1, 2])
False

ma.isarray (x)

Test whether input is an instance of MaskedArray.

This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted

as input.

Parameters

[object] Object to test.
Returns

result

[bool] True if x is a MaskedArray.

See also:
isMA
Alias to isMaskedArray.

isarray

Alias to isMaskedArray.

396

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma

>>> a = np.eye (3, 3)
>>> a
array ([[1., 0., 0.1,
[o., 1., 0.1,
[0., 0., 1.11)
>>> m = ma.masked_values(a, 0)
>>> m
masked_array (
data=[[1.0, —-——, ——1,
[-——, 1.0, —-1,
[(——, ——, 1.011,
mask=[[False, True, Truel,
[True, False, Truel,
[True, True, Falsell],
fill_value=0.0)
>>> ma.isMaskedArray (a)
False
>>> ma.isMaskedArray (m)
True
>>> ma.isMaskedArray ([0, 1, 2])
False

ma.MaskedArray.data

Returns the underlying data, as a view of the masked ar-
ray.

ma.MaskedArray.mask

Current mask.

ma.MaskedArray.recordmask

Get or set the mask of the array if it has no named fields.

Manipulating a MaskedArray

Changing the shape

ma . rave 1(self[, order])

Returns a 1D version of self, as a view.

ma . reshape(a, new_shape[, order])

Returns an array containing the same data with a new
shape.

ma . resize(X, new_shape)

Return a new masked array with the specified size and
shape.

ma.MaskedArray.flatten([order])

Return a copy of the array collapsed into one dimension.

ma.MaskedArray.ravel([order])

Returns a 1D version of self, as a view.

ma.MaskedArray. reshape(*s, **kwargs)

Give a new shape to the array without changing its data.

ma.MaskedArray.resize(newshape[, refcheck,

)]

ma . ravel (self, order="C")

Returns a 1D version of self, as a view.

Parameters

order

= <numpy.ma.core._frommethod object>

1.7. Masked arrays

397

NumPy Reference, Release 1.23.0

[{’C, F, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’ means
to index the elements in C-like order, with the last axis index changing fastest, back to the
first axis index changing slowest. ‘F" means to index the elements in Fortran-like index order,
with the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer to
the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order if m
is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the elements in
the order they occur in memory, except for reversing the data when strides are negative. By
default, ‘C’ index order is used.

Returns

MaskedArray

Output view is of shape (self.size,) (or (np.ma.product (self.shape),)).

Examples

>>> x = np.ma.array([[1,2,31,104,5,6]1,17,8,91]1, mask=[0] + [1,0]%*4)
>>> x
masked_array (

data=[[1, --, 31,

[__r 5! __JI

[71 ~r 9]}!
mask=[[False, True, Falsel],

[

True, False, True]
[False, True, False]
fill_value=999999)
>>> x.ravel ()
masked_array (data=[(1, --, 3, —--, 5, ——, 7, ——, 91,
mask=[False, True, False, True, False, True, False, True,
False],
fill_value=999999)

o~

’

ma . reshape (a, new_shape, order="C")

Returns an array containing the same data with a new shape.
Refer to MaskedArray. reshape for full documentation.

See also:

MaskedArray.reshape

equivalent function

ma .resize (x, new_shape)

Return a new masked array with the specified size and shape.

This is the masked equivalent of the numpy . resize function. The new array is filled with repeated copies of x
(in the order that the data are stored in memory). If x is masked, the new array will be masked, and the new mask
will be a repetition of the old one.

See also:

numpy.resize

Equivalent function in the top level NumPy module.

398 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> a = ma.array ([[1, 2] ,I[3, 411)
>>> a[0, 1] = ma.masked
>>> a
masked_array (
data=[[1, --1,

(3, 411,
mask=[[False, True],

[False, False]ll,
fill_value=999999)

>>> np.resize(a, (3, 3))
masked_array (
data=[[1, 2, 31,
(4, 1, 21,
(3, 4, 111,
mask=False,
fill_value=999999)
>>> ma.resize(a, (3, 3))
masked_array (

data=[[1, --, 31,
4, 1, —-1,
3, 4, 111,
False, True, False],
False, False, True],

[False, False, False]ll],

fill_value=999999)

mask=[

(
[
[
(

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array ([[1, 21 ,[3, 411)
>>> ma.resize(a, (3, 3))
masked_array (
data=[[1, 2, 31,
4, 1, 21,
(3, 4, 111,
mask=False,
fill _value=999999)

Modifying axes

ma . swapaxes(self, *args, ...) Return a view of the array with axis/ and axis2 inter-
changed.

ma.transpose(al, axes]) Permute the dimensions of an array.

ma.MaskedArray.swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 inter-
changed.

ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

ma . swapaxes (self, *args, **params) a.swapaxes(axisl, axis2) = <numpy.ma.core._frommethod
object>

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

1.7. Masked arrays 399

NumPy Reference, Release 1.23.0

numpy . swapaxes

equivalent function

ma .transpose (a, axes=None)

Changing the number of dimensions

Permute the dimensions of an array.

This function is exactly equivalent to numpy . t ranspose.

See also:

numpy . transpose

Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma

>>> x = ma.arange (4) .reshape((2,2))

>>> x[1, 1] = ma.masked
>>> x
masked_array (
data=[[0, 11,
(2, ——11,
mask=[[False, False],
[False, True]ll],
fill_value=999999)

>>> ma.transpose (x)
masked_array (
data=[[0, 21,
(1, ——-11,
mask=[[False, False],
[False, Truell,
fill_value=999999)

ma.atleast_1d(*args, **kwargs) Convert inputs to arrays with at least one dimension.

ma.atleast_2d(*args, **kwargs) View inputs as arrays with at least two dimensions.

ma.atleast_3d(*args, **kwargs) View inputs as arrays with at least three dimensions.

ma.expand_dims(a, axis) Expand the shape of an array.

ma . squeeze(¥args, **kwargs) Remove axes of length one from a.

ma.MaskedArray.squeeze([axis]) Remove axes of length one from a.

ma . stack(*args, **kwargs) Join a sequence of arrays along a new axis.

ma.column_stack(*args, **kwargs) Stack 1-D arrays as columns into a 2-D array.

ma . concatenate(arrays|, axis]) Concatenate a sequence of arrays along the given axis.

ma . dstack(*args, **kwargs) Stack arrays in sequence depth wise (along third axis).

ma . hstack(*args, **kwargs) Stack arrays in sequence horizontally (column wise).

ma. hsplit(*args, **kwargs) Split an array into multiple sub-arrays horizontally
(column-wise).

ma.mr_ Translate slice objects to concatenation along the first
axis.

ma . row_stack(¥args, ¥**kwargs) Stack arrays in sequence vertically (row wise).

ma. vstack(*args, **kwargs) Stack arrays in sequence vertically (row wise).

400 1. Array objects

NumPy Reference, Release 1.23.0

ma.atleast_1d (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_allargs object>

Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters

arysl, arys2, ...

[array_like] One or more input arrays.
Returns

ret

[ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See also:

atleast_2d, atleast_3d

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)
array ([1.])

>>> x = np.arange (9.0) .reshape (3, 3)
>>> np.atleast_1d(x)
array ([[0., 1., 2.1,
[3., 4., 5.]
[6., 7., 8.]
>>> np.atleast_1d
True

10
(x) is x

>>> np.atleast_1d(1, [3, 41)
l[array ([1]), array([3, 4]1)]

ma.atleast_2d (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_allargs object>

View inputs as arrays with at least two dimensions.

Parameters

arysl, arys2, ...

[array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Ar-
rays that already have two or more dimensions are preserved.

Returns

1.7. Masked arrays 401

NumPy Reference, Release 1.23.0

res, res2, ...

[ndarray] An array, or list of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_2d(3.0)
array ([[3.11])

>>> x = np.arange (3.0)

>>> np.atleast_2d(x)

array ([[0., 1., 2.]11)

>>> np.atleast_2d(x) .base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 211)
larray ([[11]), array([[1, 2]1), array([[1, 2]1)]
ma.atleast_3d (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_allargs object>

View inputs as arrays with at least three dimensions.

Parameters

arysl, arys2, ...
[array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Ar-
rays that already have three or more dimensions are preserved.

Returns

resl, res2, ...

[ndarray] An array, or list of arrays, each with a.ndim >= 3. Copies are avoided where
possible, and views with three or more dimensions are returned. For example, a 1-D array
of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N)
becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

402 1. Array objects

NumPy Reference, Release 1.23.0

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array ([[[3.]111])

>>> x = np.arange (3.0)
>>> np.atleast_3d(x) .shape
(1, 3, 1)

>>> x = np.arange (12.0) .reshape (4, 3)
>>> np.atleast_3d(x) .shape

(4, 3, 1)

>>> np.atleast_3d(x) .base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1, 21, [[L1, 211, [[[L1, 2111):

print (arr, arr.shape)

ma .expand_dims (a, axis)

Expand the shape of an array.
Insert a new axis that will appear at the axis position in the expanded array shape.

Parameters

[array_like] Input array.
axis
[int or tuple of ints] Position in the expanded axes where the new axis (or axes) is placed.

Deprecated since version 1.13.0: Passing an axis where axis > a.ndim will be treated as
axis == a.ndim, and passing axis < —a.ndim - 1 will be treated as axis ==
0. This behavior is deprecated.

Changed in version 1.18.0: A tuple of axes is now supported. Out of range axes as described
above are now forbidden and raise an AxisError.

Returns

result

[ndarray] View of a with the number of dimensions increased.

See also:

1.7. Masked arrays

403

NumPy Reference, Release 1.23.0

squeeze
The inverse operation, removing singleton dimensions
reshape
Insert, remove, and combine dimensions, and resize existing ones

doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples

>>> x = np.array([1, 21)

>>> x.shape

(2,)

The following is equivalent to x [np.newaxis, :] or x[np.newaxis]:

>>> y = np.expand_dims (x, axis=0)

>>> vy
array ([[1, 2]1)
>>> y.shape

(1, 2)

The following is equivalent to x [:, np.newaxis]:

>>> y = np.expand_dims (x, axis=1)
>>> y
array ([[1],
(211
>>> y.shape
(2, 1)

axis may also be a tuple:

>>> y = np.expand_dims (x, axis=(0, 1))

>>> y
array ([[[1, 2]]1])

>>> y = np.expand_dims (x, axis=(2, 0))
>>> y

array ([[[1]

(2111)

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None
True

ma .squeeze (*args, **kwargs) = <numpy.ma.core._convert2ma object>

Remove axes of length one from a.

Parameters

[array_like] Input data.

404 1. Array objects

NumPy Reference, Release 1.23.0

axis
[None or int or tuple of ints, optional] New in version 1.7.0.
Selects a subset of the entries of length one in the shape. If an axis is selected with shape entry
greater than one, an error is raised.

Returns

squeezed

[MaskedArray] The input array, but with all or a subset of the dimensions of length 1 removed.
This is always a itself or a view into a. Note that if all axes are squeezed, the result is a Od
array and not a scalar.

Raises

ValueError

If axis is not None, and an axis being squeezed is not of length 1
See also:

expand_dims
The inverse operation, adding entries of length one
reshape

Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> x = np.array ([[[0], [1], [2]]11)
>>> x.shape

(1, 3, 1)

>>> np.squeeze (x) .shape

(3,)

>>> np.squeeze (x, axis=0) .shape
(3, 1)

>>> np.squeeze (x, axis=1) .shape
Traceback (most recent call last):

ValueError: cannot select an axis to squeeze out which has size not equal to one
>>> np.squeeze (x, axis=2) .shape
(1, 3)

>>> x = np.array ([[1234]11])

>>> x.shape

(1, 1)

>>> np.squeeze (x)

array (1234) # 0d array

>>> np.squeeze (x) .shape

0)

>>> np.squeeze (x) [()]

1234

1.7. Masked arrays 405

NumPy Reference, Release 1.23.0

ma .stack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object>

Join a sequence of arrays along a new axis.

The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0

it will be the first dimension and if axis=-1 it will be the last dimension.
New in version 1.10.0.

Parameters

arrays
[sequence of array_like] Each array must have the same shape.

axis

[int, optional] The axis in the result array along which the input arrays are stacked.

out

[ndarray, optional] If provided, the destination to place the result. The shape must be correct,
matching that of what stack would have returned if no out argument were specified.

Returns

stacked

[ndarray] The stacked array has one more dimension than the input arrays.

See also:

concatenate

Join a sequence of arrays along an existing axis.
block

Assemble an nd-array from nested lists of blocks.
split

Split array into a list of multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> arrays = [np.random.randn (3, 4) for _ in range(10)]
>>> np.stack (arrays, axis=0) .shape

(10, 3, 4)

>>> np.stack (arrays, axis=1) .shape
(3, 10, 4)

>>> np.stack (arrays, axis=2) .shape
(3, 4, 10)

406

1. Array objects

NumPy Reference, Release 1.23.0

>>> a = np.array([l, 2, 31)
>>> b = np.array([4, 5, 6])
>>> np.stack((a, b))
array ([[1, 2, 31,

[4, 5, 611)

>>> np.stack((a, b), axis=-1)

array ([[1, 41,
(2, 51,
[3, 611)
ma.column_stack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object>

Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters

tup

[sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first dimen-
sion.

Returns

stacked

[2-D array] The array formed by stacking the given arrays.
See also:

stack, hstack, vstack, concatenate

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack ((a,b))
array ([[1, 27,

(2, 31,

[3, 411)

ma .concatenate (arrays, axis=0)

Concatenate a sequence of arrays along the given axis.

Parameters

arrays

1.7. Masked arrays 407

NumPy Reference, Release 1.23.0

[sequence of array_like] The arrays must have the same shape, except in the dimension corre-
sponding to axis (the first, by default).

axis

[int, optional] The axis along which the arrays will be joined. Default is O.
Returns

result

[MaskedArray] The concatenated array with any masked entries preserved.
See also:

numpy .concatenate

Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma

>>> a = ma.arange (3)

>>> al[l] = ma.masked

>>> b = ma.arange (2, 5)

>>> a

masked_array (data=[0, --, 2],

mask=[False, True, False],
fill_value=999999)
>>> b
masked_array(data=[2, 3, 4],
mask=False,
fill_value=999999)
>>> ma.concatenate([a, bl)
masked_array (data=[0, --, 2, 2, 3, 4],
mask=[False, True, False, False, False, Falsel],
fill_value=999999)

ma .dstack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence depth wise (along third axis).

This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to
(M,N, 1) and 1-D arrays of shape (V,) have been reshaped to (1,N,). Rebuilds arrays divided by dsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters

tup

[sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D or
2-D arrays must have the same shape.

Returns

408 1. Array objects

NumPy Reference, Release 1.23.0

stacked

[ndarray] The array formed by stacking the given arrays, will be at least 3-D.
See also:

concatenate

Join a sequence of arrays along an existing axis.
stack

Join a sequence of arrays along a new axis.
block

Assemble an nd-array from nested lists of blocks.
vstack

Stack arrays in sequence vertically (row wise).
hstack

Stack arrays in sequence horizontally (column wise).
column_stack

Stack 1-D arrays as columns into a 2-D array.
dsplit

Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))

array ([[[1, 2],
(2, 31,
(3, 4111)
>>> a = np.array ([[1],[2],[311])

>>> b = np.array ([[2],[31,1411)
>>> np.dstack((a,b))

array ([[[1, 2],
[z, 311,
(I3, 4111)
ma .hstack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first
axis. Rebuilds arrays divided by hsplit.

1.7. Masked arrays 409

NumPy Reference, Release 1.23.0

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block

provide more general stacking and concatenation operations.

Parameters

tup

[sequence of ndarrays] The arrays must have the same shape along all but the second axis,

except 1-D arrays which can be any length.
Returns

stacked

[ndarray] The array formed by stacking the given arrays.
See also:

concatenate

Join a sequence of arrays along an existing axis.
stack

Join a sequence of arrays along a new axis.
block

Assemble an nd-array from nested lists of blocks.
vstack

Stack arrays in sequence vertically (row wise).
dstack

Stack arrays in sequence depth wise (along third axis).
column_stack

Stack 1-D arrays as columns into a 2-D array.

hsplit

Split an array into multiple sub-arrays horizontally (column-wise).

Notes

The function is applied to both the _data and the _mask, if any.

410

1. Array objects

NumPy Reference, Release 1.23.0

Examples
>>> a = np.array((1,2,3))
>>> b = np.array((4,5,6))

>>> np.hstack((a,b))
array ([1, 2, 3, 4, 5, 6])

>>> a = np.array ([[1],[2]1,1[311])
>>> b = np.array ([[4],[5]1,1[6]11])
>>> np.hstack((a,b))
array ([[1, 47,

(2, 51,

[3, 611)

ma.hsplit (*args,

Split an array into multiple sub-arrays horizontally (column-wise).

**kwargs) = <numpy.ma.extras._fromnxfunction_single object>

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always
split along the second axis except for 1-D arrays, where it is split at axis=0.

See also:

split

Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> x = np.arange (16.0) .reshape (4, 4)
>>> x
array ([[0., 1., 2., 3.7,
[4., 5., 6., 7.1,
[8., 9., 10., 11.71,
[12., 13., 14., 15.11)
>>> np.hsplit(x, 2)
[array ([[O., 1.7,
[4., 5.1,
[8., 9.1,
[12., 13.11),
array ([[2., 3.1,
[6., 7.1,
[10., 11.1,
[14., 15.11)1

>>> np.hspl

[array ([[O.
[4.
[8.
[12.

array ([[3
[7
[11
[15

array ([,

it(x, np.array([3, 61))
, 1., 2.1,

shape=(4, 0), dtype=float6d)]

1.7. Masked arrays

411

NumPy Reference, Release 1.23.0

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange (8.0) .reshape (2, 2, 2)
>>> x
array ([[[0., 1.7,
(2., 3.11,
[[4., 5.1,
(6., 7.111)
>>> np.hsplit(x, 2)
larray ([[[0., 1.1,
[(f4., 5.111),
array ([[[2., 3.11,
[[6., 7.111)1

With a 1-D array, the split is along axis 0.

>>> x = np.array ([0, 1, 2, 3, 4, 51])
>>> np.hsplit(x, 2)
[array ([0, 1, 2]), array([3, 4, 5])]

ma.mr_ = <numpy.ma.extras.mr_class object>

Translate slice objects to concatenation along the first axis.
This is the masked array version of 1ib.index_tricks.RClass.

See also:

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6]1)]
masked_array (data=[1, 2, 3, ..., 4, 5, 6],
mask=False,
fill_value=999999)

ma .row_stack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters

tup

[sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked

[ndarray] The array formed by stacking the given arrays, will be at least 2-D.

412 1. Array objects

NumPy Reference, Release 1.23.0

See also:

concatenate

Join a sequence of arrays along an existing axis.
stack

Join a sequence of arrays along a new axis.
block

Assemble an nd-array from nested lists of blocks.
hstack

Stack arrays in sequence horizontally (column wise).
dstack

Stack arrays in sequence depth wise (along third axis).
column_stack

Stack 1-D arrays as columns into a 2-D array.
vsplit

Split an array into multiple sub-arrays vertically (row-wise).

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([l, 2, 31)
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array ([[1, 2, 31,

(4, 5, 611)

>>> a = np.array([[1],
>>> b = np.array ([[4], [5], [611])
>>> np.vstack((a,b))

array ([[1],
(21,
[31,
(471,
(51,
[(611)
ma .vstack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.

1.7. Masked arrays 413

NumPy Reference, Release 1.23.0

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters

tup
[sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked

[ndarray] The array formed by stacking the given arrays, will be at least 2-D.
See also:

concatenate

Join a sequence of arrays along an existing axis.
stack

Join a sequence of arrays along a new axis.
block

Assemble an nd-array from nested lists of blocks.
hstack

Stack arrays in sequence horizontally (column wise).
dstack

Stack arrays in sequence depth wise (along third axis).
column_stack

Stack 1-D arrays as columns into a 2-D array.
vsplit

Split an array into multiple sub-arrays vertically (row-wise).

Notes

The function is applied to both the _data and the _mask, if any.

414 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> a = np.array([l, 2, 31)
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array ([[1, 2, 31,

(4, 5, 611)

>>> a = np.array ([[1]
>>> b = np.array ([[4], [5], [6]1])
>>> np.vstack((a,b))

array ([[1],

Joining arrays

ma.concatenate(arrays|, axis]) Concatenate a sequence of arrays along the given axis.
ma . stack(*args, **kwargs) Join a sequence of arrays along a new axis.

ma. vstack(*args, **kwargs) Stack arrays in sequence vertically (row wise).

ma . hstack(¥args, **kwargs) Stack arrays in sequence horizontally (column wise).
ma . dstack(*args, **kwargs) Stack arrays in sequence depth wise (along third axis).
ma.column_stack(*args, **kwargs) Stack 1-D arrays as columns into a 2-D array.

ma . append(a, b[, axis]) Append values to the end of an array.

ma . append (a, b, axis=None)

Append values to the end of an array.
New in version 1.9.0.

Parameters

[array_like] Values are appended to a copy of this array.

[array_like] These values are appended to a copy of a. It must be of the correct shape (the same
shape as a, excluding axis). If axis is not specified, b can be any shape and will be flattened

before use.

axis

[int, optional] The axis along which v are appended. If axis is not given, both a and b are

flattened before use.
Returns

append

[MaskedArray] A copy of a with b appended to axis. Note that append does not occur
in-place: a new array is allocated and filled. If axis is None, the result is a flattened array.

1.7. Masked arrays

415

NumPy Reference, Release 1.23.0

See also:

numpy . append

Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 61, [7, 8, 911, 7)
>>> ma.append(a, b)
masked_array (data=[1, --, 3, 4, 5, 6, ——, 8, 91,
mask=[False, True, False, False, False, False, True, False,
False],
fill_value=999999)

Operations on masks

Creating a mask

ma . make_mask(m[, copy, shrink, dtype]) Create a boolean mask from an array.

ma . make_mask_none(newshape[, dtype]) Return a boolean mask of the given shape, filled with
False.

ma .mask_or(ml, m2[, copy, shrink]) Combine two masks with the 1ogical_or operator.

ma.make_mask_descr(ndtype) Construct a dtype description list from a given dtype.

ma .make_mask (m, copy=~False, shrink=True, dtype=<class ‘numpy.bool_">)

Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence that
is convertible to integers, or nomask. Does not require that contents must be Os and 1s, values of 0 are interpreted
as False, everything else as True.

Parameters

m

[array_like] Potential mask.
copy

[bool, optional] Whether to return a copy of m (True) or m itself (False).
shrink

[bool, optional] Whether to shrink m to nomask if all its values are False.
dtype

[dtype, optional] Data-type of the output mask. By default, the output mask has a dtype of
MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when
m is nomask, in which case nomask is always returned.

Returns

416 1. Array objects

NumPy Reference, Release 1.23.0

result

[ndarray] A boolean mask derived from m.

Examples

>>> import numpy.ma as ma

>>> m = [True, False, True, True]
>>> ma.make_mask (m)
array ([True, False, True, Truel])

>>m = [1, 0, 1, 1]

>>> ma.make_mask (m)

array ([True, False, True, Truel])
>>m = [1, 0, 2, -3]

>>> ma.make_mask (m)

array ([True, False, True, True])

Effect of the shrink parameter.

>>> m = np.zeros (4)

>>> m

array([0., 0., 0., 0.1)

>>> ma.make_mask (m)

False

>>> ma.make_mask (m, shrink=False)
array ([False, False, False, Falsel])

Using a flexible dt ype.

>>m = [1, 0, 1, 1]

>>>n = [0, 1, 0, O]

>>> arr = []

>>> for man, mouse in zip(m, n):
.. arr.append((man, mouse))
>>> arr

[, 0, (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],

S 'formats':[np.int64, np.int64]})

>>> arr = np.array(arr, dtype=dtype)

>>> arr

array ([(1, 0), (0, 1), (1, 0), (1, 0)1,
dtype=[('man', '<i8'), ('mouse', '<i8'")])

>>> ma.make_mask (arr, dtype=dtype)

array ([(True, False), (False, True), (True, False), (True, False)],
dtype=[('man', '|bl'), ('mouse', '|bl')])

ma .make_mask_none (newshape, dtype=None)

Return a boolean mask of the given shape, filled with False.

This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If
a complex dtype is specified, the type of each field is converted to a boolean type.

Parameters

newshape

[tuple] A tuple indicating the shape of the mask.

1.7. Masked arrays 417

NumPy Reference, Release 1.23.0

dtype

[{None, dtype}, optional] If None, use a MaskType instance. Otherwise, use a new datatype
with the same fields as dt ype, converted to boolean types.

Returns

result

[ndarray] An ndarray of appropriate shape and dtype, filled with False.
See also:

make_mask
Create a boolean mask from an array.
make_mask_descr

Construct a dtype description list from a given dtype.

Examples

>>> import numpy.ma as ma
>>> ma.make_mask_none ((3,))
array ([False, False, False])

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],

C. 'formats':[np.float32, np.int64]})

>>> dtype

dtype ([("foo', '<f4'), ('bar', '<i8")])

>>> ma.make_mask_none ((3,), dtype=dtype)

array ([(False, False), (False, False), (False, False)],
dtype=[('foo', '|bl"), ('bar', 'Ibl"'")])

ma .mask_ox (ml, m2, copy=False, shrink=True)

Combine two masks with the 1ogical_or operator.
The result may be a view on m1 or m2 if the other is nomask (i.e. False).

Parameters

ml, m2
[array_like] Input masks.

copy

[bool, optional] If copy is False and one of the inputs is noma sk, return a view of the other
input mask. Defaults to False.

shrink
[bool, optional] Whether to shrink the output to noma sk if all its values are False. Defaults

to True.

Returns

418 1. Array objects

NumPy Reference, Release 1.23.0

mask

[output mask] The result masks values that are masked in either mI or m2.
Raises

ValueError

If m1 and m2 have different flexible dtypes.

Examples
>>> ml = np.ma.make_mask ([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])

>>> np.ma.mask_or (ml, m2)
array ([True, True, True, False])

ma .make_mask_descr (ndtype)

Construct a dtype description list from a given dtype.
Returns a new dtype object, with the type of all fields in ndfype to a boolean type. Field names are not altered.

Parameters

ndtype
[dtype] The dtype to convert.

Returns

result

[dtype] A dtype that looks like ndtype, the type of all fields is boolean.

Examples

>>> import numpy.ma as ma

>>> dtype = np.dtype({'names':['foo', 'bar'],

C 'formats':[np.float32, np.int64]})
>>> dtype

dtype ([('"foo', '<f4'), ('bar', '<i8'")])
>>> ma.make_mask_descr (dtype)
dtype ([("foo', "|bl"'), ('bar', '|bl')])

>>> ma.make_mask_descr (np.float32)
dtype ('bool")

1.7. Masked arrays 419

NumPy Reference, Release 1.23.0

Accessing a mask

ma.getmask(a)

Return the mask of a masked array, or nomask.

ma.getmaskarray(arr)

Return the mask of a masked array, or full boolean array
of False.

ma.masked_array.mask

Current mask.

property

property ma.masked_array.mask

Current mask.

Finding masked data

ma . ndenumerate(al, compressed])

Multidimensional index iterator.

ma.flatnotmasked_contiguous(a)

Find contiguous unmasked data in a masked array.

ma.flatnotmasked_edges(a)

Find the indices of the first and last unmasked values.

ma.notmasked_ contiguous(al, axis])

Find contiguous unmasked data in a masked array along
the given axis.

ma.notmasked_edges(a[, axis])

Find the indices of the first and last unmasked values
along an axis.

ma.clump_masked(a)

Returns a list of slices corresponding to the masked
clumps of a 1-D array.

ma.clump_unmasked(a)

Return list of slices corresponding to the unmasked
clumps of a 1-D array.

ma .ndenumerate (a, compressed=True)

Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values, skipping elements that are masked. With com-
pressed=False, ma.masked is yielded as the value of masked elements. This behavior differs from that of
numpy . ndenumerate, which yields the value of the underlying data array.

Parameters

[array_like] An array with (possibly) masked elements.

compressed

[bool, optional] If True (default), masked elements are skipped.

See also:

numpy . ndenumerate

Equivalent function ignoring any mask.

420

1. Array objects

NumPy Reference, Release 1.23.0

Notes

New in version 1.23.0.

Examples

>>> a = np.ma.arange (9) .reshape ((3, 3))

>>> afl, 0] = np.ma.masked
>>> af[l, 2] = np.ma.masked
>>> a2, 1] = np.ma.masked
>>> a

masked_array (
data=[[0, 1, 2],
[——, 4, —-1,
(6, ——, 811,
mask=[[False, False, False],
[True, False, Truel],
[False, True, Falsel],
fill _value=999999)
>>> for index, x in np.ma.ndenumerate (a):
print (index, x)

~

~

~

~

NN PO O O
~ .
N O NP O

~

o o B N O

>>> for index, x in np.ma.ndenumerate(a, compressed=False):
print (index, x)

(0, 0) O
(0, 1) 1
(0, 2) 2
(1, 0) —-
(1, 1) 4
(L, 2) -
(2, 0) ©
(2, 1) -
(2, 2) 8

~

ma . flatnotmasked_contiguous (a)

Find contiguous unmasked data in a masked array.

Parameters

[array_like] The input array.
Returns

slice_list
[list] A sorted sequence of slice objects (start index, end index).

Changed in version 1.15.0: Now returns an empty list instead of None for a fully masked array

1.7. Masked arrays 421

NumPy Reference, Release 1.23.0

See also:

flatnotmasked_edges, notmasked_contiguous, notmasked_edges

clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.ma.arange (10)
>>> np.ma.flatnotmasked_contiguous (a)
[slice (0, 10, None)]

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked

>>> np.array(al[~a.mask])

array ([3, 4, 6, 7, 81)

>>> np.ma.flatnotmasked_contiguous (a)
[slice (3, 5, None), slice (6, 9, None)]
>>> af:] = np.ma.masked

>>> np.ma.flatnotmasked_contiguous (a)

[]

ma.flatnotmasked_edges (a)

Find the indices of the first and last unmasked values.
Expects a 1-D MaskedArray, returns None if all values are masked.

Parameters

[array_like] Input 1-D MaskedArray
Returns

edges

[ndarray or None] The indices of first and last non-masked value in the array. Returns None
if all values are masked.

See also:

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges

clump_masked, clump_unmasked

422

1. Array objects

NumPy Reference, Release 1.23.0

Notes

Only accepts 1-D arrays.

Examples

>>> a = np.ma.arange (10)
>>> np.ma.flatnotmasked_edges (a)
array ([0, 9])

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked

>>> np.array(al[~a.mask])

array ([3, 4, 6, 7, 81)

>>> np.ma.flatnotmasked_edges (a)
array ([3, 8])

>>> af:] = np.ma.masked
>>> print (np.ma.flatnotmasked_edges(a))
None

ma .notmasked_contiguous (a, axis=None)

Find contiguous unmasked data in a masked array along the given axis.

Parameters

[array_like] The input array.

axis
[int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array, and this is the same as flatnotmasked_contiguous.

Returns

endpoints
[list] A list of slices (start and end indexes) of unmasked indexes in the array.

If the input is 2d and axis is specified, the result is a list of lists.
See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges

clump_masked, clump_unmasked

1.7. Masked arrays 423

NumPy Reference, Release 1.23.0

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.arange (12) .reshape ((3, 4))

>>> mask = np.zeros_like (a)

>>> mask[1l:, :-1] = 1; mask[O, 1] = 1; mask[-1, 0] = 0O
>>> ma = np.ma.array(a, mask=mask)

>>> ma

masked_array (
data=[[0, --, 2, 31,
== == == 71,
(8, -——, ——, 1111,
mask=[[False, True, False, False],
[True, True, True, False]
[False, True, True, False]
fill _value=999999)
>>> np.array (ma[~ma.mask])
array([0, 2, 3, 7, 8, 11])

o~

4

>>> np.ma.notmasked_contiguous (ma)
[slice (0, 1, None), slice(2, 4, None), slice(7, 9, None), slice (11, 12, None)]

>>> np.ma.notmasked_contiguous (ma, axis=0)
[[slice (0, 1, None), slice(2, 3, None)], [], [slice (0, 1, None)], [slice(0, 3,.
—None) 1]

>>> np.ma.notmasked_contiguous (ma, axis=1)
[[slice (0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None),.
—~slice (3, 4, None)]]

ma .notmasked_edges (a, axis=None)
Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the
first and last unmasked values respectively.

Parameters

[array_like] The input array.

axis
[int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array.

Returns

edges

[ndarray or list] An array of start and end indexes if there are any masked data in the array. If
there are no masked data in the array, edges is a list of the first and last index.

424 1. Array objects

NumPy Reference, Release 1.23.0

See also:

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous

clump_masked, clump_unmasked

Examples

>>> m[1l

>>> a = np.arange (9) .reshape ((3, 3))
>>> m =

np.zeros_like (a)

:, 1:] =1

>>> am

= np.ma.array(a, mask=m)
>>> np.array (am[~am.mask])
array ([0, 1, 2, 3, 61)

>>> np.ma.notmasked_edges (am)
array ([0, 6])

ma .clump_masked (a)

Returns a list of slices corresponding to the masked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters

[ndarray] A one-dimensional masked array.

Returns

See also:

slices

[list of slice] The list of slices, one for each continuous region of masked elements in a.

flatnotmasked_edges, flatnotmasked contiguous, notmasked_edges

notmasked_contiguous, clump_unmasked

Notes

New in version 1.4.0.

1.7. Masked arrays

425

NumPy Reference, Release 1.23.0

Examples

>>> a = np.ma.masked_array (np.arange (10))
>>> afl[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_masked(a)

[slice (0, 3, None), slice(6, 7, None), slice (8,

10,

None)]

ma .clump_unmasked (a)

Return list of slices corresponding to the unmasked clumps of a 1-D array. (A “clump” is defined as a contiguous

region of the array).

Parameters

[ndarray] A one-dimensional masked array.
Returns

slices

[list of slice] The list of slices, one for each continuous region of unmasked elements in a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges

notmasked_contiguous, clump_masked

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array (np.arange (10))
>>> afl[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_unmasked (a)

[slice (3, 6, None), slice (7, 8, None)]

426

1. Array objects

NumPy Reference, Release 1.23.0

Modifying a mask

ma.mask_cols(al, axis]) Mask columns of a 2D array that contain masked values.

ma.mask_or(ml, m2[, copy, shrink]) Combine two masks with the 1logical_or operator.

ma.mask_rowcols(al[, axis]) Mask rows and/or columns of a 2D array that contain
masked values.

ma.mask_rows(al, axis]) Mask rows of a 2D array that contain masked values.

ma . harden_mask(self) Force the mask to hard, preventing unmasking by assign-
ment.

ma.soften_mask(self) Force the mask to soft (default), allowing unmasking by
assignment.

ma.MaskedArray.harden_mask() Force the mask to hard, preventing unmasking by assign-
ment.

ma.MaskedArray.soften_mask() Force the mask to soft (default), allowing unmasking by
assignment.

ma.MaskedArray.shrink_mask() Reduce a mask to nomask when possible.

ma.MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.

ma .mask_cols (a, axis=<no value>)

Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.

See also:

mask_rowcols

Mask rows and/or columns of a 2D array.

masked_where

Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.zeros((3, 3), dtype=int)
>>> afl, 1] =1
>>> a
array([[O0, O, O],
[0, 1, 01,
(0, 0, 0ID)
>>> a = ma.masked_equal(a, 1)

>>> a
masked_array (
data=[[0, 0, 07,

(0, --, 01,

(0, 0, 011,
mask=[[False, False, False]

[False, True, False]

[False, False, False]
fill value=1)
>>> ma.mask_cols (a)
masked_array (
data=[[0, —-—-, 0],

14

]I

(continues on next page)

1.7. Masked arrays

427

NumPy Reference, Release 1.23.0

(continued from previous page)

0, -—-, 01,

0, ——, 011,

False, True, False],

False, True, False]
[False, True, False]

fill_value=1)

mask=[

[
[
(
[

o~

4

ma .mask_rowcols (a, axis=None)

Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using
the axis parameter.

e If axis is None, rows and columns are masked.
e If axis is 0, only rows are masked.

e If axisis 1 or -1, only columns are masked.

Parameters

[array_like, MaskedArray] The array to mask. If not a MaskedArray instance (or if no array
elements are masked). The result is a MaskedArray with mask set to noma sk (False). Must
be a 2D array.

axis
[int, optional] Axis along which to perform the operation. If None, applies to a flattened version

of the array.

Returns

[MaskedArray] A modified version of the input array, masked depending on the value of the
axis parameter.

Raises

NotImplementedError

If input array a is not 2D.
See also:

mask_rows

Mask rows of a 2D array that contain masked values.
mask_cols

Mask cols of a 2D array that contain masked values.
masked_where

Mask where a condition is met.

428 1. Array objects

NumPy Reference, Release 1.23.0

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)

>>> afl, 1] =1
>>> a
array([[0, O, O],
[o, 1, 01,
[0, 0, 011)
>>> a = ma.masked_equal(a, 1)

>>> g
masked_array (
data=[[0, 0, 07,
0, -—-, 01,
0, 0, 011,
False, False, False],
False, True, False]
[False, False, False]
fill value=1)
>>> ma.mask_rowcols (a)
masked_array (
data=[[0, --, 0],

mask=[

[
(
[
[

o~

’

[——r —+ — 1,

(0, ——, 011,
mask=[[False, True, False],

[True, True, True]

[False, True, False]
fill value=1)

o~

’

ma .mask_rows (a, axis=<no value>)

Mask rows of a 2D array that contain masked values.
This function is a shortcut to mask_rowcols with axis equal to O.

See also:

mask_rowcols
Mask rows and/or columns of a 2D array.
masked_where

Mask where a condition is met.

1.7. Masked arrays 429

NumPy Reference, Release 1.23.0

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)

>>> afl, 1] =1
>>> a
array([[0, O, O],
[o, 1, 01,
[0, 0, 011
>>> a = ma.masked_equal(a, 1)

>>> a
masked_array (
data=[[0, 0, 07,

[Or T O]I

[0, 0, QI1,
mask=[[False, False, False],

[False, True, False]

o~
~

[False, False, False]
fill_value=1)

>>> ma.mask_rows (a)
masked_array (
data=[[0, 0, 07,

T ’ 77]/

[,

(0, 0, 011,
mask=[[False, False, False],

[True, True, True]

o~

[False, False, False]
fill_value=1)

4

ma.harden_mask (self) = <numpy.ma.core._frommethod object>

Force the mask to hard, preventing unmasking by assignment.

Whether the mask of a masked array is hard or soft is determined by its ha rdmask property. harden_mask
sets hardmask to True (and returns the modified self).

See also:

ma.MaskedArray. hardmask

ma.MaskedArray.soften mask

ma.soften_mask (self) = <numpy.ma.core._frommethod object>
Force the mask to soft (default), allowing unmasking by assignment.

Whether the mask of a masked array is hard or soft is determined by its ha rdmask property. soften_mask
sets hardmask to False (and returns the modified self).

See also:

ma.MaskedArray. hardmask

ma.MaskedArray.harden mask

430 1. Array objects

NumPy Reference, Release 1.23.0

Conversion operations

> to

a masked array

ma

.asarray(al, dtype, order])

Convert the input to a masked array of the given data-
type.

ma.

asanyarray(al, dtype])

Convert the input to a masked array, conserving sub-
classes.

ma.

fix_invalid(a[, mask, copy, fill_value])

Return input with invalid data masked and replaced by a
fill value.

ma

.masked_equal(x, value[, copy])

Mask an array where equal to a given value.

ma.

masked_greater(x, value[, copy])

Mask an array where greater than a given value.

ma

.masked_greater_equal(X, value[, copy])

Mask an array where greater than or equal to a given
value.

ma

.masked_inside(x, vl, v2[, copy])

Mask an array inside a given interval.

ma

.masked_invalid(al, copy])

Mask an array where invalid values occur (NaNs or infs).

ma.

masked_1less(x, value[, copy])

Mask an array where less than a given value.

ma

.masked_less_equal(x, value[, copy])

Mask an array where less than or equal to a given value.

ma.

masked_not_equal(X, value[, copy])

Mask an array where not equal to a given value.

ma.

masked_object(x, value[, copy, shrink])

Mask the array x where the data are exactly equal to value.

ma

.masked_outside(x, vl, v2[, copy])

Mask an array outside a given interval.

ma.

masked_values(x, value[, rtol, atol, ...])

Mask using floating point equality.

ma.

masked_where(condition, a[, copy])

Mask an array where a condition is met.

> to

a ndarray

ma.

compress_cols(a)

Suppress whole columns of a 2-D array that contain
masked values.

ma.

compress_rowcols(X[, axis])

Suppress the rows and/or columns of a 2-D array that con-
tain masked values.

ma.

compress_rows(a)

Suppress whole rows of a 2-D array that contain masked
values.

ma.

compressed(X)

Return all the non-masked data as a 1-D array.

ma

. filled(a[, fill_value])

Return input as an array with masked data replaced by a
fill value.

ma.

MaskedArray.compressed()

Return all the non-masked data as a 1-D array.

ma

.MaskedArray. filled([fill_value])

Return a copy of self, with masked values filled with a
given value.

ma .compress_cols (a)

Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np .ma . compress_rowcols (a,

See also:

compress_rowcols

ma . compress_rowcols (x, axis=None)

1), see compress_rowcols for details.

Suppress the rows and/or columns of a 2-D array that contain masked values.

The suppression behavior is selected with the axis parameter.

« If axis is None, both rows and columns are suppressed.

1.7. Masked arrays

431

NumPy Reference, Release 1.23.0

e If axis is 0, only rows are suppressed.

e If axis is 1 or -1, only columns are suppressed.

Parameters

[array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.

Must be a 2D array.

axis

[int, optional] Axis along which to perform the operation. Default is None.

Returns

compressed_array

[ndarray] The compressed array.

Examples

>>> x = np.ma.array(np.arange (9) .reshape (3, 3), mask=[[1,

>>> X

masked_array (

data=[[--, 1, 21,
[——, 4, 51,
(6, 7, 811,

mask=[[True, False, False],
[

True, False, False],
[False, False, False]],
fill_value=999999)

0, 01,
0, 0],
0, 011)

>>> np.ma.compress_rowcols (x)
array ([[7, 811)
>>> np.ma.compress_rowcols (x, 0)
array([[6, 7, 811)
>>> np.ma.compress_rowcols (x, 1)
array ([[1, 2],

(4, 51,

(7, 811)

ma .compress_rows (d)

Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np .ma . compress_rowcols (a, 0),see compress_rowcols for details.

See also:

compress_rowcols

432

1. Array objects

NumPy Reference, Release 1.23.0

ma .compressed (x)

Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a ma.MaskedArray, see ma.

MaskedArray.compressed for details.

See also:

ma.MaskedArray.compressed

Equivalent method.

ma.filled (a, fill_value=None)
Return input as an array with masked data replaced by a fill value.

If aisnota MaskedArray, aitself is returned. If a is a MaskedArray and fill_value is None, fill_value is set

toa.fill_wvalue.

Parameters

[MaskedArray or array_like] An input object.
fill_value

[array_like, optional.] Can be scalar or non-scalar. If non-scalar, the resulting filled array
should be broadcastable over input array. Default is None.

Returns

[ndarray] The filled array.

See also:
compressed
Examples
>>> x = np.ma.array (np.arange(9) .reshape (3, 3), mask=[[1, 0, 0],
(1, o, 01,
(0, 0, 011
>>> x.filled()
array ([[999999, 1, 21,
[999999, 4, 5],
[6, 7, 811)

>>> x.filled(fill_value=333)
array ([[333, 1, 271,
[333, 4, 571,
[6, 7, 811)
>>> x.filled(fill_value=np.arange (3))
array ([[0, 1, 2],
[o, 4, 51,
[6, 7, 811)

1.7. Masked arrays

433

NumPy Reference, Release 1.23.0

> to another object

ma.MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.

ma.MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierar-
chical Python list.

ma.MaskedArray.torecords() Transforms a masked array into a flexible-type array.

ma.MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes
in the array.

Filling a masked array

ma.common_f1ill_value(a,b) Return the common filling value of two masked arrays, if
any.

ma.default_fill_value(obj) Return the default fill value for the argument object.

ma.maximum_f£1ill_value(obj) Return the minimum value that can be represented by the
dtype of an object.

ma.minimum_£ill_value(obj) Return the maximum value that can be represented by the
dtype of an object.

ma.set_fill_value(a, fill_value) Set the filling value of a, if a is a masked array.

ma.MaskedArray.get_fill_value() The filling value of the masked array is a scalar.

ma.MaskedArray.set_fill_value([value])

ma.common_£ill_value (q, b)

Return the common filling value of two masked arrays, if any.
Ifa.fill _value == b.fill_value, return the fill value, otherwise return None.

Parameters

a,b

[MaskedArray] The masked arrays for which to compare fill values.
Returns

fill_value

[scalar or None] The common fill value, or None.

Examples

>>> x = np.ma.array ([0, 1.], fill_value=3)
>>> y = np.ma.array ([0, 1.], fill_value=3)
>>> np.ma.common_fill_ value(x, V)

3.0

ma.default_£ill_value (0bj)

Return the default fill value for the argument object.

The default filling value depends on the datatype of the input array or the type of the input scalar:

434 1. Array objects

NumPy Reference, Release 1.23.0

datatype | default
bool True

int 999999
float 1.e20
complex 1.e20+0j
object e

string ‘N/A’

For structured types, a structured scalar is returned, with each field the default fill value for its type.
For subarray types, the fill value is an array of the same size containing the default scalar fill value.
Parameters
obj

[ndarray, dtype or scalar] The array data-type or scalar for which the default fill value is re-
turned.

Returns

fill_value

[scalar] The default fill value.

Examples

>>> np.ma.default_fill_value (1)

999999

>>> np.ma.default_fill_value(np.array([1.1, 2., np.pil))
le+20

>>> np.ma.default_fill_value (np.dtype (complex))
(1e+20+07)

ma.maximum_£fill_value (0bj)

Return the minimum value that can be represented by the dtype of an object.
This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.

Parameters

obj

[ndarray, dtype or scalar] An object that can be queried for it’s numeric type.
Returns

val

[scalar] The minimum representable value.
Raises

TypeError

If obj isn’t a suitable numeric type.

1.7. Masked arrays 435

NumPy Reference, Release 1.23.0

See also:

minimum_ fill_value

The inverse function.
set_fill value

Set the filling value of a masked array.
MaskedArray.fill_value

Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8 ()

>>> ma.maximum_fill_value (a)
-128

>>> a = np.int32 ()

>>> ma.maximum_fill_value (a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1l, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_ value (a)

-128

>>> a = np.array([1l, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_ value (a)

—inf

ma.minimum_£fill_value (0bj)

Return the maximum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for taking the minimum of an array with a given dtype.

Parameters

obj

[ndarray, dtype or scalar] An object that can be queried for it’s numeric type.
Returns

val

[scalar] The maximum representable value.
Raises

TypeError

If obj isn’t a suitable numeric type.

See also:

436

1. Array objects

NumPy Reference, Release 1.23.0

maximum fill value

The inverse function.
set_fill_value

Set the filling value of a masked array.
MaskedArray.fill_value

Return current fill value.

Examples

>>> import numpy.ma as ma

>>> a = np.int8()
>>> ma.minimum_fill_ value (a)
127

>>> a = np.int32 ()
>>> ma.minimum_fill_ value (a)
2147483647

An array of numeric data can also be passed.

>>> a = np.array([1l, 2, 3], dtype=np.int8)
>>> ma.minimum_fill value (a)

127

>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.minimum_fill value (a)

inf

ma.set_£fill_value (a, fill_value)

Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place. If a is not a masked array, the function returns
silently, without doing anything.

Parameters

[array_like] Input array.
fill_value

[dtype] Filling value. A consistency test is performed to make sure the value is compatible
with the dtype of a.

Returns

None

Nothing returned by this function.
See also:

maximum fill_value

Return the default fill value for a dtype.

1.7. Masked arrays 437

NumPy Reference, Release 1.23.0

MaskedArray.fill_value
Return current fill value.
MaskedArray.set_fill_value

Equivalent method.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5)
>>> 3

array ([0, 1, 2, 3, 4])

>>> a = ma.masked_where(a < 3, a)

>>> a

masked_array (data=[--, --, --, 3,
mask=[True, True,

fill_value=999999)

>>> ma.set_fill value(a, —-999)

>>> a

masked_array (data=[--, --, --, 3,
mask=[True, True,

fill_value=-999)

a1,
True,

a1,
True,

False, False],

False, False],

Nothing happens if a is not a masked array.

>>> a =
>>> a
[0, 1, 2, 3, 4]

list (range (5))

>>> ma.set_fill_value(a, 100)
>>> a

(o, 1, 2, 3, 4]

>>> a = np.arange(5)

>>> a

array ([0, 1, 2, 3, 41])

>>> ma.set_fill _value(a, 100)

>>> a

array ([0, 1, 2, 3, 4])

ma.MaskedArray.fill_value

The filling value of the masked array is a scalar.

Masked arrays arithmetic

438

1. Array objects

NumPy Reference, Release 1.23.0

Arithmetic

ma.

anom(self[, axis, dtype])

Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma . anomal ies(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma . average(al, axis, weights, returned, ...]) Return the weighted average of array over the given axis.

ma.conjugate(X, /[, out, where, casting, ...]) Return the complex conjugate, element-wise.

ma.corrcoef(x[,y, rowvar, bias, ...]) Return Pearson product-moment correlation coefficients.

ma . cov(x[, y, rowvar, bias, allow_masked, ddof]) Estimate the covariance matrix.

ma . cumsum(self[, axis, dtype, out]) Return the cumulative sum of the array elements over the
given axis.

ma . cumprod(self[, axis, dtype, out]) Return the cumulative product of the array elements over
the given axis.

ma . mean(self[, axis, dtype, out, keepdims]) Returns the average of the array elements along given
axis.

ma . median(al, axis, out, overwrite_input, ...]) Compute the median along the specified axis.

ma . power(a, b[, third]) Returns element-wise base array raised to power from
second array.

ma . prod(self[, axis, dtype, out, keepdims]) Return the product of the array elements over the given
axis.

ma . std(self[, axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along
given axis.

ma . sum(self[, axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.

ma . var(self[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis.

ma.MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma.MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the array elements over
the given axis.

ma.MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the array elements over the
given axis.

ma.MaskedArray.mean([axis, dtype, out, keep- Returns the average of the array elements along given

dims]) axis.

ma.MaskedArray.prod([axis, dtype, out, keep- Return the product of the array elements over the given

dims]) axis.

ma.MaskedArray. std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along
given axis.

ma.MaskedArray. sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.

ma.MaskedArray. var([axis, dtype, out, ddof, ...]) Compute the variance along the specified axis.

ma . anom (self, axis=None, dtype=None)

= <numpy.ma.core._frommethod object>

Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along

the given axis.

Parameters

axis

[int, optional] Axis over which the anomalies are taken. The default is to use the mean of the

flattened array as reference.

dtype

1.7. Masked arrays

439

NumPy Reference, Release 1.23.0

[dtype, optional]
Type to use in computing the variance. For arrays of integer type

the default is float32; for arrays of float types it is the same as the array type.
See also:

mean

Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])

>>> a.anom/()

masked_array (data=[-1., 0., 1.1,

mask=False,
fill_value=1e+20)

ma .anomalies (self, axis=None, dtype=None) = <numpy.ma.core._frommethod object>

Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along
the given axis.

Parameters

axis

[int, optional] Axis over which the anomalies are taken. The default is to use the mean of the
flattened array as reference.

dtype
[dtype, optional]
Type to use in computing the variance. For arrays of integer type

the default is float32; for arrays of float types it is the same as the array type.
See also:
mean

Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anomf()
masked_array (data=[-1., 0., 1.1,
mask=False,
fill_value=1e+20)

440 1. Array objects

NumPy Reference, Release 1.23.0

ma .average (a, axis=None, weights=None, returned=False, *, keepdims=<no value>)

Return the weighted average of array over the given axis.

Parameters

[array_like] Data to be averaged. Masked entries are not taken into account in the computation.
axis
[int, optional] Axis along which to average a. If None, averaging is done over the flattened
array.
weights

[array_like, optional] The importance that each element has in the computation of the average.
The weights array can either be 1-D (in which case its length must be the size of a along the
given axis) or of the same shape as a. If weight s=None, then all data in @ are assumed to
have a weight equal to one. The 1-D calculation is:

avg = sum(a * weights) / sum(weights)

The only constraint on weights is that sum(weights) must not be 0.

returned
[bool, optional] Flag indicating whether a tuple (result, sum of weights) should
be returned as output (True), or just the result (False). Default is False.

keepdims

[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a. Note: keepdims will not work with instances of numpy.mat rix or other classes whose
methods do not support keepdims.

New in version 1.23.0.
Returns

average, [sum_of_weights]

[(tuple of) scalar or MaskedArray] The average along the specified axis. When returned is
True, return a tuple with the average as the first element and the sum of the weights as the second
element. The return type is np. float64 if a is of integer type and floats smaller than 1 oat 64,
or the input data-type, otherwise. If returned, sum_of_weights is always f1oat 64.

Examples

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average (a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange (6.) .reshape (3, 2)
>>> x
masked_array (

data=[[0., 1.1,

(continues on next page)

1.7. Masked arrays

441

NumPy Reference, Release 1.23.0

(continued from previous page)

(2., 3.1,
(4., 5.11,

mask=False,

fill value=1e+20)
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 31,
. returned=True)
>>> avg
masked_array(data=[2.6666666666666665, 3.6666666666666665],

mask=[False, False],
fill value=1e+20)

With keepdims=True, the following result has shape (3, 1).

>>> np.ma.average (x, axis=1, keepdims=True)
masked_array (
data=[[0.5],
[2.57,
[4.511,
mask=False,
fill value=1e+20)

ma .conjugate (x, /, out=None, *, where=True, casting=same_kind’, order="K’, dtype=None, subok= True[,
signature, extobj]) = <numpy.ma.core._MaskedUnaryOperation object>

Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters

[array_like] Input value.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

442 1. Array objects

NumPy Reference, Release 1.23.0

Notes

conjis an alias for con jugate:

>>> np.conj is np.conjugate
True

Examples

>>> np.conjugate (1+27)

(1-23)
>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.31,
[0.-0.3, 1.-1.311)

ma .corrcoef (x, y=None, rowvar="True, bias=<no value>, allow_masked=True, ddof=<no value>)

Return Pearson product-moment correlation coefficients.

Except for the handling of missing data this function does the same as numpy . corrcoef. For more details and
examples, see numpy . corrcoef.

Parameters

[array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y
[array_like, optional] An additional set of variables and observations. y has the same shape as
X.

rowvar
[bool, optional] If rowvar is True (default), then each row represents a variable, with obser-
vations in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias

[_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.
allow_masked

[bool, optional] If True, masked values are propagated pair-wise: if a value is masked in x, the
corresponding value is masked in y. If False, raises an exception. Because bias is deprecated,
this argument needs to be treated as keyword only to avoid a warning.

ddof
[_NoValue, optional] Has no effect, do not use.

Deprecated since version 1.10.0.

1.7. Masked arrays 443

NumPy Reference, Release 1.23.0

See also:

numpy .corrcoef
Equivalent function in top-level NumPy module.
cov

Estimate the covariance matrix.
Notes
This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous

versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

ma . cov (x, y=None, rowvar="True, bias=False, allow_masked=True, ddof=None)

Estimate the covariance matrix.

Except for the handling of missing data this function does the same as numpy . cov. For more details and examples,
see numpy . cov.

By default, masked values are recognized as such. If x and y have the same shape, a common mask is allocated: if
x[1i, 3] is masked, then y [1,] will also be masked. Setting allow_masked to False will raise an exception if
values are missing in either of the input arrays.

Parameters

[array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
X represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y
[array_like, optional] An additional set of variables and observations. y has the same shape as
X.

rowvar
[bool, optional] If rowvar is True (default), then each row represents a variable, with obser-
vations in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias

[bool, optional] Default normalization (False) is by (N-1), where N is the number of obser-
vations given (unbiased estimate). If bias is True, then normalization is by N. This keyword
can be overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked

[bool, optional] If True, masked values are propagated pair-wise: if a value is masked in x, the
corresponding value is masked in y. If False, raises a ValueError exception when some values
are missing.

ddof

[{None, int}, optional] If not None normalizationis by (N - ddof), where N is the number
of observations; this overrides the value implied by bias. The default value is None.

444

1. Array objects

NumPy Reference, Release 1.23.0

New in version 1.5.
Raises

ValueError

Raised if some values are missing and allow_masked is False.
See also:
numpy . cov

ma . cumsum (self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod object>

Return the cumulative sum of the array elements over the given axis.

Masked values are set to 0 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.

Refer to numpy . cumsum for full documentation.

See also:

numpy .ndarray.cumsum
corresponding function for ndarrays
numpy . cumsum

equivalent function

Notes

The mask is lost if out is not a valid ma . MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[(0,0,0,1,1,1,0,0,0,01)
>>> marr.cumsum ()
masked_array (data=[(0, 1, 3, ——, —, -——, 9, 16, 24, 33],
mask=[False, False, False, True, True, True, False, False,
False, False],
fill_value=999999)

ma . cumprod (self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod object>

Return the cumulative product of the array elements over the given axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.

Refer to numpy . cumprod for full documentation.

See also:

numpy .ndarray.cumprod

corresponding function for ndarrays

1.7. Masked arrays 445

NumPy Reference, Release 1.23.0

numpy . cumprod

equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

ma . mean (self, axis=None, dtype=None, out=None, keepdims=<no value>) =
<numpy .ma.core._frommethod object>

Returns the average of the array elements along given axis.
Masked entries are ignored, and result elements which are not finite will be masked.
Refer to numpy . mean for full documentation.

See also:

numpy .ndarray.mean
corresponding function for ndarrays
numpy . mean
Equivalent function
numpy .ma.average

Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array (data=[1, 2, —-1,
mask=[False, False, True],
fill_value=999999)
>>> a.mean ()
1.5

ma .median (a, axis=None, out=None, overwrite_input="Fualse, keepdims=False)

Compute the median along the specified axis.
Returns the median of the array elements.

Parameters

[array_like] Input array or object that can be converted to an array.
axis

[int, optional] Axis along which the medians are computed. The default (None) is to compute
the median along a flattened version of the array.

446 1. Array objects

NumPy Reference, Release 1.23.0

out

[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type will be cast if necessary.

overwrite_input

[bool, optional] If True, then allow use of memory of input array (a) for calculations. The input
array will be modified by the call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as undefined, but it will probably be
fully or partially sorted. Default is False. Note that, if overwrite_input is True, and the input
is not already an ndarray, an error will be raised.

keepdims

Returns

[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.

New in version 1.10.0.

median

See also:

mean

Notes

[ndarray] A new array holding the result is returned unless out is specified, in which case a
reference to out is returned. Return data-type is 1 oat 64 for integers and floats smaller than
float 64, or the input data-type, otherwise.

Given a vector V with N non masked values, the median of V is the middle value of a sorted copy of vV (Vs) - i.e.
Vs[(N-1)/2],whenNisodd, or {Vs[N/2 — 1] + Vs[N/2]}/2 when N is even.

Examples

1.5

>>> x = np.ma.array (np.arange (8), mask=[0]*4 + [1]*4)
>>> np.ma.median (x)

2.5

>>> x = np.ma.array(np.arange (10) .reshape (2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.median (x)

>>> np.ma.median(x, axis=-1, overwrite_input=True)
masked_array (data=[2.0, 5.0],

mask=[False, False],

fill value=le+20)

ma .power (a, b, third=None)

Returns element-wise base array raised to power from second array.

This is the masked array version of numpy . power. For details see numpy . power.

1.7. Masked arrays

447

NumPy Reference, Release 1.23.0

See also:

numpy . power

Notes

The out argument to numpy . power is not supported, third has to be None.

ma . prod (self, axis=None, dtype=None, out=None, keepdims=<no value>) =

<numpy .ma.core._frommethod object>

Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.
Refer to numpy . prod for full documentation.

See also:

numpy .ndarray.prod
corresponding function for ndarrays
numpy . prod

equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

ma . std (self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) =

<numpy .ma.core._frommethod object>

Returns the standard deviation of the array elements along given axis.
Masked entries are ignored.
Refer to numpy . std for full documentation.

See also:

numpy.ndarray.std
corresponding function for ndarrays
numpy . std

Equivalent function

ma . sum (self, axis=None, dtype=None, out=None, keepdims=<no value>) =

<numpy .ma.core._frommethod object>

Return the sum of the array elements over the given axis.
Masked elements are set to O internally.
Refer to numpy . sum for full documentation.

See also:

numpy .ndarray . sum

corresponding function for ndarrays

448

1. Array objects

NumPy Reference, Release 1.23.0

numpy . sum

equivalent function

Examples

>>> x = np.ma.array([[1,2,3]1,[4,5,6]1,[7,8,91]1, mask=[0] + [1,0]%*4)
>>> x
masked_array (
data=[[1, --, 3],
[-——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel],
[False, True, Falsel],
fill _value=999999)
>>> x.sum/()
25
>>> x.sum(axis=1)
masked_array(data=[4, 5, 16],
mask=[False, False, False],
fill _value=999999)
>>> x.sum(axis=0)
masked_array (data=[8, 5, 12],
mask=[False, False, False],
fill value=999999)
>>> print (type(x.sum(axis=0, dtype=np.int64) [0]))
<class 'numpy.int64'>

ma . var (self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) =
<numpy .ma.core._frommethod object>

Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for

the flattened array by default, otherwise over the specified axis.

Parameters

[array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis

[None or int or tuple of ints, optional] Axis or axes along which the variance is computed. The
default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or
all the axes as before.

dtype

[data-type, optional] Type to use in computing the variance. For arrays of integer type the
default is £1oat 64; for arrays of float types it is the same as the array type.

out

1.7. Masked arrays

449

NumPy Reference, Release 1.23.0

[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof

[int, optional] “Delta Degrees of Freedom”: the divisor used in the calculationis N — ddof,
where N represents the number of elements. By default ddof is zero.

keepdims

[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the variance. See reduce for details.

New in version 1.20.0.
Returns

variance
[ndarray, see dtype parameter above] If out=None, returns a new array containing the vari-
ance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

ufuncs-output-type

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (x),where x = abs (a
- a.mean ()) **2.

The mean is typically calculated as x.sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator of the
variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the variance
for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for £1oat 32 (see example below). Specifying a higher-
accuracy accumulator using the dt ype keyword can alleviate this issue.

450

1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> a = np.array([[1, 2],
>>> np.var (a)
1.25

>>> np.var(a,
array([1., 1.
>>> np.var (a,

array ([0.25,

axis=0)
1)
axis=1)
0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512),
>>> a0, :] = 1.0

afl, :]1 = 0.1

>>> np.var (a)

0.20250003

>>>

dtype=np.

float32)

Computing the variance in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932944759 # may vary

>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Specifying a where argument:

>>> a = np.array([[14, 8, 11, 10], I[7,

>>> np.var (a)
6.833333333333333 # may vary
>>> np.var (a, where=[[True],
4.0

[True],

9,

10, 111, [10, 15, 1011)

[False]])

Minimum/maximum

ma . argmax(self[, axis, fill_value, out])

Returns array of indices of the maximum values along the
given axis.

ma . argmin(self[, axis, fill_value, out])

Return array of indices to the minimum values along the
given axis.

ma . max(obj[, axis, out, fill_value, keepdims])

Return the maximum along a given axis.

ma . min(obj[, axis, out, fill_value, keepdims])

Return the minimum along a given axis.

ma . ptp(obj[, axis, out, fill_value, keepdims])

Return (maximum - minimum) along the given dimension
(i.e.

ma . diff(*args, **kwargs)

Calculate the n-th discrete difference along the given axis.

ma.MaskedArray.argmax([axis, fill_value, ...])

Returns array of indices of the maximum values along the
given axis.

ma.MaskedArray.argmin([axis, fill_value, ...

D

Return array of indices to the minimum values along the
given axis.

ma.MaskedArray.max([axis, out, fill_value, ...

Return the maximum along a given axis.

ma.MaskedArray.min([axis, out, fill_value, ...])

Return the minimum along a given axis.

ma.MaskedArray . ptp([axis, out, fill_value, ...

Return (maximum - minimum) along the given dimension
(i.e.

ma . argmax (self, axis=None, fill_value=None, out=None)

= <numpy.ma.core._frommethod object>

1.7. Masked arrays

451

NumPy Reference, Release 1.23.0

Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the
value fill_value.

Parameters

axis
[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value

[scalar or None, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out

[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns
index_array

[{integer_array}]

Examples

>>> a = np.arange(6) .reshape (2, 3)
>>> a.argmax ()

5

>>> a.argmax (0)

array ([1, 1, 1])

>>> a.argmax (1)

array ([2, 2])

ma .argmin (self, axis=None, fill_value=None, out=None) = <numpy.ma.core._frommethod object>

Return array of indices to the minimum values along the given axis.

Parameters

axis
[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out

[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns

452 1. Array objects

NumPy Reference, Release 1.23.0

ndarray or scalar

If multi-dimension input, returns a new ndarray of indices to the minimum values along the
given axis. Otherwise, returns a scalar of index to the minimum values along the given axis.

Examples

>>> x = np.ma.array (np.arange (4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> x
masked_array (
data=[[--, —-1,
(2, 311,
mask=[[True, True],
[False, Falsell],
fill_value=999999)
>>> x.argmin(axis=0, fill_value=-1)
array ([0, 0])
>>> x.argmin (axis=0, fill_value=9)
array ([1, 1])

ma .max (obj, axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the maximum along a given axis.

Parameters

axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axi s is None
and the flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the maximum
is selected over multiple axes, instead of a single axis or all the axes as before.

out
[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

amax

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.maximum_f£fill_ value

Returns the maximum filling value for a given datatype.

1.7. Masked arrays 453

NumPy Reference, Release 1.23.0

ma .min (obj, axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the minimum along a given axis.

Parameters

axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axis is None
and the flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the minimum
is selected over multiple axes, instead of a single axis or all the axes as before.

out
[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
minimum fill_ value.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

amin

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.minimum fill value

Returns the minimum filling value for a given datatype.

ma . ptp (obj, axis=None, out=None, fill_value=None, keepdims=<no value>)

Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Warning: ptp preserves the data type of the array. This means the return value for an input of signed integers
with n bits (e.g. np.int8, np.int16, etc) is also a signed integer with n bits. In that case, peak-to-peak values
greater than 2** (n—1) -1 will be returned as negative values. An example with a work-around is shown
below.

Parameters

axis
[{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened array
is used.

out

[{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

454

1. Array objects

NumPy Reference, Release 1.23.0

fill_value
[scalar or None, optional] Value used to fill in the masked values.
keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-

sions with size one. With this option, the result will broadcast correctly against the array.

Returns

ptp

[ndarray.] A new array holding the result, unless out was specified, in which case a reference
to out is returned.

Examples

>>> x = np.ma.MaskedArray([[4, 9, 2, 101,
(6, 9, 7, 1211)

>>> x.ptp(axis=1)
masked_array (data=[8, 6],
mask=False,
fill _value=999999)

>>> x.ptp(axis=0)
masked_array (data=[2, 0, 5, 21,
mask=False,
fill_value=999999)

>>> x.ptp ()
10

This example shows that a negative value can be returned when the input is an array of signed integers.

>>> y = np.ma.MaskedArray ([[1, 127],
[o, 1271,
[-1, 12771,
A [-2, 12711, dtype=np.int8)
>>> y.ptp(axis=1)
masked_array (data=[126, 127, -128, -1271,
mask=False,
fill_value=999999,

dtype=int8)

A work-around is to use the view() method to view the result as unsigned integers with the same bit width:

>>> y.ptp(axis=1) .view(np.uint8)
masked_array (data=[126, 127, 128, 129],
mask=False,
fill_value=999999,
dtype=uint8)

1.7. Masked arrays 455

NumPy Reference, Release 1.23.0

ma .diff (*args, **kwargs) = <numpy.ma.core._convert2ma object>

Calculate the n-th discrete difference along the given axis.

The first difference is given by out [1] = a[i+1] - a[i] along the given axis, higher differences are cal-
culated by using di ff recursively.

Parameters

[array_like] Input array

[int, optional] The number of times values are differenced. If zero, the input is returned as-is.
axis

[int, optional] The axis along which the difference is taken, default is the last axis.
prepend, append

[array_like, optional] Values to prepend or append to a along axis prior to performing the
difference. Scalar values are expanded to arrays with length 1 in the direction of axis and the
shape of the input array in along all other axes. Otherwise the dimension and shape must match
a except along axis.

New in version 1.16.0.
Returns

diff
[MaskedArray] The n-th differences. The shape of the output is the same as a except along
axis where the dimension is smaller by n. The type of the output is the same as the type of the

difference between any two elements of a. This is the same as the type of a in most cases. A
notable exception is datet ime 64, which results in a ¢ imede 1 ta64 output array.

See also:

gradient, ediffld, cumsum

Notes

Type is preserved for boolean arrays, so the result will contain False when consecutive elements are the same and
True when they differ.

For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is consistent
with calculating the difference directly:

>>> u8_arr = np.array([1l, 0], dtype=np.uint8)
>>> np.diff (u8_arr)

array ([255], dtype=uint8)

>>> u8_arr[l,...] - u8_arr[0,...]

255

If this is not desirable, then the array should be cast to a larger integer type first:

456

1. Array objects

NumPy Reference, Release 1.23.0

>>> i116_arr = u8_arr.astype (np.intl6)
>>> np.diff(il6_arr)
array ([-1], dtype=intl6)

Examples

>>> x = np.array([1, 2, 4, 7, 01])
>>> np.diff (x)

array ([1, 2, 3,
>>> np.diff(x, n=2)
array ([1, 1, -101)

=71)

>>> x = np.array([[1, 3, 6,
>>> np.diff (x)

array ([[2, 3, 41,

[5, 1, 211)
>>> np.diff(x, axis=0)
array ([[-1, 2, 0, -211)

107, [0, 5,

>>> x = np.arange ('1066-10-13",
>>> np.diff (x)

array ([1, 1], dtype='timedelta64[D]")

'1066-10-16",

dtype=np.datetime64)

Sorting

ma . argsort(al, axis, kind, order, endwith, ...])

Return an ndarray of indices that sort the array along the
specified axis.

ma . sort(al, axis, kind, order, endwith, ...])

Return a sorted copy of the masked array.

ma.MaskedArray.argsort([axis, kind, order, ...])

Return an ndarray of indices that sort the array along the
specified axis.

ma.MaskedArray . sort([axis, kind, order, ...])

Sort the array, in-place

ma .argsort (a, axis=<no value>, kind=None, order=None, endwith=True, fill_value=None)

Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to

Sill_value.

Parameters

axis

[int, optional] Axis along which to sort. If None, the default, the flattened array is used.

Changed in version 1.13.0: Previously, the default was documented to be -1, but that was in
error. At some future date, the default will change to -1, as originally intended. Until then, the
axis should be given explicitly when arr.ndim > 1, to avoid a FutureWarning.

kind

[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.

order

[list, optional] When a is an array with fields defined, this argument specifies which fields to
compare first, second, etc. Not all fields need be specified.

1.7. Masked arrays

457

NumPy Reference, Release 1.23.0

endwith

[{True, False}, optional] Whether missing values (if any) should be treated as the largest values
(True) or the smallest values (False) When the array contains unmasked values at the same
extremes of the datatype, the ordering of these values and the masked values is undefined.

fill_value

[scalar or None, optional] Value used internally for the masked values. If fi11_value is

not None, it supersedes endwith.
Returns

index_array
[ndarray, int] Array of indices that sort a along the specified axis.
al[index_array] yields a sorted a.

See also:

ma.MaskedArray. sort

Describes sorting algorithms used.
lexsort

Indirect stable sort with multiple keys.
numpy .ndarray.sort

Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

In other words,

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array (data=[3, 2, —--1,
mask=[False, False, True],
fill_value=999999)
>>> a.argsort ()
array([1, 0, 21)

ma.sort (a, axis=- 1, kind=None, order=None, endwith=True, fill_value=None)

Return a sorted copy of the masked array.

Equivalent to creating a copy of the array and applying the MaskedArray sort () method.

Refer to MaskedArray. sort for the full documentation

See also:

MaskedArray.sort

equivalent method

458

1. Array objects

NumPy Reference, Release 1.23.0

Algebra
ma .diag(v], k]) Extract a diagonal or construct a diagonal array.
ma . dot(a, b, strict, out]) Return the dot product of two arrays.
ma.identity(n[, dtype]) Return the identity array.
ma.inner(a,b,/) Inner product of two arrays.
ma.innerproduct(a,b,/) Inner product of two arrays.
ma.outer(a, b) Compute the outer product of two vectors.
ma.outerproduct(a, b) Compute the outer product of two vectors.
ma . t race(self|[, offset, axisl, axis2, ...]) Return the sum along diagonals of the array.
ma.transpose(al, axes)) Permute the dimensions of an array.
ma.MaskedArray.trace([offset, axisl, axis2, ...]) Return the sum along diagonals of the array.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

ma.diag (v, k=0)

Extract a diagonal or construct a diagonal array.

This function is the equivalent of numpy . diag that takes masked values into account, see numpy . diag for

details.

See also:

numpy.diag

Equivalent function for ndarrays.

ma .dot (a, b, strict=False, out=None)

Return the dot product of two arrays.

This function is the equivalent of numpy . dot that takes masked values into account. Note that strict and out are
in different position than in the method version. In order to maintain compatibility with the corresponding method,
it is recommended that the optional arguments be treated as keyword only. At some point that may be mandatory.

Note: Works only with 2-D arrays at the moment.

Parameters

a,b
[masked_array_like] Inputs arrays.

strict

[bool, optional] Whether masked data are propagated (True) or set to O (False) for the compu-
tation. Default is False. Propagating the mask means that if a masked value appears in a row
or column, the whole row or column is considered masked.

out

[masked_array, optional] Output argument. This must have the exact kind that would be re-
turned if it was not used. In particular, it must have the right type, must be C-contiguous, and
its dtype must be the dtype that would be returned for dof(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be

flexible.

New in version 1.10.2.

1.7. Masked arrays

459

NumPy Reference, Release 1.23.0

See also:

numpy . dot

Equivalent function for ndarrays.

Examples

>>> a = np.ma.array([[1, 2, 31, [4, 5, 611, mask=[[1, O, O], [O, O, O11)
>>> b = np.ma.array([[1, 21, [3, 4], [5, 6]], mask=[[1, O], [0, O, [O, O11)
>>> np.ma.dot (a, b)
masked_array (
data=[[21, 2617,
[45, 6411,
mask=[[False, False],
[False, Falsel]ll,
fill _value=999999)
>>> np.ma.dot (a, b, strict=True)
masked_array (

data:[[,,, 77]!
[777 64]}/
mask=[[True, True]

14
[True, Falsel]l,
fill_value=999999)

ma.identity (n, dfype=None) = <numpy.ma.core._convert2ma object>
Return the identity array.

The identity array is a square array with ones on the main diagonal.

Parameters

n

[int] Number of rows (and columns) in n x n output.
dtype

[data-type, optional] Data-type of the output. Defaults to f1oat.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[MaskedArray] n x n array with its main diagonal set to one, and all other elements 0.

460 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> np.identity (3)

array ([[1., 0., 0.1,
[0., 1., 0.1,
(0., 0., 1.11)

ma.inner (a, b, /)

Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product
over the last axes.

Parameters

a,b

[array_like] If @ and b are nonscalar, their last dimensions must match.
Returns

out
[ndarray] If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an
array is returned. out . shape = (*a.shapel[:-1], *b.shape[:-1])

Raises

ValueError

If both a and b are nonscalar and their last dimensions have different sizes.
See also:

tensordot

Sum products over arbitrary axes.
dot

Generalised matrix product, using second last dimension of b.
einsum

Einstein summation convention.

Notes

Masked values are replaced by O.

For vectors (1-D arrays) it computes the ordinary inner-product:

’np.inner(a, b) = sum(al:]1*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

’np.inner(a, b) = np.tensordot (a, b, axes=(-1,-1))

or explicitly:

1.7. Masked arrays 461

NumPy Reference, Release 1.23.0

np.inner(a, b)[i0,...,1ir-2,30,...,3s-2]
= sum(af[i0,...,ir-2,:]1*b[30,...,3s-2,:1)

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner (a, b)

2

Some multidimensional examples:

>>> a = np.arange (24) .reshape ((2,3,4))
>>> b = np.arange (4)

>>> ¢ = np.inner(a, b)

>>> c.shape

(2, 3)

>>> ¢

array ([[14, 38, 62]

[86, 110, 134]1])

>>> = np.arange(2) .reshape((1,1,2))

a
>>> b = np.arange (6) .reshape ((3,2))
c
c

>>> = np.inner(a, b)
>>> c.shape

(1, 1, 3)

>>> ¢

array ([[[1, 3, 5111)

An example where b is a scalar:

>>> np.inner (np.eye(2), 7)
array ([[7., 0.7,
(0., 7.11)

ma.innerproduct (a, b, /)

Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product

over the last axes.

Parameters

a,b

[array_like] If a and b are nonscalar, their last dimensions must match.

Returns

462

1. Array objects

NumPy Reference, Release 1.23.0

out
[ndarray] If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an
array is returned. out . shape = (*a.shapel[:-1], *b.shape[:-1])
Raises
ValueError
If both a and b are nonscalar and their last dimensions have different sizes.
See also:
tensordot

Sum products over arbitrary axes.
dot

Generalised matrix product, using second last dimension of b.
einsum

Einstein summation convention.

Notes

Masked values are replaced by 0.

For vectors (1-D arrays) it computes the ordinary inner-product:

’np.inner(a, b) = sum(al:]1*b[:]) ‘

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

’np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) ‘

or explicitly:

np.inner(a, b)[i0,...,1ir-2,30,...,3s-2]
= sum(al[iO,...,1ir-2,:1*b[J0,...,Js-2,:1)

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,01])
>>> np.inner(a, b)

2

Some multidimensional examples:

1.7. Masked arrays 463

NumPy Reference, Release 1.23.0

>>> a = np.arange (24) .reshape((2,3,4))
>>> b = np.arange (4)
>>> ¢ = np.inner(a, b)

>>> c.shape

(2, 3)
>>> ¢
array ([[14, 38, 62171,
[86, 110, 134]1])
>>> = np.arange(2) .reshape((1,1,2))

a
b = np.arange (6) .reshape((3,2))
c = np.inner(a, b)

>>> c.shape
1, 3)
c
Y

An example where b is a scalar:

>>> np.inner (np.eye(2), 7)
array ([[7., 0.]
[0., 7.1

1)

ma .outer (a, b)

Compute the outer product of two vectors.

Given two vectors, a = [a0, al, ..., aM]andb = [b0O, bl, ..., bN]J, the outer product [1] is:
[[a0*b0 a0*bl ... a0*bN]
[al*b0
[... .
[aM*b0 aM*bN 1]
Parameters
a

[(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

[(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.
out
[(M, N) ndarray, optional] A location where the result is stored

New in version 1.9.0.
Returns

out

[(M, N) ndarray] out [1, J] = al[i] * b[]]
See also:

inner

464 1. Array objects

NumPy Reference, Release 1.23.0

einsum
einsum('i, j—>ij', a.ravel(), b.ravel()) isthe equivalent.
ufunc.outer

A generalization to dimensions other than 1D and other operations. np.multiply.outer (a.
ravel (), b.ravel ()) isthe equivalent.

tensordot

np.tensordot (a.ravel(), b.ravel(), axes=((), ())) istheequivalent.

Notes

Masked values are replaced by 0.

References

(1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer (np.ones((5,)), np.linspace(-2, 2, 5))

>>> rl

array([[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.11)

>>> im = np.outer(lj*np.linspace(2, -2, 5), np.ones((5,)))

>>> im

array ([[0.+2.7, 0.+2.3, 0.42.3, 0.+2.73, 0.+2.731,
[0.+1.3, O0.+1.3, O.+1.3, O0.+1.3, 0.+1.731,
[0.+0.3, 0.+0.3, 0.40.3, 0.40.3, 0.+0.7371,
[0.-1.3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.731,
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.311)

>>> grid = rl + im

>>> grid

array([[-2.42.73, -1.42.3, 0.42.3, 1.42.3, 2.4+2.31,
[-2.+1.3, -1.+1.3, O.+1.3, 1.+1.3, 2.+1.31,
[-2.+0.3, -1.+0.3, 0.+0.3, 1.+0.3, 2.40.771,
[-2.-1.3, -1.-1.3, O0.-1.3, 1.-1.3, 2.-1.31,
[-2.-2.3, -1.-2.3, 0.-2.3, 1.-2.3, 2.-2.311)

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)

>>> np.outer(x, [1, 2, 3])

array([['a', 'aa', 'aaa'l,
['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']l], dtype=object)

1.7. Masked arrays 465

NumPy Reference, Release 1.23.0

ma .outerproduct (a, b)

Compute the outer product of two vectors.

Given two vectors, a = [a0, al, ..., aM]landb = [b0O, bl, ..., bN], the outer product [1] is:
[[a0*b0 a0*bl ... a0*bN]
[al*b0
[... .
[aM*Db0 aM*bN]]
Parameters
a

[(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

[(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.
out
[(M, N) ndarray, optional] A location where the result is stored

New in version 1.9.0.
Returns

out

[(M, N) ndarray] out [i, j] = al[i]l * b[7j]
See also:

inner
einsum

einsum('i, j—>ij', a.ravel(), b.ravel()) isthe equivalent.
ufunc.outer

A generalization to dimensions other than 1D and other operations. np.multiply.outer (a.
ravel (), b.ravel ()) isthe equivalent.

tensordot
np.tensordot (a.ravel(), b.ravel (), axes=((), ())) isthe equivalent.

Notes

Masked values are replaced by 0.

466 1. Array objects

NumPy Reference, Release 1.23.0

References

(1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer (np.ones((5,)), np.linspace (-2, 2, 5))

>>> rl

array([[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., =-1., 0., 1., 2.11)

>>> im = np.outer(lj*np.linspace(2, -2, 5), np.ones((5,)))

>>> im

array([[0.42.73, 0.+2.3, O0.+2.3, 0.42.3, 0.+2.73],
[0.+1.3, O0.+1.3, O.+1.3, O0.+1.73, 0.+1.731,
[0.+0.3, 0.+0.3, 0.40.3, 0.40.3, 0.+0.7371,
[(0.-12.3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.31,
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.311)

>>> grid = rl + im

>>> grid

array([[-2.+2.7, -1.+2.3, O0.+2.3, 1.+2.3, 2.+2.3],
[-2.+1.3, -1.+1.3, O.+1.3, 1.+1.3, 2.+1.31,
[-2.+0.3, -1.+0.3, 0.+0.3, 1.+0.3, 2.40.771,
[-2.-1.3, -1.-1.3, O0.-1.3, 1.-1.3, 2.-1.731,
[-2.-2.3, -1.-2.3, 0.-2.3, 1.-2.3, 2.-2.311)

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)

>>> np.outer(x, [1, 2, 31)

array([['a', 'aa', 'aaa'l,
['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=object)

ma .trace (self, offset=0, axis1 =0, axis2=1, dtype=None, out=None) a.trace(offset=0, axis1 =0, axis2=1, dtype=None,
out=None) = <numpy.ma.core._frommethod object>

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.

See also:

numpy . trace

equivalent function

1.7. Masked arrays 467

NumPy Reference, Release 1.23.0

Polynomial fit

ma . vander(x[, n]) Generate a Vandermonde matrix.
ma.polyfit(x,y,deg[, rcond, full, w, cov]) Least squares polynomial fit.

ma .vander (x, n=None)

Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector raised
element-wise to the power of N — i — 1. Such a matrix with a geometric progression in each row is named for
Alexandre- Theophile Vandermonde.

Parameters

[array_like] 1-D input array.

[int, optional] Number of columns in the output. If N is not specified, a square array is returned
(N = len(x)).

increasing

[bool, optional] Order of the powers of the columns. If True, the powers increase from left to
right, if False (the default) they are reversed.

New in version 1.9.0.
Returns

out

[ndarray] Vandermonde matrix. If increasing is False, the first column is x~ (N-1), the sec-
ond x~ (N-2) and so forth. If increasing is True, the columns are x~0, x*1, ...,
x”~ (N=-1).

See also:

polynomial.polynomial.polyvander

Notes

Masked values in the input array result in rows of zeros.

468 1. Array objects

NumPy Reference, Release 1.23.0

Examples

>>> x = np.array([1, 2, 3, 51])

>>> N = 3

>>> np.vander (x, N)

array ([[1, 1, 11,
[4, 2, 17,
[9, 3, 17,
[25 5 111)

’ ’

>>> np.column_stack ([x** (N-1-1) for i in range(N)])

array ([[1, 1, 11,
[4, 2, 11,
[s, 3, 11,
[25 5 111)

’ ’

>>> x = np.array([1, 2, 3, 5])
>>> np.vander (x)

array ([[1, 1, 1, 11,
[8, 4, 2, 11,
[27, 9, 3, 11,

[125, 25, 5, 111)
>>> np.vander (x, increasing=True)
array ([[1, 1, 1, 1],
[1, 2, 4, 81,
[1, 3, 9, 271,
[1 5, 25, 125]11)

’

The determinant of a square Vandermonde matrix is the product of the differences between the values of the input
vector:

>>> np.linalg.det (np.vander (x))
48.000000000000043 # may vary

>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

ma.polyfit (x, y, deg, rcond=None, full=False, w=None, cov=False)

Least squares polynomial fit.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy .
polynomial is preferred. A summary of the differences can be found in the transition guide.

Fit a polynomial p (x) = p[0] * x**deg + ... + pl[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error in the order deg, deg-1, ... 0.

The Polynomial. fit class method is recommended for new code as it is more stable numerically. See the
documentation of the method for more information.

Parameters

[array_like, shape (M,)] x-coordinates of the M sample points (x[1], y[i]).

1.7. Masked arrays 469

NumPy Reference, Release 1.23.0

[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int] Degree of the fitting polynomial
rcond

[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full

[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

[array_like, shape (M,), optional] Weights. If not None, the weight w[1] applies to the un-
squared residual y [1] - y_hat[i] at x[1]. Ideally the weights are chosen so that the
errors of the products w[1] *y [1] all have the same variance. When using inverse-variance
weighting, use w[1] = 1/sigma (y[1i]). The default value is None.

Ccov

[bool or str, optional] If given and not False, return not just the estimate but also its covariance
matrix. By default, the covariance are scaled by chi2/dof, where dof =M - (deg + 1), i.e., the
weights are presumed to be unreliable except in a relative sense and everything is scaled such
that the reduced chi2 is unity. This scaling is omitted if cov="unscaled', as is relevant
for the case that the weights are w = 1/sigma, with sigma known to be a reliable estimate of
the uncertainty.

Returns

p

[ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients, highest power first. If y
was 2-D, the coefficients for k-th data setareinp [:, k].

residuals, rank, singular_values, rcond

These values are only returned if full == True

* residuals — sum of squared residuals of the least squares fit

 rank - the effective rank of the scaled Vandermonde
coeflicient matrix

* singular_values — singular values of the scaled Vandermonde
coeflicient matrix

¢ rcond — value of rcond.

For more details, see numpy.linalg.lstsq.

[ndarray, shape (M,M) or (M,M,K)] Presentonly if full == Falseandcov == True.
The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are

470

1. Array objects

NumPy Reference, Release 1.23.0

the variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for
the k-th datasetareinV[:, :, k]

Warns

RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter ('ignore', np.RankWarning)

See also:

polyval

Compute polynomial values.
linalg.lstsq

Computes a least-squares fit.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

Any masked values in x is propagated in y, and vice-versa.

The solution minimizes the squared error

k
E =Y Ip(x;) -yl
j=0
in the equations:
x[0]**n * p[0] + + * pln-1] + p[n] = yI[0]
x[1]**n * p[0] + +] pln-1]1 + pln] = y[1]
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = yI[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best fit
is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by
replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular values can add numerical noise to the result.

Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large
or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases.
When polynomial fits are not satisfactory, splines may be a good alternative.

1.7. Masked arrays 471

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 1.23.0

References

(11, [2]

Examples

>>> import warnings

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.01)

>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.01])

>>> z = np.polyfit(x, vy, 3)

>>> z

array ([0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary

It is convenient to use poly1d objects for dealing with polynomials:

>>> p np.polyld(z)

>>> p(0.5)

0.6143849206349179 # may vary
>>> p(3.5)

-0.34732142857143039 # may vary
>>> p(10)

22.579365079365115 # may vary

High-order polynomials may oscillate wildly:

>>> with warnings.catch_warnings () :
warnings.simplefilter ('ignore',
P30 np.polyld(np.polyfit (x,

>>> p30(4)

-0.80000000000000204 # may vary
>>> p30(5)

-0.99999999999999445 # may vary
>>> p30(4.5)
-0.10547061179440398 # may vary

Y

np.RankWarning)
30))

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp np.linspace (-2, 6, 100)
>>> plt.plot(x, vy, '.', xp,
>>> plt.ylim(-2,2)

(=2, 2)

>>> plt.show()

p (xp),

', xp, p30(xp),

Clipping and rounding

ma.around Round an array to the given number of decimals.

ma . clip(*args, **kwargs) Clip (limit) the values in an array.

ma . round(a[, decimals, out]) Return a copy of a, rounded to "decimals’ places.

ma.MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min,
max].

ma.MaskedArray. round([decimals, out]) Return each element rounded to the given number of dec-
imals.

472 1. Array objects

NumPy Reference, Release 1.23.0

2.0

1.5 -
1.0 -
0.5 - 7 N
0.0 y'4 N\ !

—0.5 / \ /

-1.0 + /

—1.5 /

-2.0 | —

~
Ve ———"

ma.around = <numpy.ma.core._MaskedUnaryOperation

object>
Round an array to the given number of decimals.

See also:

around

equivalent function; see for details.

ma.clip (*args, **kwargs) = <numpy.ma.core._convert2ma object>

Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0,
1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Equivalent to but faster than np .minimum (a_max, np.maximum(a, a_min)).

No check is performed to ensure a_min < a_max.

Parameters

[array_like] Array containing elements to clip.
a_min, a_max

[array_like or None] Minimum and maximum value. If None, clipping is not performed on

the corresponding edge. Only one of a_min and a_max may be None. Both are broadcast
against a.

out

[ndarray, optional] The results will be placed in this array. It may be the input array for in-place
clipping. out must be of the right shape to hold the output. Its type is preserved.

**kwargs

For other keyword-only arguments, see the ufunc docs.

New in version 1.17.0.

1.7. Masked arrays 473

NumPy Reference, Release 1.23.0

Returns

clipped_array

[MaskedArray] An array with the elements of a, but where values < a_min are replaced with
a_min, and those > a_max with a_max.

See also:

ufuncs-output-type

Notes

When a_min is greater than a_max, c11p returns an array in which all values are equal to a_max, as shown in the
second example.

Examples
>>> a = np.arange (10)
>>> a

array ([0, 1, 2, 3, 4

>>> np.clip(a, 1, 8)

array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> np.clip(a, 8, 1)

array([1, 1, 1, 1, 1

>>> np.clip(a, 3, 6, out=a)

array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

>>> g
array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange (10)

>>> g

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

ma . round (a, decimals=0, out=None)

Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to 0.

Parameters

decimals
[int] Number of decimals to round to. May be negative.
out

[array_like] Existing array to use for output. If not given, returns a default copy of a.

474 1. Array objects

NumPy Reference, Release 1.23.0

Notes

If out is given and does not have a mask attribute, the mask of a is lost!

Miscellanea

ma.allequal(a,bl, fill_value]) Return True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.

ma.allclose(a, b[, masked_equal, rtol, atol]) Returns True if two arrays are element-wise equal within
a tolerance.

ma.apply_along_axis(funcld, axis, arr, ...) Apply a function to 1-D slices along the given axis.

ma.apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes.

ma . arange([start,] stop[, step,][, dtype, like]) Return evenly spaced values within a given interval.

ma . choose(indices, choices[, out, mode]) Use an index array to construct a new array from a list of
choices.

ma . ediff1d(arr[, to_end, to_begin]) Compute the differences between consecutive elements of
an array.

ma . indices(dimensions[, dtype, sparse]) Return an array representing the indices of a grid.

ma . where(condition[, X, y]) Return a masked array with elements from x or y, depend-

ing on condition.

ma.allequal (a, b, fill_value=True)

Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Parameters

a,b
[array_like] Input arrays to compare.
fill_value

[bool, optional] Whether masked values in a or b are considered equal (True) or not (False).

Returns

[bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any

numpy.ma.allclose

1.7. Masked arrays 475

NumPy Reference, Release 1.23.0

Examples

>>> a = np.ma.array([1lel0, le-7, 42.0], mask=[0, 0, 11)
>>> a
masked_array (data=[10000000000.0, 1e-07, —--1,
mask=[False, False, Truel,
fill value=1e+20)

>>> b = np.array([lel0, le-7, —-42.01])

>>> b

array ([1.00000000e+10, 1.00000000e-07, —-4.20000000e+0117)
>>> np.ma.allequal(a, b, fill_value=False)

False

>>> np.ma.allequal (a, b)

True

ma.allclose (a, b, masked_equal=True, rtol=1e-05, atol=1e-08)

Returns True if two arrays are element-wise equal within a tolerance.

This function is equivalent to allclose except that masked values are treated as equal (default) or unequal,
depending on the masked_equal argument.

Parameters

a,b
[array_like] Input arrays to compare.
masked_equal

[bool, optional] Whether masked values in @ and b are considered equal (True) or not (False).
They are considered equal by default.

rtol

[float, optional] Relative tolerance. The relative difference is equal to rtol * b. Default is
le-5.

atol

[float, optional] Absolute tolerance. The absolute difference is equal to arol. Default is 1e-8.

Returns

[bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any
numpy.allclose

the non-masked allclose.

476 1. Array objects

NumPy Reference, Release 1.23.0

Notes

If the following equation is element-wise True, then al1close returns True:

absolute("a’ - "b’) <= (Tatol’ + ‘rtol® * absolute(b))

Return True if all elements of a and b are equal subject to given tolerances.

Examples

>>> a = np.ma.array([1lel0, le-7, 42.0], mask=[0, 0, 11)
>>> a

masked_array (data=[10000000000.0, 1le-07, —--1,

mask=[False, False, True],
fill_value=1e+20)
>>> b = np.ma.array([1lel0, 1le-8, -42.0], mask=[0, 0, 11)
>>> np.ma.allclose(a, b)
False

>>> a = np.ma.array([1lel0, 1e-8, 42.0], mask=[0, 0, 11)

>>> b = np.ma.array([1.00001e10, 1le-9, -42.0], mask=[0, O, 1])
>>> np.ma.allclose(a, b)

True

>>> np.ma.allclose(a, b, masked_equal=False)

False

Masked values are not compared directly.

>>> a = np.ma.array([1lel0, 1e-8, 42.0], mask=[0, 0, 11)

>>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, O, 17])
>>> np.ma.allclose(a, b)

True

>>> np.ma.allclose(a, b, masked_equal=False)

False

ma.apply_along_axis (funcld, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Execute funcld(a, *args, **kwargs) where funcld operates on 1-D arrays and a is a 1-D slice of arr along axis.

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of 11, j7j, and kk
to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shapel[axis+l:]
for i1 in ndindex (Ni) :
for kk in ndindex (Nk) :
f = funcld(arr[ii + s_[:,] + kkI)
Nj = f.shape
for 33 in ndindex (N7j) :
out [1i1 + J3j + kk] = f[j7]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shapelaxis+l:]
for 11 in ndindex (Ni) :
for kk in ndindex (Nk) :
out[ii + s_[...,] + kk] = funcld(arr[ii + s_[:,] + kk])

1.7. Masked arrays 477

NumPy Reference, Release 1.23.0

Parameters

funcld

[function (M,) -> (Nj...)] This function should accept 1-D arrays. It is applied to 1-D slices of
arr along the specified axis.

axis
[integer] Axis along which arr is sliced.
arr
[ndarray (Ni..., M, Nk...)] Input array.
args
[any] Additional arguments to funcld.
kwargs
[any] Additional named arguments to funcld.

New in version 1.9.0.
Returns

out

[ndarray (Ni..., Nj..., Nk...)] The output array. The shape of out is identical to the shape of
arr, except along the axis dimension. This axis is removed, and replaced with new dimensions
equal to the shape of the return value of funcid. So if funcld returns a scalar our will have
one fewer dimensions than arr.

See also:

apply_over_axes

Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
"""Average first and last element of a 1-D array"""
. return (a[0] + a[-1]) * 0.5
>>> b = np.array ([[1,2,3], [4,5,61, [7,8,911)
>>> np.apply_along_axis (my_func, 0, b)
array([4., 5., 6.1])
>>> np.apply_along_axis (my_func, 1, b)
array([2., 5., 8.1)

For a function that returns a 1D array, the number of dimensions in oufarr is the same as arr.

>>> b = np.array ([[8,1,7]1, [4,3,9], [5,2,611)
>>> np.apply_along_axis (sorted, 1, b)
array ([[1, 7, 81,

[3, 4, 91,

(2, 5, 611])

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimension.

478

1. Array objects

NumPy Reference, Release 1.23.0

>>> b = np.array([[1,2,3], [4,5,6]1, [7,8,911])
>>> np.apply_along_axis(np.diag, -1, Db)
array ([[[1, O, O],

[0, 2, 01,

(0, 0, 311,

[r4, o, 0l,

[0, 5, 01,

(0, 0, 611,

(t7, o, 01,

(o, 8, 01,

(0, 0, 9111)

ma.apply_over_axes (func, a, axes)

Apply a function repeatedly over multiple axes.

func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must
have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension is
inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.

Parameters

func

[function] This function must take two arguments, func(a, axis).

[array_like] Input array.
axes

[array_like] Axes over which func is applied; the elements must be integers.
Returns

apply_over_axis

[ndarray] The output array. The number of dimensions is the same as a, but the shape can
be different. This depends on whether func changes the shape of its output with respect to its
input.

See also:

apply_along axis

Apply a function to 1-D slices of an array along the given axis.

Examples

>>> a = np.ma.arange (24) .reshape(2,3,4)
>>> af:,0,1] = np.ma.masked

>>> af:,1,:] = np.ma.masked

>>> a

masked_array (
data=[[[0, --, 2, 31,
[771 Y A 77]/

(8, 9, 10, 1111,

(continues on next page)

1.7. Masked arrays 479

NumPy Reference, Release 1.23.0

(continued from previous page)

((12, --, 14, 15

’

]
’ e
21, 22, 23111,
lse, True, False, False
True, True, True, True
False, False, False, False
False, True, False, False
True, True, True, True
[False, False, False, False
fill value=999999)
>>> np.ma.apply_over_axes (np.ma.sum, a, [0,2])
masked_array (

mask=[[,

:| 4

4

[
(-
(2
(F
[
[
|l
[

11

data=[[[46],
[—1,
(124111,
mask=[[[False],
[True],
[Falselll,
fill value=999999)

Tuple axis arguments to ufuncs are equivalent:

>>> np.ma.sum(a, axis=(0,2)) .reshape((1,-1,1))
masked_array (
data=[[[46],
[—-1,
[1247]
mask=[[[False
[

ma.arange ([start] , stop[, step], dtype=None, *, like=None) = <numpy.ma.core._convert2ma
object>

Return evenly spaced values within a given interval.
arange can be called with a varying number of positional arguments:

e arange (stop): Values are generated within the half-open interval [0, stop) (in other words, the
interval including start but excluding stop).

* arange (start, stop): Values are generated within the half-open interval [start, stop).

* arange (start, stop, step) Values are generated within the half-open interval [start,
stop) , with spacing between values given by step.

For integer arguments the function is roughly equivalent to the Python built-in range, but returns an ndarray rather
than a range instance.

When using a non-integer step, such as 0.1, it is often better to use numpy . linspace.
See the Warning sections below for more information.

Parameters

start

[integer or real, optional] Start of interval. The interval includes this value. The default start
value is 0.

480 1. Array objects

https://docs.python.org/3/library/stdtypes.html#range

NumPy Reference, Release 1.23.0

stop

[integer or real] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step

[integer or real, optional] Spacing between values. For any output out, this is the distance
between two adjacent values, out [1+1] — out [1]. The default step size is 1. If step is
specified as a position argument, start must also be given.

dtype

[dtype, optional] The type of the output array. If dt ype is not given, infer the data type from
the other input arguments.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

arange
[MaskedArray] Array of evenly spaced values.

For floating point arguments, the length of the resultis ceil ((stop — start) /step).
Because of floating point overflow, this rule may result in the last element of out being greater
than stop.

Warning: The length of the output might not be numerically stable.

Another stability issue is due to the internal implementation of numpy . arange. The actual step value used
to populate the array is dtype (start + step) - dtype(start) and not step. Precision loss can
occur here, due to casting or due to using floating points when start is much larger than step. This can lead to
unexpected behaviour. For example:

>>> np.arange (0, 5, 0.5, dtype=int)

array([O, 0O, 0, O, O, O, O, 0, 0, 01)

>>> np.arange (-3, 3, 0.5, dtype=int)

array((-3, -2, -1, O, 1, 2, 3, 4, 5, 6, 7, 8])

In such cases, the use of numpy. 1inspace should be preferred.

The built-in range generates Python built-in integers that have arbitrary size, while numpy . arange pro-
duces numpy.int32 or numpy.int 64 numbers. This may result in incorrect results for large integer
values:

>>> power = 40

>>> modulo = 10000

>>> x1 = [(n ** power) % modulo for n in range(8)]

>>> x2 = [(n ** power) % modulo for n in np.arange(8)]

>>> print (x1)
[o, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct
>>> print (x2)
(o, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect

1.7. Masked arrays 481

https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/c-api/long.html

NumPy Reference, Release 1.23.0

See also:

numpy.linspace

Evenly spaced numbers with careful handling of endpoints.
numpy .ogrid

Arrays of evenly spaced numbers in N-dimensions.
numpy .mgrid

Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange (
array ([0, 1, 2
>>> np.arange (
array ([0., 1., 2.1)
>>> np.arange (
array ([3, 4, 5
>>> np.arange (
array ([3, 5])

ma . choose (indices, choices, out=None, mode=raise’)

Use an index array to construct a new array from a list of choices.

Given an array of integers and a list of n choice arrays, this method will create a new array that merges each of the
choice arrays. Where a value in index is i, the new array will have the value that choices[i] contains in the same
place.

Parameters

indices

[ndarray of ints] This array must contain integers in [0, n-1], where n is the number of
choices.

choices

[sequence of arrays] Choice arrays. The index array and all of the choices should be broad-
castable to the same shape.

out

[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dt ype.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
* ‘raise’ : raise an error
3 t
* ‘wrap’ : wrap around

e ‘clip’ : clip to the range

482 1. Array objects

NumPy Reference, Release 1.23.0

Returns

merged_array

[array]
See also:

choose

equivalent function

Examples

>>> choice = np.array([[1,1,1]1, [2,2,2], [3,3,311])
>>> a = np.array([2, 1, 01)
>>> np.ma.choose (a, choice)
masked_array (data=[3, 2, 1],
mask=False,
fill _value=999999)

ma .ediff1d (arr, to_end=None, to_begin=None)

Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy .
edirf1d for details.

See also:

numpy.ediffld
Equivalent function for ndarrays.

ma . indices (dimensions, dtype=<class ‘int’>, sparse=False) = <numpy.ma.core._convert2ma
object>

Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values O, 1, ... varying only along the corresponding axis.

Parameters

dimensions

[sequence of ints] The shape of the grid.
dtype

[dtype, optional] Data type of the result.
sparse

[boolean, optional] Return a sparse representation of the grid instead of a dense representation.
Default is False.

New in version 1.17.

Returns

1.7. Masked arrays 483

NumPy Reference, Release 1.23.0

grid
[one MaskedArray or tuple of MaskedArrays]
If sparse is False:

Returns one array of grid indices, grid.shape = (len(dimensions),) +
tuple (dimensions).

If sparse is True:
Returns a tuple of arrays, with grid[i].shape = (1, ..., 1,
dimensions[i], 1, ..., 1) with dimensions[i] in the ith place

See also:

mgrid, ogrid, meshgrid

Notes

The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of
dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1) of length N, the output shapeis (N, r0, ...,
rN-1).

The subarrays grid [k] contains the N-D array of indices along the k-t h axis. Explicitly:

grid[k, 10, 11, ..., iN-1] = ik
Examples
>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array ([[0, 0, 0],
(1, 1, 111)
>>> grid[1] # column indices

array ([[0, 1, 2],
[0, 1, 211)

The indices can be used as an index into an array.

>>> x = np.arange (20) .reshape (5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array ([[0, 1, 27,

[4, 5, 6]1)

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

If sparse is set to true, the grid will be returned in a sparse representation.

>>> i, j = np.indices((2, 3), sparse=True)
>>> 1i.shape
(2, 1)

(continues on next page)

484 1. Array objects

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> j.shape
(1, 3)
>>> i # row indices
array ([[0],

(111
>>>] # column indices
array ([[0, 1, 211)

ma .where (condition, x=<no value>, y=<no value>)

Return a masked array with elements from x or y, depending on condition.

Note: When only condition is provided, this function is identical to nonzero. The rest of this documentation
covers only the case where all three arguments are provided.

Parameters

condition
[array_like, bool] Where True, yield x, otherwise yield y.

XY
[array_like, optional] Values from which to choose. x, y and condition need to be broadcastable
to some shape.

Returns

out
[MaskedArray] An masked array with masked elements where the condition is masked, ele-
ments from x where condition is True, and elements from y elsewhere.

See also:

numpy . where
Equivalent function in the top-level NumPy module.
nonzero

The function that is called when x and y are omitted

Examples

>>> x = np.ma.array(np.arange(9.) .reshape (3, 3), mask=[[0, 1, 0],
(1, 0, 11,
[0, 1, 0ID)

>>> x

masked_array (
data=[[0.0, —-—-, 2.0],
[-——, 4.0, —-1,
[6.0, ——, 8.011,
mask=[[False, True, False],
[True, False, Truel,

(continues on next page)

1.7. Masked arrays 485

NumPy Reference, Release 1.23.0

(continued from previous page)

[False, True, Falsel],
fill_value=1e+20)
>>> np.ma.where(x > 5, x, —-3.1416)
masked_array (
data=[[-3.1416, --, -3.1416],
--, —-3.1416, --1,
6.0, ——, 8.011,
False, True, False],
True, False, Truel],
[False, True, Falsel],
fill_value=1e+20)

mask=[

(
[
[
(

1.8 The array interface protocol

Note: This page describes the NumPy-specific API for accessing the contents of a NumPy array from other C extensions.
PEP 3118 — The Revised Buffer Protocol introduces similar, standardized API to Python 2.6 and 3.0 for
any extension module to use. Cython’s buffer array support uses the PEP 3118 API; see the Cython NumPy tutorial.
Cython provides a way to write code that supports the buffer protocol with Python versions older than 2.6 because it has
a backward-compatible implementation utilizing the array interface described here.

version
3

The array interface (sometimes called array protocol) was created in 2005 as a means for array-like Python objects to re-
use each other’s data buffers intelligently whenever possible. The homogeneous N-dimensional array interface is a default
mechanism for objects to share N-dimensional array memory and information. The interface consists of a Python-side
and a C-side using two attributes. Objects wishing to be considered an N-dimensional array in application code should
support at least one of these attributes. Objects wishing to support an N-dimensional array in application code should
look for at least one of these attributes and use the information provided appropriately.

This interface describes homogeneous arrays in the sense that each item of the array has the same “type”. This type can
be very simple or it can be a quite arbitrary and complicated C-like structure.

There are two ways to use the interface: A Python side and a C-side. Both are separate attributes.

1.8.1 Python side

This approach to the interface consists of the object havingan ___array interface__ attribute.

object.__array_interface__
A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if they
are not provided.
The keys are:
shape (required)

Tuple whose elements are the array size in each dimension. Each entry is an integer (a Python int). Note
that these integers could be larger than the platform int or 1ong could hold (a Python int is a C long).
It is up to the code using this attribute to handle this appropriately; either by raising an error when overflow
is possible, or by using 1long long as the C type for the shapes.

486 1. Array objects

https://peps.python.org/pep-3118/
https://docs.python.org/3/c-api/buffer.html#c.PyObject_GetBuffer
http://cython.org/
https://peps.python.org/pep-3118/
https://github.com/cython/cython/wiki/tutorials-numpy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 1.23.0

typestr (required)

A string providing the basic type of the homogeneous array The basic string format consists of 3 parts: a
character describing the byteorder of the data (<: little-endian, >: big-endian, |: not-relevant), a character
code giving the basic type of the array, and an integer providing the number of bytes the type uses.

The basic type character codes are:

Bit field (following integer gives the number of bits in the bit field).
Boolean (integer type where all values are only True or False)
Integer

Unsigned integer

Floating point

Complex floating point

Timedelta

Datetime

Object (i.e. the memory contains a pointer to PyObject)
String (fixed-length sequence of char)

Unicode (fixed-length sequence of Py_UCS4)

Other (void * — each item is a fixed-size chunk of memory)

<|lalwn|lo|Z|B8|la|m|c |k |O]|ct

descr (optional)

A list of tuples providing a more detailed description of the memory layout for each item in the homogeneous
array. Each tuple in the list has two or three elements. Normally, this attribute would be used when fypestr
is V[0—-9] +, but this is not a requirement. The only requirement is that the number of bytes represented in
the rypestr key is the same as the total number of bytes represented here. The idea is to support descriptions
of C-like structs that make up array elements. The elements of each tuple in the list are

1. A string providing a name associated with this portion of the datatype. This could also be a tuple of
("full name', 'basic_name') where basic name would be a valid Python variable name rep-
resenting the full name of the field.

2. Either a basic-type description string as in typestr or another list (for nested structured types)

3. An optional shape tuple providing how many times this part of the structure should be repeated. No
repeats are assumed if this is not given. Very complicated structures can be described using this generic
interface. Notice, however, that each element of the array is still of the same data-type. Some examples
of using this interface are given below.

Default: [('', typestr)]
data (optional)

A 2-tuple whose first argument is an integer (a long integer if necessary) that points to the data-area storing
the array contents. This pointer must point to the first element of data (in other words any offset is always
ignored in this case). The second entry in the tuple is a read-only flag (true means the data area is read-only).

This attribute can also be an object exposing the buffer interface which will be used to share the data. If this
key is not present (or returns None), then memory sharing will be done through the buffer interface of the
object itself. In this case, the offset key can be used to indicate the start of the buffer. A reference to the
object exposing the array interface must be stored by the new object if the memory area is to be secured.

Default: None
strides (optional)

Either None to indicate a C-style contiguous array or a tuple of strides which provides the number of bytes
needed to jump to the next array element in the corresponding dimension. Each entry must be an integer (a
Python int). As with shape, the values may be larger than can be represented by a C int or long; the

1.8. The array interface protocol 487

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/unicode.html#c.Py_UCS4
https://docs.python.org/3/c-api/buffer.html#bufferobjects
https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 1.23.0

calling code should handle this appropriately, either by raising an error, or by using long long in C. The
default is None which implies a C-style contiguous memory buffer. In this model, the last dimension of the
array varies the fastest. For example, the default strides tuple for an object whose array entries are 8 bytes
long and whose shape is (10, 20, 30) wouldbe (4800, 240, 8).

Default: None (C-style contiguous)
mask (optional)

None or an object exposing the array interface. All elements of the mask array should be interpreted only
as true or not true indicating which elements of this array are valid. The shape of this object should be
‘broadcastable” to the shape of the original array.

Default: None (All array values are valid)
offset (optional)

An integer offset into the array data region. This can only be used when data is None or returns a buffer
object.

Default: 0.
version (required)

An integer showing the version of the interface (i.e. 3 for this version). Be careful not to use this to invalidate
objects exposing future versions of the interface.

1.8.2 C-struct access

This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-defined
C-structure.

object.__array_struct__

A PyCapsule whose pointer member contains a pointer to a filled PyArrayInterface structure. Mem-
ory for the structure is dynamically created and the PyCapsule is also created with an appropriate destructor so
the retriever of this attribute simply has to apply Py_DECREF to the object returned by this attribute when it is
finished. Also, either the data needs to be copied out, or a reference to the object exposing this attribute must be
held to ensure the data is not freed. Objects exposingthe _array struct___ interface must also not reallocate
their memory if other objects are referencing them.

The PyArrayInterface structure is defined in numpy/ndarrayobject.h as:

typedef struct {

int two; /* contains the integer 2 —- simple sanity check */

int nd; /* number of dimensions */

char typekind; /* kind in array -—— character code of typestr */

int itemsize; /* size of each element */

int flags; /* flags indicating how the data should be interpreted */

/* must set ARR_HAS_DESCR bit to validate descr */
Py_intptr_t *shape; /* A length-nd array of shape information */
Py_intptr_t *strides; /* A length-nd array of stride information */

void *data; /* A pointer to the first element of the array */
PyObject *descr; /* NULL or data-description (same as descr key
of __array_interface__) —— must set ARR_HAS_DESCR

flag or this will be ignored. */
} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be interpreted and one bit showing how the Inter-
face should be interpreted. The data-bits are NPY_ARRAY_C_CONTIGUOUS (0x1), N°Y_ARRAY F_CONTIGUOUS
(0x2), NPY_ARRAY_ALIGNED (0x100), NPY ARRAY NOTSWAPPED (0x200), and NPY_ ARRAY WRITEABLE

488 1. Array objects

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/refcounting.html#c.Py_DECREF

NumPy Reference, Release 1.23.0

(0x400). A final flag NPY_ARR_HAS_DESCR (0x800) indicates whether or not this structure has the arrdescr field.
The field should not be accessed unless this flag is present.

NPY_ARR_HAS_DESCR

New since June 16, 2006:

In the past most implementations used the de sc member of the PyCObject (now PyCapsule) itself (do not confuse
this with the “descr” member of the PyArrayInterface structure above — they are two separate things) to hold the
pointer to the object exposing the interface. This is now an explicit part of the interface. Be sure to take a reference to
the object and call PyCapsule_SetContext before returning the PyCapsule, and configure a destructor to decref
this reference.

Note: __array_struct___ isconsidered legacy and should not be used for new code. Use the buffer protocol or the
DLPack protocol numpy . from_dIpack instead.

1.8.3 Type description examples
For clarity it is useful to provide some examples of the type description and corresponding __array_interface
‘descr’ entries. Thanks to Scott Gilbert for these examples:

In every case, the ‘descr’ key is optional, but of course provides more information which may be important for various
applications:

* Float data
typestr == '>f£4'
descr == [('','>f4")]

* Complex double
typestr == '>c8'
descr == [('real','>f4"'"), ('imag',6'>f4d")]

* RGB Pixel data
typestr == ' |V3'
descr == [('r',"[ul"), ('g',"|ul'), ('b',"|ul')]

* Mixed endian (weird but could happen) .
typestr == '|V8' (or '>u8")
descr == [('big','>i4"), ('little','<id')]

* Nested structure
struct |
int ival;
struct |
unsigned short sval;
unsigned char bval;
unsigned char cval;

} sub;
}
typestr == '"|V8' (or '<u8' if you want)
descr == [('ival','<id"'"), ('sub', [('sval','<u2'), ('bval','|ul'), ('cval','lul").

=1) 1]

(continues on next page)

1.8. The array interface protocol 489

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule_SetContext
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/buffer.html

NumPy Reference, Release 1.23.0

(continued from previous page)

* Nested array
struct |
int ival;
double data[l16*4];
}
typestr == '|V516"
descr == [('ival','>14"), ('data','>f8", (16,4))]

* Padded structure
struct |
int ival;
double dval;
3
typestr == '|V16'
descr == [("ival','>1i4")y, ("', "|vd"), ("dval', '>£8")]

It should be clear that any structured type could be described using this interface.

1.8.4 Differences with Array interface (Version 2)

The version 2 interface was very similar. The differences were largely aesthetic. In particular:
1. The PyArraylnterface structure had no descr member at the end (and therefore no flag ARR_HAS_DESCR)

2. The context member of the PyCapsule (formally the desc member of the PyCObject) returned from
__array_struct__ was not specified. Usually, it was the object exposing the array (so that a reference to it
could be kept and destroyed when the C-object was destroyed). It is now an explicit requirement that this field be
used in some way to hold a reference to the owning object.

Note: Until August 2020, this said:

Now it must be a tuple whose first element is a string with “PyArrayInterface Version #” and whose
second element is the object exposing the array.

This design was retracted almost immediately after it was proposed, in <https://mail.python.org/pipermail/
numpy-discussion/2006-June/020995.html>. Despite 14 years of documentation to the contrary, at no point was
it valid to assume that __array_interface___ capsules held this tuple content.

3. The tuple returned from __array_interface__ ['data'] used to be a hex-string (now it is an integer or
a long integer).

4. There was no __array_interface___ attribute instead all of the keys (except for version) in the
__array_interface__ dictionary were their own attribute: Thus to obtain the Python-side information you
had to access separately the attributes:

e _array_data_

e __array_shape_

e array_strides_
* __ _array_typestr_
e _array_descr_

e array_offset_

. array_mask

490 1. Array objects

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://mail.python.org/pipermail/numpy-discussion/2006-June/020995.html
https://mail.python.org/pipermail/numpy-discussion/2006-June/020995.html

NumPy Reference, Release 1.23.0

1.9 Datetimes and Timedeltas

New in version 1.7.0.

Starting in NumPy 1.7, there are core array data types which natively support datetime functionality. The data type is
called datet ime 64, so named because datet ime is already taken by the Python standard library.

1.9.1 Datetime64 Conventions and Assumptions

Similar to the Python date class, dates are expressed in the current Gregorian Calendar, indefinitely extended both
in the future and in the past.' Contrary to Python date, which supports only years in the 1 AD — 9999 AD range,
datetime 64 allows also for dates BC; years BC follow the Astronomical year numbering convention, i.e. year 2 BC is
numbered —1, year 1 BC is numbered 0, year 1 AD is numbered 1.

Time instants, say 16:23:32.234, are represented counting hours, minutes, seconds and fractions from midnight: i.e.
00:00:00.000 is midnight, 12:00:00.000 is noon, etc. Each calendar day has exactly 86400 seconds. This is a “naive”
time, with no explicit notion of timezones or specific time scales (UT1, UTC, TAI, etc.).2

1.9.2 Basic Datetimes

The most basic way to create datetimes is from strings in ISO 8601 date or datetime format. It is also possible to create
datetimes from an integer by offset relative to the Unix epoch (00:00:00 UTC on 1 January 1970). The unit for internal
storage is automatically selected from the form of the string, and can be either a date unit or a time unit. The date units
are years (‘Y’), months (‘M’), weeks (‘W’), and days (‘D’), while the time units are hours (‘h’), minutes (‘m’), seconds (‘s’),
milliseconds (‘ms’), and some additional SI-prefix seconds-based units. The datet ime64 data type also accepts the
string “NAT”, in any combination of lowercase/uppercase letters, for a “Not A Time” value.

Example

A simple ISO date:

>>> np.datetime64 ('2005-02-25")
numpy .datetime64 ('2005-02-25")

From an integer and a date unit, 1 year since the UNIX epoch:

>>> np.datetime64 (1, 'Y")
numpy .datetime64 ('1971")

Using months for the unit:

>>> np.datetime64 ('2005-02")
numpy .datetime64 ('2005-02")

Specifying just the month, but forcing a ‘days’ unit:

>>> np.datetime64 ('2005-02', 'D")
numpy .datetime64 ('2005-02-01")

! The calendar obtained by extending the Gregorian calendar before its official adoption on Oct. 15, 1582 is called Proleptic Gregorian Calendar

2 The assumption of 86400 seconds per calendar day is not valid for UTC, the present day civil time scale. In fact due to the presence of leap
seconds on rare occasions a day may be 86401 or 86399 seconds long. On the contrary the 86400s day assumption holds for the TAI timescale. An
explicit support for TAI and TAI to UTC conversion, accounting for leap seconds, is proposed but not yet implemented. See also the shortcomings
section below.

1.9. Datetimes and Timedeltas 491

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://en.wikipedia.org/wiki/Astronomical_year_numbering
https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second

NumPy Reference, Release 1.23.0

From a date and time:

>>> np.datetime64 ('2005-02-25T03:30")
numpy .datetime64 ('2005-02-25T03:30")

NAT (not a time):

>>> np.datetime64 ('nat')
numpy .datetime64 ('NaT")

When creating an array of datetimes from a string, it is still possible to automatically select the unit from the inputs, by
using the datetime type with generic units.

Example

>>> np.array(['2007-07-13"', '2006-01-13', '2010-08-13"'], dtype='datetimebt4d')
array (['2007-07-13"', '2006-01-13', '2010-08-13'], dtype='datetimeo64[D]")

>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172"], dtype='datetimeocd"')
array (['2001-01-01T12:00:00.000"', '2002-02-03T13:56:03.172"'7],
dtype='datetime64 [ms]")

An array of datetimes can be constructed from integers representing POSIX timestamps with the given unit.

Example

>>> np.array ([0, 1577836800], dtype='datetimeb4[s]")
array (['1970-01-01T00:00:00', '2020-01-01T00:00:00"7],
dtype='datetime64[s] ")

>>> np.array ([0, 1577836800000]) .astype('datetime64[ms]")
array (['1970-01-01T00:00:00.000"', '2020-01-01T00:00:00.000"7,
dtype='datetime64 [ms]")

The datetime type works with many common NumPy functions, for example a range can be used to generate ranges of
dates.

Example

All the dates for one month:

>>> np.arange ('2005-02', '2005-03', dtype='datetime64[D]")

array (['2005-02-01"', '2005-02-02', '2005-02-03', '2005-02-04"',
'2005-02-05"', '2005-02-06', '2005-02-07', '2005-02-08',
'2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12"',
'2005-02-13"', '2005-02-14', '2005-02-15', '2005-02-16"',
'2005-02-17"', '2005-02-18', '2005-02-19', '2005-02-20"',
'2005-02-21"', '2005-02-22', '2005-02-23', '2005-02-24"',
'2005-02-25", '2005-02-26', '2005-02-27', '2005-02-28'],

dtype='datetime64[D]")

492 1. Array objects

NumPy Reference, Release 1.23.0

The datetime object represents a single moment in time. If two datetimes have different units, they may still be representing
the same moment of time, and converting from a bigger unit like months to a smaller unit like days is considered a ‘safe’
cast because the moment of time is still being represented exactly.

Example

>>> np.datetime64 ('2005') == np.datetime64 ('2005-01-01")

True

>>> np.datetime64 ('2010-03-14T15") == np.datetime64 ('2010-03-14T15:00:00.00")
True

Deprecated since version 1.11.0: NumPy does not store timezone information. For backwards compatibility, datetime64
still parses timezone offsets, which it handles by converting to UTC£00:00 (Zulu time). This behaviour is deprecated and
will raise an error in the future.

1.9.3 Datetime and Timedelta Arithmetic

NumPy allows the subtraction of two datetime values, an operation which produces a number with a time unit. Because
NumPy doesn’t have a physical quantities system in its core, the t imedelta64 data type was created to complement
datetime64. The arguments for t imedelta64 are a number, to represent the number of units, and a date/time
unit, such as (D)ay, (M)onth, (Y)ear, (h)ours, (m)inutes, or (s)econds. The t imedelta64 data type also accepts the
string “NAT” in place of the number for a “Not A Time” value.

Example

>>> np.timedelta64 (1, 'D")
numpy .timedelta64 (1, 'D")

>>> np.timedelta64 (4, 'h'")
numpy .timedelta64 (4, 'h')

>>> np.timedelta64d ('nAt")
numpy .timedelta64d ('NaT')

Datetimes and Timedeltas work together to provide ways for simple datetime calculations.

Example

>>> np.datetime64 ('2009-01-01") - np.datetime64 ('2008-01-01")
numpy .timedelta64 (366, 'D")

>>> np.datetime64 ('2009') + np.timedelta64 (20, 'D')
numpy .datetime64 ('2009-01-21")

>>> np.datetime64 ('2011-06-15T00:00") + np.timedelta64 (12, 'h')
numpy.datetime64 ('2011-06-15T12:00")

1.9. Datetimes and Timedeltas 493

NumPy Reference, Release 1.23.0

>>> np.timedelta64d (1, 'W') / np.timedelta6d (1,'D")
7.0

>>> np.timedelta6d (1, 'W') % np.timedelta64 (10, 'D")
numpy .timedelta64 (7, 'D")

>>> np.datetime64 ('nat') - np.datetime64 ('2009-01-01")
numpy .timedelta64 ('NaT', 'D")

>>> np.datetime64 ('2009-01-01") + np.timedelta64d ('nat')
numpy .datetime64 ('NaT")

There are two Timedelta units (°Y’, years and ‘M’, months) which are treated specially, because how much time they
represent changes depending on when they are used. While a timedelta day unit is equivalent to 24 hours, there is no way
to convert a month unit into days, because different months have different numbers of days.

Example

>>> a = np.timedelta64 (1, 'Y")

>>> np.timedelta64 (a, 'M')
numpy .timedelta64 (12, 'M")

>>> np.timedelta64 (a, 'D'")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to.
—the rule 'same_kind'

1.9.4 Datetime Units

The Datetime and Timedelta data types support a large number of time units, as well as generic units which can be coerced
into any of the other units based on input data.

Datetimes are always stored with an epoch of 1970-01-01T00:00. This means the supported dates are always a symmetric
interval around the epoch, called “time span” in the table below.

The length of the span is the range of a 64-bit integer times the length of the date or unit. For example, the time span for
‘W’ (week) is exactly 7 times longer than the time span for ‘D’ (day), and the time span for ‘D’ (day) is exactly 24 times
longer than the time span for ‘h’ (hour).

Here are the date units:

Code | Meaning | Time span (relative) | Time span (absolute)

Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
M month +/-7.6e17 years [7.6e17 BC, 7.6e17 AD]
\%% week +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
D day +/- 2.5e16 years [2.5e16 BC, 2.5¢16 AD]

And here are the time units:

494 1. Array objects

NumPy Reference, Release 1.23.0

Code | Meaning Time span (relative) | Time span (absolute)

h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
S second +/- 2.9e11 years [2.9¢11 BC, 2.9¢11 AD]
ms millisecond +/- 2.9e8 years [2.9e8 BC, 2.9¢8 AD]

us /us | microsecond | +/-2.9e5 years [290301 BC, 294241 AD]
ns nanosecond | +/- 292 years [1678 AD, 2262 AD]

ps picosecond +/- 106 days [1969 AD, 1970 AD]

fs femtosecond | +/- 2.6 hours [1969 AD, 1970 AD]

as attosecond +/- 9.2 seconds [1969 AD, 1970 AD]

1.9.5 Business Day Functionality
To allow the datetime to be used in contexts where only certain days of the week are valid, NumPy includes a set of
“busday” (business day) functions.

The default for busday functions is that the only valid days are Monday through Friday (the usual business days). The
implementation is based on a “weekmask” containing 7 Boolean flags to indicate valid days; custom weekmasks are
possible that specify other sets of valid days.

The “busday” functions can additionally check a list of “holiday” dates, specific dates that are not valid days.

The function busday._offset allows you to apply offsets specified in business days to datetimes with a unit of ‘D’
(day).

Example

>>> np.busday_offset ('2011-06-23", 1)
numpy .datetime64 ('2011-06-24")

>>> np.busday_offset ('2011-06-23", 2)
numpy .datetime64 ('2011-06-27")

When an input date falls on the weekend or a holiday, busday_offset first applies a rule to roll the date to a valid
business day, then applies the offset. The default rule is ‘raise’, which simply raises an exception. The rules most typically
used are ‘forward” and ‘backward’.

Example

>>> np.busday_offset ('2011-06-25", 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Non-business day date in busday_offset

>>> np.busday_offset ('2011-06-25", 0, roll='forward")
numpy .datetime64 ('2011-06-27")

>>> np.busday_offset ('2011-06-25", 2, roll='forward")
numpy .datetime64 ('2011-06-29")

1.9. Datetimes and Timedeltas 495

NumPy Reference, Release 1.23.0

>>> np.busday_offset ('2011-06-25", 0, roll='backward")
numpy .datetime64 ('2011-06-24")

>>> np.busday_offset ('2011-06-25", 2, roll='backward")
numpy .datetime64 ('2011-06-28")

In some cases, an appropriate use of the roll and the offset is necessary to get a desired answer.

Example

The first business day on or after a date:

>>> np.busday_offset ('2011-03-20", 0, roll='forward")
numpy .datetime64 ('2011-03-21")
>>> np.busday_offset ('2011-03-22", 0, roll='forward")
numpy .datetime64 ('2011-03-22")

The first business day strictly after a date:

>>> np.busday_offset ('2011-03-20", 1, roll='backward")
numpy .datetime64 ('2011-03-21")
>>> np.busday_offset ('2011-03-22"', 1, roll='backward")
numpy .datetime64 ('2011-03-23")

The function is also useful for computing some kinds of days like holidays. In Canada and the U.S., Mother’s day is on
the second Sunday in May, which can be computed with a custom weekmask.

Example

>>> np.busday_offset ('2012-05', 1, roll='forward', weekmask='Sun')
numpy .datetime64 ('2012-05-13")

When performance is important for manipulating many business dates with one particular choice of weekmask and holi-
days, there is an object busdaycalendar which stores the data necessary in an optimized form.

np.is_busday():

To testa datet ime 64 value to see if it is a valid day, use is_busday.

Example

>>> np.is_busday (np.datetime64 ('2011-07-15")) # a Friday

True

>>> np.is_busday (np.datetime64 ('2011-07-16")) # a Saturday

False

>>> np.is_busday (np.datetime64 ('2011-07-16"), weekmask="Sat Sun")
True

>>> a = np.arange (np.datetime64 ('2011-07-11"), np.datetime64('2011-07-18"))
>>> np.is_busday (a)
array ([True, True, True, True, True, False, Falsel])

496 1. Array objects

NumPy Reference, Release 1.23.0

np.busday_count():

To find how many valid days there are in a specified range of datetime64 dates, use busday_count:

Example

>>> np.busday_count (np.datetime64 ('2011-07-11"), np.datetime64('2011-07-18"))
5
>>> np.busday_count (np.datetime64 ('2011-07-18"), np.datetime64 ('2011-07-11"))
-5

If you have an array of datetime64 day values, and you want a count of how many of them are valid dates, you can do
this:

Example

>>> a = np.arange (np.datetime64 ('2011-07-11"), np.datetime64('2011-07-18"))
>>> np.count_nonzero (np.is_busday(a))
5

Custom Weekmasks

Here are several examples of custom weekmask values. These examples specify the “busday” default of Monday through
Friday being valid days.

Some examples:

Positional sequences; positions are Monday through Sunday.
Length of the sequence must be exactly 7.

weekmask = [1, 1, 1, 1, 1, 0, 0]

1list or other sequence; == invalid day, 1 == valid day
weekmask = "1111100"

string '0O' == invalid day, 'l' == valid day

string abbreviations from this 1list: Mon Tue Wed Thu Fri Sat Sun
weekmask = "Mon Tue Wed Thu Fri"

any amount of whitespace is allowed; abbreviations are case-sensitive.
weekmask = "MonTue Wed Thu\tFri"

1.9.6 Datetime64 shortcomings

The assumption that all days are exactly 86400 seconds long makes datetime 64 largely compatible with Python
datetime and “POSIX time” semantics; therefore they all share the same well known shortcomings with respect to
the UTC timescale and historical time determination. A brief non exhaustive summary is given below.

* It is impossible to parse valid UTC timestamps occurring during a positive leap second.

Example

“2016-12-31 23:59:60 UTC” was a leap second, therefore “2016-12-31 23:59:60.450 UTC” is a valid timestamp
which is not parseable by datet ime64:

1.9. Datetimes and Timedeltas 497

https://docs.python.org/3/library/datetime.html#module-datetime

NumPy Reference, Release 1.23.0

>>> np.datetime64 ("2016-12-31 23:59:60.450")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Seconds out of range in datetime string "2016-12-31 23:59:60.450"

* Timedelta64 computations between two UTC dates can be wrong by an integer number of SI seconds.

Example

Compute the number of SI seconds between “2021-01-01 12:56:23.423 UTC” and “2001-01-01 00:00:00.000
UTC”:

>>>
np.datetime64 ("2021-01-01 12:56:23.423")
- np.datetime64 ("2001-01-01")
) / np.timedelta64 (1, "s")
631198583.423

however correct answer is 631198588.423 SI seconds because there were 5 leap seconds between 2001 and 2021.

Timedelta64 computations for dates in the past do not return SI seconds, as one would expect.

Example

Compute the number of seconds between “000-01-01 UT” and “1600-01-01 UT”, where UT is universal time:

>>> a = np.datetime64 ("0000-01-01", "us")
>>> b = np.datetime64 ("1600-01-01", "us")
>>> b - a

numpy.timedelta64 (50491123200000000, 'us")

The computed results, 50491123200 seconds, is obtained as the elapsed number of days (584388) times 86400
seconds; this is the number of seconds of a clock in sync with earth rotation. The exact value in SI seconds can
only be estimated, e.g using data published in Measurement of the Earth’s rotation: 720 BC to AD 2015, 2016,
Royal Society’s Proceedings A 472, by Stephenson et.al.. A sensible estimate is 50491112870 + 90 seconds, with
a difference of 10330 seconds.

498

1. Array objects

https://en.wikipedia.org/wiki/Universal_Time
https://doi.org/10.1098/rspa.2016.0404
https://doi.org/10.1098/rspa.2016.0404

CHAPTER
TWO

ARRAY API STANDARD COMPATIBILITY

Note: The numpy.array_api module is still experimental. See NEP 47.

NumPy includes a reference implementation of the array API standard in numpy . array_api. NEP 47 describes the
motivation and scope for implementing the array API standard in NumPy.

The numpy .array_api module serves as a minimal, reference implementation of the array API standard. In being
minimal, the module only implements those things that are explicitly required by the specification. Certain things are
allowed by the specification but are explicitly disallowed in numpy .array_api. This is so that the module can serve
as a reference implementation for users of the array API standard. Any consumer of the array API can test their code
against numpy . array_api and be sure that they aren’t using any features that aren’t guaranteed by the spec, and which
may not be present in other conforming libraries.

The numpy.array_api module is not documented here. For a listing of the functions present in the array API
specification, refer to the array API standard. The numpy . array_api implementation is functionally complete, so all
functionality described in the standard is implemented.

2.1 Table of Differences between numpy .array_api and numpy

This table outlines the primary differences between numpy . array_api from the main numpy namespace. There are
three types of differences:

1. Strictness. Things that are only done so that numpy .array_api is a strict, minimal implementation. They
aren’t actually required by the spec, and other conforming libraries may not follow them. In most cases, spec does
not specify or require any behavior outside of the given domain. The main numpy namespace would not need to
change in any way to be spec-compatible for these.

2. Compatible. Things that could be added to the main numpy namespace without breaking backwards compatibil-
ity.

3. Breaking. Things that would break backwards compatibility if implemented in the main numpy namespace.

499

https://numpy.org/neps/nep-0047-array-api-standard.html
https://data-apis.org/array-api/latest/
https://numpy.org/neps/nep-0047-array-api-standard.html
https://data-apis.org/array-api/latest/

NumPy Reference, Release 1.23.0

2.1.1 Name Differences

Many functions have been renamed in the spec from NumPy. These are otherwise identical in behavior, and are thus all
compatible changes, unless otherwise noted.

Function Name Changes

The following functions are named differently in the array API

Array APl name NumPy Notes
namespace
name
acos arccos
acosh arccosh
asin arcsin
asinh arcsinh
atan arctan
atanz arctan?2
atanh arctanh
bitwise_left_shift left_shift
bitwise_invert invert
bitwise_right_shift right_shift
bool bool__ This is breaking because np .bool is currently
a deprecated alias for the built-in bool.
concat concatenate
matrix_normand vector_norm norm matrix_normand vector_normeachdoa
limited subset of what np . norm does.
permute_dims transpose Unlike np.transpose, the axis keyword-
argument to permute_dims is required.
pow power
unique_all, unique_counts, | unique Each is equivalent to np . unique with certain
unique_inverse, and flags set.

unique_values

Function instead of method

e astype is a function in the array API, whereas it is a method on ndarray in numpy

linalg Namespace Differences

These functions are in the 1inalg sub-namespace in the array API, but are only in the top-level namespace in NumPy:
* cross
e diagonal
e matmul (¥)
* outer
e tensordot (¥)

e trace

500 2. Array API Standard Compatibility

NumPy Reference, Release 1.23.0

(*): These functions are also in the top-level namespace in the array APIL.

Keyword Argument Renames

The following functions have keyword arguments that have been renamed. The functionality of the keyword argument is
identical unless otherwise stated. Each new keyword argument is not already present on the given function in numpy, so
the changes are compatible.

Note, this page does not list function keyword arguments that are in the main numpy namespace but not in the array AP
Such keyword arguments are omitted from numpy . array_api for strictness, as the spec allows functions to include
additional keyword arguments from those required.

Function | Array APl | NumPy Notes
keyword keyword
name name
argsort | stable kind The definitions of stable and kind differ, as do the default values.
and sort The change of the default value makes this breaking. See Ser Functions
Differences.
matrix_ramntkol tol The definitions of rtol and tol differ, as do the default values. The
change of the default value makes this breaking. See Linear Algebra
Differences.
pinv rtol rcond The definitions of rt ol and rcond are the same, but their default values
differ, making this breaking. See Linear Algebra Differences.
std and | correction ddof
var

2.1.2 Type Promotion Differences

Type promotion is the biggest area where NumPy deviates from the spec. The most notable difference is that NumPy
does value-based casting in many cases. The spec explicitly disallows value-based casting. In the array API, the result
type of any operation is always determined entirely by the input types, independently of values or shapes.

2.1. Table of Differences between numpy . array api and numpy 501

NumPy Reference, Release 1.23.0

Feature Type| Notes

Limited set of dtypes. Strict- numpy .array_api only implements those dtypes that are re-
ness | quired by the spec.

Operators (like +) with Python scalars | Strict- For example, <int32 array> + 1.0 is not allowed. See the

only accept matching scalar types. ness | spec rules for mixing arrays and Python scalars.

Operators (like +) with Python scalars
always return the same dtype as the ar-
ray.

Break-For

ing

example, numpy.array_api.asarray (0.,
dtype=float32) + leb64disa float32 array.

In-place operators are disallowed

Break-Example: a = np.array(l, dtype=np.int8); a +=

when the left-hand side would be | ing | np.array (1, dtype=np.intl6). The spec explicitly
promoted. disallows this.

int promotion for operators is only | Strict- numpy.array_api fallsback to np.ndarray behavior (either
specified for integers within the | ness | cast or raise OverflowError).

bounds of the dtype.

__pow__and __rpow__ donotdo
value-based casting for 0-D arrays.

Break-For example,

ing

np.array (0., dtype=float32)**np.
array (0., dtype=float64) is float32. Note that this is
value-based casting on 0-D arrays, not scalars.

No cross-kind casting.

Strict- Namely, boolean, integer, and floating-point data types do not cast to

ness

each other, except explicitly with astype (this is separate from the
behavior with Python scalars).

No casting unsigned integer dtypes
to floating dtypes (e.g., int64 +
uint64 -> float64.

Strict
ness

can_cast and result_type are

Strict- The numpy.array_api implementations disallow cross-kind

restricted. ness | casting.
sum and prod always upcast | Break-
float32 to float64 when | ing

dtype=None.

2.1.3 Indexing Differences

The spec requires only a subset of indexing, but all indexing rules in the spec are compatible with NumPy’s more broad

indexing rules.

Feature Type Notes
No implicit ellipses (. . .). Strictness If an index does not include an ellip-
sis, all axes must be indexed.
The start and stop of a slice may not | Strictness Foraslice i : j : k, only the following
be out of bounds. are allowed:
e i or j omitted (None).
e —n <=1 <= max (0, n
- 1).
e For k > 0 or k omitted
(None), -n <= j <= n.
e Fork < 0,-n - 1 <= j
<= max (0, n — 1).
Boolean array indices are only al- | Strictness
lowed as the sole index.
Integer array indices are not allowed | Strictness With the exception of 0-D arrays,
at all. which are treated like integers.

502

2. Array API Standard Compatibility

https://data-apis.org/array-api/latest/API_specification/data_types.html
https://data-apis.org/array-api/latest/API_specification/data_types.html
https://data-apis.org/array-api/latest/API_specification/type_promotion.html#mixing-arrays-with-python-scalars
https://data-apis.org/array-api/latest/API_specification/type_promotion.html#mixing-arrays-with-python-scalars

NumPy Reference, Release 1.23.0

2.1.4 Type Strictness

Functions in numpy . array_api restrict their inputs to only those dtypes that are explicitly required by the spec, even
when the wrapped corresponding NumPy function would allow a broader set. Here, we list each function and the dtypes
that are allowed in numpy . array_api. These are strictness differences because the spec does not require that other

dtypes result in an error. The categories here are defined as follows:

* Floating-point: f1o0at32 or float64.

» Integer: Any signed or unsigned integer dtype (int8, int16,int32, int64,uint8,uintl16,uint32,or

uint64).

¢ Boolean: bool.

 Integer or boolean: Any signed or unsigned integer dtype, or bool. For two-argument functions, both arguments
must be integer or both must be bool.

* Numeric: Any integer or floating-point dtype. For two-argument functions, both arguments must be integer or
both must be floating-point.

e All: Any of the above dtype categories. For two-argument functions, both arguments must be the same kind
(integer, floating-point, or boolean).

In all cases, the return dtype is chosen according to the rules outlined in the spec, and does not differ from NumPy’s return

dtype for any of the allowed input dtypes, except in the cases mentioned specifically in the subsections below.

Elementwise Functions

Function Name Dtypes

abs Numeric
acos Floating-point
acosh Floating-point
add Numeric
asin (*) Floating-point
asinh (*) Floating-point
atan (%) Floating-point
atan?2 (*) Floating-point
atanh (¥) Floating-point

bitwise_and

Integer or boolean

bitwise_invert

Integer or boolean

bitwise_left_shift (¥)

Integer

bitwise_or

Integer or boolean

bitwise_right_shift (%)

Integer

bitwise_xor

Integer or boolean

ceil Numeric

cos Floating-point
cosh Floating-point
divide Floating-point
equal All

exp Floating-point
expml Floating-point
floor Numeric
floor_divide Numeric
greater Numeric

continues on next page

2.1. Table of Differences between numpy . array api and numpy

503

https://data-apis.org/array-api/latest/API_specification/type_promotion.html

NumPy Reference, Release 1.23.0

(*) These functions have different names from the main numpy namespace. See Function Name Changes.

Creation Functions

Table 1 - continued from previous page

Function Name Dtypes
greater_equal Numeric
isfinite Numeric
isinf Numeric
isnan Numeric
less Numeric
less_equal Numeric
log Floating-point
logaddexp Floating-point
logl0 Floating-point
loglp Floating-point
log?2 Floating-point
logical_and Boolean
logical_not Boolean
logical_or Boolean
logical_xor Boolean
multiply Numeric
negative Numeric
not_equal All
positive Numeric
pow (*) Numeric
remainder Numeric
round Numeric
sign Numeric

sin Floating-point
sinh Floating-point
sgrt Floating-point
square Numeric
subtract Numeric

tan Floating-point
tanh Floating-point
trunc Numeric

Function Name | Dtypes

meshgrid

Any (all input dtypes must be the same)

504

2. Array API Standard Compatibility

NumPy Reference, Release 1.23.0

Linear Algebra Functions

(*) Thes functions are split from norm from the main numpy namespace. See Function Name Changes.

(**) These functions are new in the array API and are not in the main numpy namespace.

Array Object

Function Name Dtypes
cholesky Floating-point
cross Numeric

det Floating-point
diagonal Any

eigh Floating-point
eighvals Floating-point
inv Floating-point
matmul Numeric

matrix_norm (¥)

Floating-point

matrix_power

Floating-point

matrix_rank

Floating-point

matrix_transpose (¥*)

Any

outer

Numeric

pinv Floating-point
qgr Floating-point
slogdet Floating-point
solve Floating-point
svd Floating-point
svdvals (¥%) Floating-point
tensordot Numeric
trace Numeric
vecdot (*¥*) Numeric

vector_norm (¥)

Floating-point

All the special __operator__ methods on the array object behave identically to their corresponding functions (see the
spec for a list of which methods correspond to which functions). The exception is that operators explicitly allow Python
scalars according to the rules outlined in the spec (see Type Promotion Differences).

2.1. Table of Differences between numpy . array api and numpy

505

https://data-apis.org/array-api/latest/API_specification/array_object.html#methods
https://data-apis.org/array-api/latest/API_specification/array_object.html#methods
https://data-apis.org/array-api/latest/API_specification/type_promotion.html#mixing-arrays-with-python-scalars

NumPy Reference, Release 1.23.0

2.1.5 Array Object Differences

Feature

Type

Notes

No array scalars

Strict
ness

- The spec does not have array scalars, only 0-D arrays. However, other than the pro-
motion differences outlined in Type Promotion Differences, scalars duck type as 0-D
arrays for the purposes of the spec. The are immutable, but the spec does not require
mutability.

bool (), int (), | Strict- See https://github.com/numpy/numpy/issues/10404.

and float () only | ness

work on 0-D arrays.

__imatmul___ Com; np.ndarray does not currently implement __imatmul. Note thata @= b should

pat- | only defined when it does not change the shape of a.
ible
The mT attribute for | Comy See the spec definition for mT.
matrix transpose. pat-
ible
The T attribute | Break-See the note in the spec.
should error if | ing
the input is not
2-dimensional.
New method | Comy The methods would effectively not do anything since NumPy is CPU only
to_device and | pat-
attribute device ible

2.1.6 Creation Functions Differences

Feature Type | Notes
copy keyword argument to asarray Com-

pat-

ible
New device keyword argument to all array creation functions (asarray, | Com-| device would effec-
arange, empty, empty_like, eye, full, full_like, linspace, | pat- | tively do nothing, since
ones, ones_like, zeros, and zeros_like). ible | NumPy is CPU only.

2.1.7 Elementwise Functions Differences

Feature Type | Notes
Various functions have been renamed. Com- | See Function Name Changes.
pati-
ble
Elementwise functions are only defined for given input | Strict- | See T'ype Strictness.
type combinations. ness
bitwise_left_shift and | Strict-
bitwise_right_shift are only defined | ness
for x2 nonnegative.
ceil, floor,and t runc return an integer with in- | Break- | np.ceil, np.floor, and np.trunc return a
teger input. ing floating-point dtype on integer dtype input.

506

2. Array API Standard Compatibility

https://data-apis.org/array-api/latest/design_topics/copies_views_and_mutation.html
https://data-apis.org/array-api/latest/design_topics/copies_views_and_mutation.html
https://github.com/numpy/numpy/issues/10404
https://data-apis.org/array-api/latest/API_specification/generated/signatures.array_object.array.mT.html
https://data-apis.org/array-api/latest/API_specification/generated/signatures.array_object.array.T.html

NumPy Reference, Release 1.23.0

2.1. Table of Differences between numpy . array api and numpy 507

NumPy Reference, Release 1.23.0

2.1.8 Linear Algebra Differences

Feature Type Notes
cholesky Com¢f
includes pat-
an upper | i-
keyword ble
argument.
cross does | Break-
not allow | ing
size 2 vectors
(only size 3).
diagonal Break-Strictly speaking this can be compatible because diagonal is moved to the 1 inalg names-
operates on | ing | pace.
the last two
axes.
eigh, qgr, | Com} The corresponding numpy functions return a tuple, with the resulting arrays in the same
slogdet pat- | order.
and svd re- | i-
turn a named | ble
tuple.
New Comr The norm function has been omitted from the array API and split into matrix_norm for
functions pat- | matrix norms and vect or_norm for vector norms. Note that vect or_norm supports any
matrix_noxmi- number of axes, whereas np . 1linalg.norm only supports a single axis for vector norms.
and ble
vector_nornm.
matrix_rankBreakdn the array API, rtol filters singular values smaller than rtol *
has an rtol | ing | largest_singular_value. In np.linalg.matrix_rank, tol filters sin-
keyword gular values smaller than tol. Furthermore, the default value for rtol is max (M, N) *
argument eps, whereas the default value of tol innp.linalg.matrix_rankis S.max () *
instead of max (M, N) * eps, where S is the singular values of the input. The new flag name is
tol. compatible but the default change is breaking
matrix_rankBreak-
does not | ing
support 1-
dimensional
arrays.
New function | Com{ Unlike np.transpose, matrix_transpose only transposes the last two axes. See the
matrix_tranpate sapec definition
i-
ble
outer only | Break-The spec currently only specifies behavior on 1-D arrays but future behavior will likely be to
supports 1- | ing | broadcast, rather than flatten, which is what np . outer does.
dimensional
arrays.
pinv has | Break-The meaning of rt ol and rcond is the same, but the default value for rt ol ismax (M, N)
an rtol | ing | * eps, whereas the default value for rcond is 1e-15. The new flag name is compatible
keyword but the default change is breaking.
argument
instead of
rcond
solve only | Break-The np.linalg.solve behavior is ambiguous. See this numpy issue and this array API
accepts x2 | ing | specification issue for more details.
as a vector
when—it—1s
S0ty 1 2. Array API Standard Compatibility
dimensional.
New function | Comt Equivalent to np.linalg.svd (compute_uv=False).
svdvals. pat-

https://data-apis.org/array-api/latest/API_specification/generated/signatures.linear_algebra_functions.matrix_transpose.html#signatures.linear_algebra_functions.matrix_transpose
https://data-apis.org/array-api/latest/API_specification/generated/signatures.linear_algebra_functions.matrix_transpose.html#signatures.linear_algebra_functions.matrix_transpose
https://github.com/numpy/numpy/issues/15349
https://github.com/data-apis/array-api/issues/285
https://github.com/data-apis/array-api/issues/285

NumPy Reference, Release 1.23.0

2.1.9 Manipulation Functions Differences

Feature Type Notes
Various functions have been renamed Com- See Function Name Changes.
patible
concat has different default casting rules | Strict- | No cross-kind casting. No value-based casting on scalars
from np.concatenate ness (when axis=None).
stack has different default casting rules | Strict- | No cross-kind casting.
from np.stack ness
New function permute_dims. Com- Unlike np.transpose, the axis keyword argument
patible | to permute_dims is required.
reshape function has a copy keyword ar- | Com- See https://github.com/numpy/numpy/issues/9818.
gument patible

2.1.10 Set Functions Differences

Feature Type Notes
New functions unique_all, unique_counts, | Com- See Function Name Changes.
unique_inverse, and unique_values. patible
The four unique_ * functions return a named tuple. Com-

patible
unique_all and unique_indices return indices with the | Com- See https://github.com/numpy/
same shape as x. patible | numpy/issues/20638.

2.1.11 Set Functions Differences

Feature

Type

Notes

argsort and
sort have a
stable key-
word argument
instead of kind.

Break-stable is a boolean keyword argument, defaulting to True. kind takes a string, de-

ing

faulting to "quicksort". stable=True is equivalent to kind="stable" and
kind=False is equivalent to kind="quicksort", although any sorting algorithm
is allowed by the spec when stable=False. The new flag name is compatible but the
default change is breaking.

argsort and
sort have a
descending
keyword argu-
ment.

Comt

pat-
i-

ble

2.1.12 Statistical Functions Differences

Feature

Type Notes

sum and prod always upcast f1oat32 to float 64 when dtype=None. Breaking

The std and var functions have a correction keyword argument instead of ddof. | Compatible

2.1. Table of Differences between numpy . array api and numpy 509

https://github.com/numpy/numpy/issues/9818
https://github.com/numpy/numpy/issues/20638
https://github.com/numpy/numpy/issues/20638

NumPy Reference, Release 1.23.0

2.1.13 Other Differences

Feature Type | Notes

Dtypes can only be spelled as dtype | Strict- | For example, numpy.array_api.asarray ([0],

objects. ness dtype="int32") is not allowed.

asarray is not implicitly called | Strict- | The exception is Python operators, which accept Python scalars in cer-
in any function. ness tain cases (see Type Promotion Differences).

tril and triu require the input | Strict-

to be at least 2-D. ness

finfo() return type uses £ 1loat for | Strict- | The spec allows duck typing, so £info returning dtype scalars is con-
the various attributes. ness sidered type compatible with f1oat.

510

2. Array API Standard Compatibility

CHAPTER
THREE

CONSTANTS

NumPy includes several constants:

numpy . Inf
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for inf. For more details, see inr.

See Also
inf
numpy .Infinity

IEEE 754 floating point representation of (positive) infinity.

Use inf because Tnf, Infinity, PINF and infty are aliases for inf. For more details, see inf.

See Also
inf
numpy . NAN
IEEE 754 floating point representation of Not a Number (NaN).

NaN and NAN are equivalent definitions of nan. Please use nan instead of NAN.

See Also

nan

numpy . NINF
IEEE 754 floating point representation of negative infinity.

511

NumPy Reference, Release 1.23.0

Returns

[float] A floating point representation of negative infinity.

See Also

isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity

isnan : Shows which elements are Not a Number

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a

Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is
equivalent to positive infinity.

Examples

>>> np.NINF
—-inf

>>> np.log(0)
—-inf

numpy . NZERO
IEEE 754 floating point representation of negative zero.

Returns

[float] A floating point representation of negative zero.

See Also

PZERO : Defines positive zero.

isinf : Shows which elements are positive or negative infinity.
isposinf : Shows which elements are positive infinity.
isneginf : Shows which elements are negative infinity.

isnan : Shows which elements are Not a Number.

isfinite

[Shows which elements are finite - not one of] Not a Number, positive infinity and negative infinity.

512 3. Constants

NumPy Reference, Release 1.23.0

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Negative zero is considered
to be a finite number.

Examples

>>> np.NZERO
-0.0
>>> np.PZERO
0.0

>>> np.isfinite ([np.NZERO])
array ([Truel)

>>> np.isnan([np.NZERO])
array ([Falsel])

>>> np.isinf ([np.NZERO])
array ([False])

numpy . NaN
IEEE 754 floating point representation of Not a Number (NaN).

NaN and NAN are equivalent definitions of nan. Please use nan instead of NaN.
See Also

nan

numpy . PINF
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for inf. For more details, see infr.

See Also
inf
numpy . PZERO

IEEE 754 floating point representation of positive zero.

Returns

[float] A floating point representation of positive zero.

513

NumPy Reference, Release 1.23.0

See Also

NZERO : Defines negative zero.

isinf : Shows which elements are positive or negative infinity.
isposinf : Shows which elements are positive infinity.
isneginf : Shows which elements are negative infinity.

isnan : Shows which elements are Not a Number.

isfinite

[Shows which elements are finite - not one of] Not a Number, positive infinity and negative infinity.

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Positive zero is considered

to be a finite number.

Examples

>>> np.PZERO
0.0

>>> np.NZERO
-0.0

>>> np.isfinite ([np.PZERO])
array ([Truel)

>>> np.isnan([np.PZERO])
array ([False])

>>> np.isinf ([np.PZERO])
array ([False])

numpy . e

Euler’s constant, base of natural logarithms, Napier’s constant.

e = 2.71828182845904523536028747135266249775724709369995. ..

See Also

exp : Exponential function log : Natural logarithm

References

https://en.wikipedia.org/wiki/E_%28mathematical_constant%?29

numpy .euler_gamma
y = 0.5772156649015328606065120900824024310421...

514

3. Constants

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29

NumPy Reference, Release 1.23.0

References

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

numpy .inf

IEEE 754 floating point representation of (positive) infinity.

Returns

[float] A floating point representation of positive infinity.

See Also

isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity

isnan : Shows which elements are Not a Number

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)
Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a

Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is
equivalent to positive infinity.

Inf, Infinity, PINF and infty are aliases for inf.

Examples

>>> np.inf

inf
>>> np.array([1]) / O.
array ([Inf])

numpy .infty
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for i nf. For more details, see inf.

515

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

NumPy Reference, Release 1.23.0

See Also

inf

numpy .nan

IEEE 754 floating point representation of Not a Number (NaN).

Returns

y : A floating point representation of Not a Number.

See Also

isnan : Shows which elements are Not a Number.

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

NaN and NAN are aliases of nan.

Examples

>>> np.nan
nan
>>> np.log(—-1)

nan
>>> np.log([-1, 1, 21)
array ([NaN, 0. , 0.693147187)

numpy .newaxis

A convenient alias for None, useful for indexing arrays.

Examples

>>> newaxis is None
True

>>> x = np.arange (3)
>>> x

array ([0, 1, 2])

>>> x[:, newaxis]
array ([[0],

[11,

[211)

>>> x[:, newaxis, newaxis]
array ([[[0]],

(111,

[[2111)

(continues on next page)

516

3. Constants

NumPy Reference, Release 1.23.0

(continued from previous page)

>>> x[:, newaxis] * x
array ([[0, 0, O],

[o, 1, 21,

[0, 2, 411)

Outer product, same as outer (x, y):

>>> y = np.arange (3, 6)
>>> x[:, newaxis] * vy
array ([[0, 0, 0],

[3, 4, 571,

[6, 8, 1011)

X [newaxis,

:] isequivalent to x [newaxis] and x [None]:

>>>
(1’
>>>
(1,
>>>
(1,
>>>
(3’

x [newaxis,
3)

x [newaxis] .shape
3)

x [None] . shape

3)
x[:,
1)

:] .shape

newaxis] .shape

numpy .pi
pi = 3.1415926535897932384626433...

References

https://en.wikipedia.org/wiki/Pi

517

https://en.wikipedia.org/wiki/Pi

NumPy Reference, Release 1.23.0

518 3. Constants

CHAPTER
FOUR

UNIVERSAL FUNCTIONS (UFUNC)

See also:
ufuncs-basics

A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized” wrapper
for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs. For detailed
information on universal functions, see ufuncs-basics.

4.1 ufunc

numpy . ufunc() Functions that operate element by element on whole ar-
rays.

class numpy.ufunc

Functions that operate element by element on whole arrays.

To see the documentation for a specific ufunc, use info. For example, np.info (np.sin). Because ufuncs
are written in C (for speed) and linked into Python with NumPy’s ufunc facility, Python’s help() function finds this
page whenever help() is called on a ufunc.

A detailed explanation of ufuncs can be found in the docs for Universal functions (ufunc).
Calling ufuncs: op (*x[, out], where=True, **kwargs)
Apply op to the arguments *x elementwise, broadcasting the arguments.
The broadcasting rules are:
* Dimensions of length 1 may be prepended to either array.

* Arrays may be repeated along dimensions of length 1.
Parameters

*x
[array_like] Input arrays.
out

[ndarray, None, or tuple of ndarray and None, optional] Alternate array object(s) in which to
put the result; if provided, it must have a shape that the inputs broadcast to. A tuple of arrays

519

NumPy Reference, Release 1.23.0

(possible only as a keyword argument) must have length equal to the number of outputs; use
None for uninitialized outputs to be allocated by the ufunc.

where

[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns

[ndarray or tuple of ndarray] r will have the shape that the arrays in x broadcast to; if out is
provided, it will be returned. If not, will be allocated and may contain uninitialized values.
If the function has more than one output, then the result will be a tuple of arrays.

Attributes

identity

The identity value.
nargs

The number of arguments.
nin

The number of inputs.
nout

The number of outputs.
ntypes

The number of types.
signature

Definition of the core elements a generalized ufunc operates on.
types

Returns a list with types grouped input->output.

520 4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

Methods
__call__ (*args, **kwargs) Call self as a function.
accumulate(arrayl[, axis, dtype, out]) Accumulate the result of applying the operator to all
elements.
at(a, indices[, b]) Performs unbuffered in place operation on operand "a’
for elements specified by ’indices’.
outer(A, B, /, ¥*kwargs) Apply the ufunc op to all pairs (a, b) withain A and b
in B.
reduce(arrayl, axis, dtype, out, keepdims, ...]) Reduces array’s dimension by one, by applying
ufunc along one axis.
reduceat(array, indices|[, axis, dtype, out]) Performs a (local) reduce with specified slices over a
single axis.
method
ufunc.__call__ (*args, **kwargs)

Call self as a function.
method

ufunc.accumulate (array, axis=0, dtype=None, out=None)

Accumulate the result of applying the operator to all elements.

For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty(len(A))
t op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)):
t = op(t, A[i])
r(i] = t
return r

For example, add.accumulate() is equivalent to np.cumsum().

For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples
below) so repeated use is necessary if one wants to accumulate over multiple axes.

Parameters

array
[array_like] The array to act on.
axis
[int, optional] The axis along which to apply the accumulation; default is zero.
dtype

[data-type code, optional] The data-type used to represent the intermediate results. Defaults
to the data-type of the output array if such is provided, or the data-type of the input array if
no output array is provided.

out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

41. ufunc 521

NumPy Reference, Release 1.23.0

Changed in version 1.13.0: Tuples are allowed for keyword argument.

Returns

[ndarray] The accumulated values. If out was supplied, r is a reference to out.

Examples

1-D array examples:

>>> np.add.accumulate ([2, 3, 5])
array ([2, 5, 107)

>>> np.multiply.accumulate([2, 3, 51)
array ([2, 6, 301])

2-D array examples:

>>> I = np.eye(2)

>>> T

array ([[1., 0.1,
(0., 1.11)

Accumulate along axis 0 (rows), down columns:

>>> np.add.accumulate (I, 0)

array ([[1., 0.1,

(1., 1.11)
>>> np.add.accumulate (I) # no axis specified = axis zero
array ([[1., 0.1,

(1., 1.11)

Accumulate along axis 1 (columns), through rows:

>>> np.add.accumulate (I, 1)
array ([[1., 1.1,
[0., 1.11)

method

ufunc.at (a, indices, b=None, /)

Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc,
this method is equivalent to a [indices] += b, except that results are accumulated for elements that are
indexed more than once. For example, a [[0, 0]] += 1 will only increment the first element once because
of buffering, whereas add.at (a, [0,0], 1) willincrement the first element twice.

New in version 1.8.0.

Parameters

[array_like] The array to perform in place operation on.

indices

522 4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

[array_like or tuple] Array like index object or slice object for indexing into first operand. If
first operand has multiple dimensions, indices can be a tuple of array like index objects or
slice objects.

b

[array_like] Second operand for ufuncs requiring two operands. Operand must be broad-
castable over first operand after indexing or slicing.

Examples

Set items 0 and 1 to their negative values:

>>> a = np.array([1, 2, 3, 41])
>>> np.negative.at(a, [0, 1])
>>> a

array ([-1, -2, 3, 41])

Increment items O and 1, and increment item 2 twice:

>>> a = np.array([1, 2, 3, 41)
>>> np.add.at(a, [0, 1, 2, 21, 1)
>>> a

array ([2, 3, 5, 41)

Add items O and 1 in first array to second array, and store results in first array:

>>> a = np.array([1, 2, 3, 41)
>>> b = np.array([1l, 2])

>>> np.add.at(a, [0, 1], b)
>>> a

array ([2, 4, 3, 41)

method

ufunc.outer (A, B, /, **kwargs)

Apply the ufunc op to all pairs (a, b) with ain A and b in B.

LetM = A.ndim,N = B.ndim. Then the result, C, of op.outer (A, B) isan array of dimension M
+ N such that:

Cligy oy irnf—1,J0s s JN—1) = 0D(Alio, -y tar—1), Bljos -y in—1])

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in range(len(A)) :
for j in range(len(B)):
r{i,j] = op(A[i]l, B[3j]) # op = ufunc in question

Parameters

A
[array_like] First array
B

[array_like] Second array

4.1. ufunc 523

NumPy Reference, Release 1.23.0

kwargs

[any] Arguments to pass on to the ufunc. Typically dt ype or out. See ufunc for a com-
prehensive overview of all available arguments.

Returns

[ndarray] Output array
See also:

numpy .outer

A less powerful version of np.multiply.outer that ravelsall inputs to 1D. This exists primarily
for compatibility with old code.

tensordot

np.tensordot (a, b,

axes=((),

())) and

same for all dimensions of a and b.

Examples

np.multiply.outer (a,

b)

behave

>>> np.multiply.outer([1,
array ([[4, 5, 6],

[8, 10, 127,

(12, 15, 1811)

2, 31, [4, 5, 6])

A multi-dimensional example:

>>> A = np.array([[1, 2, 31, [4, 5, 6]11)
>>> A.shape
(2, 3)
>>> B = np.array ([[1, 2, 3, 411)
>>> B.shape
(1, 4)
>>> C = np.multiply.outer (A, B)
>>> C.shape; C
(2, 3, 1, 4)
array ([[[[1, 2, 3, 411,
(rz, 4, 6, 811,
[r 3, 6, 9, 12111,
(re 4, 8, 12, 1611,
[[5, 10, 15, 201171,
([6, 12, 18, 24]1111)

method

Reduces array’s dimension by one, by applying ufunc along one axis.

Let array.shape =

(No, ...,

Ni, ooy Nar—1).

Then

ufunc.reduce(array, axis

ufunc.reduce (array, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True)

i)[ko, -, ki—1, kit1, .., kar—1] = the result of iterating j over range(N;), cumulatively applying ufunc

to each array[k:o, v kic1, 9, Kik1y ey kM_l].

equivalent to:

For a one-dimensional array, reduce produces results

524

4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

for i in

return r

r = op.identity # op = ufunc

range (len (A)) :

r = op(r, A[i])

For example, add.reduce() is equivalent to sum().

Parameters

array

[array_like] The array to act on.

axis

[None or int or tuple of ints, optional] Axis or axes along which a reduction is performed.
The default (axis = 0) is perform a reduction over the first dimension of the input array. axis
may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is None, a reduction is performed over all the axes. If this is a tuple of ints, a reduction
is performed on multiple axes, instead of a single axis or all the axes as before.

For operations which are either not commutative or not associative, doing a reduction over
multiple axes is not well-defined. The ufuncs do not currently raise an exception in this case,
but will likely do so in the future.

dtype

[data-type code, optional] The type used to represent the intermediate results. Defaults to
the data-type of the output array if this is provided, or the data-type of the input array if no
output array is provided.

out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.

keepdims

[bool, optional] If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against the
original array.

New in version 1.7.0.

initial

[scalar, optional] The value with which to start the reduction. If the ufunc has no identity or
the dtype is object, this defaults to None - otherwise it defaults to ufunc.identity. If None
is given, the first element of the reduction is used, and an error is thrown if the reduction is
empty.

New in version 1.15.0.

where

[array_like of bool, optional] A boolean array which is broadcasted to match the dimen-
sions of array, and selects elements to include in the reduction. Note that for ufuncs like
minimum that do not have an identity defined, one has to pass in also initial.

41. ufunc

525

NumPy Reference, Release 1.23.0

New in version 1.17.0.

Returns

[ndarray] The reduced array. If our was supplied, r is a reference to it.

Examples

>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange (8) .reshape((2,2,2))

>>> X
array ([[[0, 11,

(2, 311,

(14, 51,

(6, 7111)
>>> np.add.reduce (X, 0)
array ([[4, 61,

[8, 1011)
>>> np.add.reduce(X) # confirm: default axis value is 0
array ([[4, 61,

[8 1011)
>>> np.add.reduce (X, 1)
array ([[2, 4],

(10, 1211)
>>> np.add.reduce (X, 2)
array ([[1, 51,

[9, 1311)

You can use the initial keyword argument to initialize the reduction with a different value, and where
to select specific elements to include:

>>> np.add.reduce([10], initial=5)

15

>>> np.add.reduce (np.ones((2, 2, 2)), axis=(0, 2), initial=10)
array ([14., 14.1])

>>> a = np.array([10., np.nan, 10])
>>> np.add.reduce (a, where=~np.isnan(a))
20.0

Allows reductions of empty arrays where they would normally fail, i.e. for ufuncs without an identity.

>>> np.minimum.reduce([], initial=np.inf)
inf
>>> np.minimum.reduce([[1., 2.1, [3., 4.]1], initial=10., where=[True, False])

array ([1., 10.1)
>>> np.minimum.reduce([])
Traceback (most recent call last):

ValueError: zero-size array to reduction operation minimum which has no.
—identity

526

4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

method

ufunc.reduceat (array, indices, axis=0, dtype=None, out=None)

Performs a (local) reduce with specified slices over a single axis.

For i in range (len(indices)), reduceat computes ufunc.

13 et}

reduce (array[indices[i]:indices[i+1]]), which becomes the i-th generalized “row
parallel to axis in the final result (i.e., in a 2-D array, for example, if axis = 0, it becomes the i-th row, but if
axis = 1, it becomes the i-th column). There are three exceptions to this:

e when i = len(indices) - 1 (so for the last index), indices([i+1] = array.
shape[axis].

e if indices[i] >= indices[i + 1], the i-th generalized “row” is simply
array[indices[i]].

e if indices[i] >= len(array) orindices[i] < 0, an error is raised.

The shape of the output depends on the size of indices, and may be larger than array (this happens if
len(indices) > array.shapel[axis]).

Parameters

array
[array_like] The array to act on.
indices
[array_like] Paired indices, comma separated (not colon), specifying slices to reduce.
axis
[int, optional] The axis along which to apply the reduceat.
dtype

[data-type code, optional] The type used to represent the intermediate results. Defaults to
the data type of the output array if this is provided, or the data type of the input array if no
output array is provided.

out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.

Returns

[ndarray] The reduced values. If our was supplied, r is a reference to out.

41. ufunc 527

NumPy Reference, Release 1.23.0

Notes

A descriptive example:

If array is 1-D, the function ufunc.accumulate(array) is the same as ufunc.reduceat (array,
indices) [::2] where indices is range (len(array) - 1) with a zero placed in every
other element: indices = zeros (2 * len(array) - 1), indices[1::2] = range (1,
len(array)).

Don’t be fooled by this attribute’s name: reduceat(array) is not necessarily smaller than array.

Examples

To take the running sum of four successive values:

>>> np.add.reduceat (np.arange(8), [0,4, 1,5, 2,6, 3,71)[::2]
array ([6, 10, 14, 18])

A 2-D example:

>>> x = np.linspace (0, 15, 16).reshape(4,4)

>>> x

array ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.71,
[12., 13., 14., 15.11)

reduce such that the result has the following five rows:

[rowl + row2 + row3]

[rowd]

[rowZ2]

[row3]

[rowl + row2 + row3 + row4]

>>> np.add.reduceat (x, [0, 3, 1, 2, 01)
array ([[12., 15., 18., 21.]
12., 13., 14., 15.]
4., 5., 6., 7.1,
8., 9., 10., 11.]
4., 28., 32., 36.]

reduce such that result has the following two columns:
[coll * col2 * col3, col4]

>>> np.multiply.reduceat (x, [0, 31, 1)

array ([[0., 3.1,
[120., 7.1,
[720., 11.1,
[2184., 15.11)

4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

4.1.1 Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent advanced usage and will not typically be used.

out

New in version 1.6.

The first output can be provided as either a positional or a keyword parameter. Keyword ‘out’ arguments are incompatible
with positional ones.

New in version 1.10.

The ‘out’ keyword argument is expected to be a tuple with one entry per output (which can be None for arrays to be
allocated by the ufunc). For ufuncs with a single output, passing a single array (instead of a tuple holding a single array)
is also valid.

Passing a single array in the ‘out’ keyword argument to a ufunc with multiple outputs is deprecated, and will raise a warning
in numpy 1.10, and an error in a future release.

If ‘out’ is None (the default), a uninitialized return array is created. The output array is then filled with the results of the
ufunc in the places that the broadcast ‘where’ is True. If ‘where’ is the scalar True (the default), then this corresponds to
the entire output being filled. Note that outputs not explicitly filled are left with their uninitialized values.

New in version 1.13.

Operations where ufunc input and output operands have memory overlap are defined to be the same as for equivalent
operations where there is no memory overlap. Operations affected make temporary copies as needed to eliminate data
dependency. As detecting these cases is computationally expensive, a heuristic is used, which may in rare cases result
in needless temporary copies. For operations where the data dependency is simple enough for the heuristic to analyze,
temporary copies will not be made even if the arrays overlap, if it can be deduced copies are not necessary. As an example,
np.add(a, b, out=a) will notinvolve copies.

where

New in version 1.7.

Accepts a boolean array which is broadcast together with the operands. Values of True indicate to calculate the ufunc at
that position, values of False indicate to leave the value in the output alone. This argument cannot be used for generalized
ufuncs as those take non-scalar input.

Note that if an uninitialized return array is created, values of False will leave those values uninitialized.

axes

New in version 1.15.

A list of tuples with indices of axes a generalized ufunc should operate on. For instance, for a signature of (i, 7j),
(3, k)->(1i,k) appropriate for matrix multiplication, the base elements are two-dimensional matrices and these are
taken to be stored in the two last axes of each argument. The corresponding axes keyword would be [(-2, -1),
(-2, -1), (-2, -1)1. For simplicity, for generalized ufuncs that operate on 1-dimensional arrays (vectors), a
single integer is accepted instead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars,
the output tuples can be omitted.

4.1. ufunc 529

NumPy Reference, Release 1.23.0

axis

New in version 1.15.

A single axis over which a generalized ufunc should operate. This is a short-cut for ufuncs that operate over a single,
shared core dimension, equivalent to passing in axe s with entries of (axis,) for each single-core-dimension argument
and () for all others. For instance, for a signature (i), (i) —> (), it is equivalent to passing in axes=[(axis,),
(axis,), ()].

keepdims

New in version 1.15.

If this is set to True, axes which are reduced over will be left in the result as a dimension with size one, so that the result
will broadcast correctly against the inputs. This option can only be used for generalized ufuncs that operate on inputs that
all have the same number of core dimensions and with outputs that have no core dimensions, i.e., with signatures like
(1), (1) => () or (m, m)—> (). If used, the location of the dimensions in the output can be controlled with axes and
axils.

casting

New in version 1.6.
May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or ‘unsafe’. See can_cast for explanations of the parameter values.

Provides a policy for what kind of casting is permitted. For compatibility with previous versions of NumPy, this defaults to
‘unsafe’ for numpy < 1.7. In numpy 1.7 a transition to ‘same_kind’ was begun where ufuncs produce a DeprecationWarning
for calls which are allowed under the ‘unsafe’ rules, but not under the ‘same_kind’ rules. From numpy 1.10 and onwards,
the default is ‘same_kind’.

order

New in version 1.6.

Specifies the calculation iteration order/memory layout of the output array. Defaults to ‘K’. ‘C’ means the output should
be C-contiguous, ‘F" means F-contiguous, ‘A’ means F-contiguous if the inputs are F-contiguous and not also not C-
contiguous, C-contiguous otherwise, and ‘K’ means to match the element ordering of the inputs as closely as possible.

dtype

New in version 1.6.

Overrides the DType of the output arrays the same way as the signature. This should ensure a matching precision of the
calculation. The exact calculation DTypes chosen may depend on the ufunc and the inputs may be cast to this DType to
perform the calculation.

530 4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

subok

New in version 1.6.

Defaults to true. If set to false, the output will always be a strict array, not a subtype.

signature

Either a Dtype, a tuple of DTypes, or a special signature string indicating the input and output types of a ufunc.

This argument allows the user to specify exact DTypes to be used for the calculation. Casting will be used as necessary.
The actual DType of the input arrays is not considered unless signature is None for that array.

When all DTypes are fixed, a specific loop is chosen or an error raised if no matching loop exists. If some DTypes are not
specified and left None, the behaviour may depend on the ufunc. At this time, a list of available signatures is provided
by the types attribute of the ufunc. (This list may be missing DTypes not defined by NumPy.)

The signature only specifies the DType class/type. For example, it can specify that the operation should be
datetime64 or f1loat 64 operation. It does not specify the datet ime 64 time-unit or the £ 1oat 64 byte-order.

For backwards compatibility this argument can also be provided as sig, although the long form is preferred. Note that this
should not be confused with the generalized ufunc signature that is stored in the signature attribute of the of the ufunc
object.

extobj
A list of length 3 specifying the ufunc buffer-size, the error mode integer, and the error call-back function. Normally,
these values are looked up in a thread-specific dictionary. Passing them here circumvents that look up and uses the low-

level specification provided for the error mode. This may be useful, for example, as an optimization for calculations
requiring many ufunc calls on small arrays in a loop.

4.1.2 Attributes

There are some informational attributes that universal functions possess. None of the attributes can be set.

doc| A docstring for each ufunc. The first part of the docstring is dynamically generated from the number of
outputs, the name, and the number of inputs. The second part of the docstring is provided at creation time
and stored with the ufunc.

__nameThe name of the ufunc.

ufunc.nin The number of inputs.
ufunc.nout The number of outputs.
ufunc.nargs The number of arguments.
ufunc.ntypes The number of types.
ufunc.types Returns a list with types grouped input->output.
ufunc.identity The identity value.
ufunc.signature Definition of the core elements a generalized ufunc oper-
ates on.
attribute

4.1. ufunc 531

NumPy Reference, Release 1.23.0

ufunc.nin

The number of inputs.

Data attribute containing the number of arguments the ufunc treats as input.

Examples

>>> np.add.nin
>>> np.multiply.nin
>>> np.power.nin

>>> np.exp.nin

attribute

ufunc.nout

The number of outputs.

Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be (at least) 1.

Examples

>>> np.add.nout
>>> np.multiply.nout
>>> np.power.nout

>>> np.exp.nout

attribute

ufunc.nargs

The number of arguments.

Data attribute containing the number of arguments the ufunc takes, including optional ones.

532 4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

Notes

Typically this value will be one more than what you might expect because all ufuncs take the optional “out” argu-
ment.

Examples

>>> np.add.nargs

>>> np.multiply.nargs

>>> np.power.nargs

>>> np.exp.nargs

attribute

ufunc.ntypes
The number of types.

The number of numerical NumPy types - of which there are 18 total - on which the ufunc can operate.

See also:

numpy . ufunc. types

Examples

>>> np.add.ntypes

18

>>> np.multiply.ntypes
18

>>> np.power.ntypes

17

>>> np.exp.ntypes

7

>>> np.remainder.ntypes
14

attribute

ufunc.types

Returns a list with types grouped input->output.

Data attribute listing the data-type “Domain-Range” groupings the ufunc can deliver. The data-types are given
using the character codes.

See also:

numpy .ufunc.ntypes

4.1. ufunc 533

NumPy Reference, Release 1.23.0

Examples

>>> np.add.types
['??2->?"', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', '11->1"',
'LL->L', 'gg->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG—->G', 'O0->0"']

>>> np.multiply.types

['??2->?', '"bb->b', 'BB->B', 'hh->h', 'HH->H',6 'ii->i', 'II->I', 'l11->1"',
'L.L->L.', 'gg->g', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', '00->0"]

>>> np.power.types

['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'l11->1', 'LL->L"',
'gg->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'00->0"]

>>> np.exp.types
['f—>f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', '0->0']

>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->1', 'LL->L°',
qu7>ql, YQQ7>QI’ lff7>f|’ ldd7>dV’ lgg7>gl, VOO?>OIJ

attribute

ufunc.identity
The identity value.

Data attribute containing the identity element for the ufunc, if it has one. If it does not, the attribute value is None.

Examples

>>> np.add.identity

0

>>> np.multiply.identity
1

>>> np.power.identity

1

>>> print (np.exp.identity)
None

attribute

ufunc.signature

Definition of the core elements a generalized ufunc operates on.
The signature determines how the dimensions of each input/output array are split into core and loop dimensions:

1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting from
the end of the shape tuple.

2. Core dimensions assigned to the same label in the signature must have exactly matching sizes, no broadcasting
is performed.

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together, defin-
ing the loop dimensions.

534 4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

Notes

Generalized ufuncs are used internally in many linalg functions, and in the testing suite; the examples below are
taken from these. For ufuncs that operate on scalars, the signature is None, which is equivalent to ‘()’ for every
argument.

Examples

" (m,m) —> ()"
>>> np.add.signature is None
True # equivalent to '"(), ()—>()"

>>> np.core.umath_tests.matrix_multiply.signature
! (m,n) ’ (nrp)_> (mrp) !
>>> np.linalg._umath_linalg.det.signature

4.1.3 Methods

ufunc. reduce(arrayl, axis, dtype, out, ...]) Reduces array’s dimension by one, by applying ufunc
along one axis.

ufunc.accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all ele-
ments.

ufunc. reduceat(array, indices[, axis, ...]) Performs a (local) reduce with specified slices over a sin-
gle axis.

ufunc.outer(A, B, /, ¥*kwargs) Apply the ufunc op to all pairs (a, b) with ain A and b in
B.

ufunc. at(a, indices[, b]) Performs unbuffered in place operation on operand ’a’ for

elements specified by ’indices’.

Warning: A reduce-like operation on an array with a data-type that has a range “too small” to handle the result will
silently wrap. One should use dt ype to increase the size of the data-type over which reduction takes place.

4.2 Available ufuncs

There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety of
operations. Some of these ufuncs are called automatically on arrays when the relevant infix notation is used (e.g., add (a,
b) is called internally when a + D is written and a or b is an ndarray). Nevertheless, you may still want to use the
ufunc call in order to use the optional output argument(s) to place the output(s) in an object (or objects) of your choice.

Recall that each ufunc operates element-by-element. Therefore, each scalar ufunc will be described as if acting on a set
of scalar inputs to return a set of scalar outputs.

Note: The ufunc still returns its output(s) even if you use the optional output argument(s).

4.2. Available ufuncs

535

NumPy Reference, Release 1.23.0

4.2.1 Math operations

add(x1, x2, /[, out, where, casting, order, ...])

Add arguments element-wise.

subtract(xl, x2, /[, out, where, casting, ...])

Subtract arguments, element-wise.

multiply(xl, x2, /[, out, where, casting, ...])

Multiply arguments element-wise.

matmul(xl, x2, /[, out, casting, order, ...])

Matrix product of two arrays.

divide(xl, x2, /[, out, where, casting, ...])

Divide arguments element-wise.

logaddexp(x1, x2, /[, out, where, casting, ...])

Logarithm of the sum of exponentiations of the inputs.

logaddexp2(x1, X2, /[, out, where, casting, ...])

Logarithm of the sum of exponentiations of the inputs in
base-2.

true_divide(xl, x2, /[, out, where, ...])

Divide arguments element-wise.

floor divide(xl, x2, /[, out, where, ...])

Return the largest integer smaller or equal to the division
of the inputs.

negative(x, /[, out, where, casting, order, ...])

Numerical negative, element-wise.

positive(x, /[, out, where, casting, order, ...])

Numerical positive, element-wise.

power(xl, x2, /[, out, where, casting, ...])

First array elements raised to powers from second array,
element-wise.

float_power(xl, x2, /[, out, where, ...])

First array elements raised to powers from second array,
element-wise.

remainder(xl, x2, /[, out, where, casting, ...])

Returns the element-wise remainder of division.

mod(x1, x2, /[, out, where, casting, order, ...])

Returns the element-wise remainder of division.

fmod(x1, x2, /[, out, where, casting, ...])

Returns the element-wise remainder of division.

divmod(x1, x2[, outl, out2], / [[, out, ...])

Return element-wise quotient and remainder simultane-
ously.

absolute(x, /[, out, where, casting, order, ...])

Calculate the absolute value element-wise.

fabs(x, /[, out, where, casting, order, ...])

Compute the absolute values element-wise.

rint(x, /[, out, where, casting, order, ...])

Round elements of the array to the nearest integer.

sign(x, /[, out, where, casting, order, ...])

Returns an element-wise indication of the sign of a num-
ber.

heaviside(xl, x2, /[, out, where, casting, ...])

Compute the Heaviside step function.

conij(x, /[, out, where, casting, order, ...])

Return the complex conjugate, element-wise.

conjugate(x, /[, out, where, casting, ...])

Return the complex conjugate, element-wise.

exp(X, /[, out, where, casting, order, ...])

Calculate the exponential of all elements in the input ar-
ray.

exp2(x, /[, out, where, casting, order, ...])

Calculate 2**p for all p in the input array.

log(x, /[, out, where, casting, order, ...])

Natural logarithm, element-wise.

log2(x, /[, out, where, casting, order, ...])

Base-2 logarithm of x.

logl0(x, /[, out, where, casting, order, ...])

Return the base 10 logarithm of the input array, element-
wise.

expml(X, /[, out, where, casting, order, ...])

Calculate exp (x) — 1 for all elements in the array.

loglp(x, /[, out, where, casting, order, ...])

Return the natural logarithm of one plus the input array,
element-wise.

sqgrt(x, /[, out, where, casting, order, ...])

Return the non-negative square-root of an array, element-
wise.

square(x, /[, out, where, casting, order, ...])

Return the element-wise square of the input.

cbrt(x, /[, out, where, casting, order, ...])

Return the cube-root of an array, element-wise.

reciprocal(x, /[, out, where, casting, ...])

Return the reciprocal of the argument, element-wise.

gcd(xl, x2, /[, out, where, casting, order, ...])

Returns the greatest common divisor of | x1 | and | %2 |

Icm(x1, x2, /[, out, where, casting, order, ...])

Returns the lowest common multiple of | x1 | and | %2 |

Tip: The optional output arguments can be used to help you save memory for large calculations. If your arrays are large,

536

4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

complicated expressions can take longer than absolutely necessary due to the creation and (later) destruction of temporary
calculation spaces. For example, the expression G = A * B + Cisequivalentto Tl = A * B; G = T1 + C;
del T1. It will be more quickly executedas G = A * B; add(G, C, G) whichisthesameasG = A * B;
G += C.

4.2.2 Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of degrees to radians is 180° /7.

sin(x, /[, out, where, casting, order, ...]) Trigonometric sine, element-wise.

cos(x, /[, out, where, casting, order, ...]) Cosine element-wise.

tan(x, /[, out, where, casting, order, ...]) Compute tangent element-wise.

arcsin(x, /[, out, where, casting, order, ...]) Inverse sine, element-wise.

arccos(x, /[, out, where, casting, order, ...]) Trigonometric inverse cosine, element-wise.

arctan(x, /[, out, where, casting, order, ...]) Trigonometric inverse tangent, element-wise.
arctan2(xl, x2, /[, out, where, casting, ...]) Element-wise arc tangent of x1/x2 choosing the quad-

rant correctly.

hypot(xl, x2, /[, out, where, casting, ...]) Given the "legs” of a right triangle, return its hypotenuse.
sinh(x, /[, out, where, casting, order, ...]) Hyperbolic sine, element-wise.

cosh(x, /[, out, where, casting, order, ...]) Hyperbolic cosine, element-wise.

tanh(x, /[, out, where, casting, order, ...]) Compute hyperbolic tangent element-wise.
arcsinh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic sine element-wise.
arccosh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic cosine, element-wise.
arctanh(Xx, /[, out, where, casting, order, ...]) Inverse hyperbolic tangent element-wise.
degrees(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.
radians(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
deg2rad(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
rad2deg(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.

4.2.3 Bit-twiddling functions

These function all require integer arguments and they manipulate the bit-pattern of those arguments.

bitwise_and(xl, x2, /[, out, where, ...]) Compute the bit-wise AND of two arrays element-wise.

bitwise_or(xl, x2, /[, out, where, casting, ...]) Compute the bit-wise OR of two arrays element-wise.

bitwise_xor(xl, x2,/[, out, where, ...]) Compute the bit-wise XOR of two arrays element-wise.

invert(x, /[, out, where, casting, order, ...]) Compute bit-wise inversion, or bit-wise NOT, element-
wise.

left_shift(xl, x2, /[, out, where, casting, ...]) Shift the bits of an integer to the left.

right_shift(xl, x2, /[, out, where, ...]) Shift the bits of an integer to the right.

4.2. Available ufuncs 537

NumPy Reference, Release 1.23.0

4.2.4 Comparison functions

greater(xl, x2, /[, out, where, casting, ...]) Return the truth value of (x1 > x2) element-wise.
greater_equal(xl, x2, /[, out, where, ...]) Return the truth value of (x1 >= x2) element-wise.
less(xl, x2, /[, out, where, casting, ...]) Return the truth value of (x1 < x2) element-wise.
less_equal(xl, x2, /[, out, where, casting, ...]) Return the truth value of (x1 <= x2) element-wise.
not_equal(xl, x2, /[, out, where, casting, ...]) Return (x1 !=x2) element-wise.

equal(xl, x2, /[, out, where, casting, ...]) Return (x1 == x2) element-wise.

Warning: Do not use the Python keywords and and or to combine logical array expressions. These keywords will
test the truth value of the entire array (not element-by-element as you might expect). Use the bitwise operators & and
| instead.

logical_and(xl,x2, /[, out, where, ...]) Compute the truth value of x1 AND x2 element-wise.
logical_or(xl,x2, /[, out, where, casting, ...]) Compute the truth value of x1 OR x2 element-wise.
logical_xor(xl, x2,/[, out, where, ...]) Compute the truth value of x1 XOR x2, element-wise.
logical_not(x, /[, out, where, casting, ...]) Compute the truth value of NOT x element-wise.

Warning: The bit-wise operators & and | are the proper way to perform element-by-element array comparisons. Be
sure you understand the operator precedence: (a > 2) & (a < 5) isthe proper syntax because a > 2 & a
< 5 will result in an error due to the fact that 2 & a is evaluated first.

maximum(xl, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.

Tip: The Python function max () will find the maximum over a one-dimensional array, but it will do so using a slower
sequence interface. The reduce method of the maximum ufunc is much faster. Also, the max () method will not give
answers you might expect for arrays with greater than one dimension. The reduce method of minimum also allows you
to compute a total minimum over an array.

minimum(xl, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.

Warning: the behavior of maximum (a, b) is different than that of max (a, b). As a ufunc, maximum (a,
b) performs an element-by-element comparison of a and b and chooses each element of the result according to which
element in the two arrays is larger. In contrast, max (a, b) treats the objects a and b as a whole, looks at the
(total) truth value of a > b and uses it to return either a or b (as a whole). A similar difference exists between
minimum(a, b) andmin(a, b).

fmax(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.
fmin(xl, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.

538 4. Universal functions (ufunc)

NumPy Reference, Release 1.23.0

4.2.5 Floating functions

Recall that all of these functions work element-by-element over an array, returning an array output. The description

details only a single operation.

isfinite(x, /[, out, where, casting, order, ...])

Test element-wise for finiteness (not infinity and not Not
a Number).

1sinf(x, /[, out, where, casting, order, ...])

Test element-wise for positive or negative infinity.

1isnan(x, /[, out, where, casting, order, ...])

Test element-wise for NaN and return result as a boolean
array.

1isnat(x, /[, out, where, casting, order, ...])

Test element-wise for NaT (not a time) and return result
as a boolean array.

fabs(x, /[, out, where, casting, order, ...])

Compute the absolute values element-wise.

signbit(x, /[, out, where, casting, order, ...])

Returns element-wise True where signbit is set (less than
Z€ero).

copysign(xl, x2, /[, out, where, casting, ...])

Change the sign of x1 to that of x2, element-wise.

nextafter(xl, x2, /[, out, where, casting, ...])

Return the next floating-point value after x1 towards x2,
element-wise.

spacing(x, /[, out, where, casting, order, ...])

Return the distance between x and the nearest adjacent
number.

modf(x[, outl, out2], / [[, out, where, ...])

Return the fractional and integral parts of an array,
element-wise.

Idexp(x1, x2, /[, out, where, casting, ...])

Returns x1 * 2**x2, element-wise.

frexp(x[, outl, out2], / [[, out, where, ...])

Decompose the elements of x into mantissa and twos ex-
ponent.

fmod(x1, x2, /[, out, where, casting, ...])

Returns the element-wise remainder of division.

floor(x, /[, out, where, casting, order, ...])

Return the floor of the input, element-wise.

ceil(x, /[, out, where, casting, order, ...])

Return the ceiling of the input, element-wise.

t runc(x, /[, out, where, casting, order, ...])

Return the truncated value of the input, element-wise.

4.2. Available ufuncs

539

NumPy Reference, Release 1.23.0

540 4. Universal functions (ufunc)

CHAPTER
FIVE

ROUTINES

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code, which
demonstrates basic usage of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the $doctest_mode mode of IPython, which allows for pasting of multi-line

examples and preserves indentation.

5.1 Array creation routines

See also:

Array creation

5.1.1 From shape or value

empt y(shape[, dtype, order, like])

Return a new array of given shape and type, without ini-
tializing entries.

empty_11ike(prototype[, dtype, order, subok, ...])

Return a new array with the same shape and type as a
given array.

eve(N[, M, k, dtype, order, like])

Return a 2-D array with ones on the diagonal and zeros
elsewhere.

identity(nl[, dtype, like])

Return the identity array.

ones(shape[, dtype, order, like])

Return a new array of given shape and type, filled with
ones.

ones__11ke(al, dtype, order, subok, shape])

Return an array of ones with the same shape and type as
a given array.

zeros(shape[, dtype, order, like])

Return a new array of given shape and type, filled with
Zeros.

zeros_11ike(a[, dtype, order, subok, shape])

Return an array of zeros with the same shape and type as
a given array.

fulI(shape, fill_value[, dtype, order, like])

Return a new array of given shape and type, filled with
Sill_value.

full_11ike(a, fill_value[, dtype, order, ...])

Return a full array with the same shape and type as a given
array.

541

NumPy Reference, Release 1.23.0

numpy . empty (shape, dtype=float, order="C’, *, like=None)

Return a new array of given shape and type, without initializing entries.

Parameters

shape
[int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.
dtype

[data-type, optional] Desired output data-type for the array, e.g, numpy. int 8. Default is
numpy.float64.

order

[{‘C, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.
Returns
out
[ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.
See also:
empty_like

Return an empty array with shape and type of input.
ones

Return a new array setting values to one.
zeros

Return a new array setting values to zero.
full

Return a new array of given shape filled with value.

542 5. Routines

NumPy Reference, Release 1.23.0

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other
hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty ([2, 2])
array ([[—-9.74499359e+001, 6.69583040e-3097,
[2.13182611e-314, 3.06959433e-30911) #uninitialized

>>> np.empty ([2, 2], dtype=int)
array ([[-1073741821, -106794913317,
[496041986, 1924976011) #uninitialized

numpy .empty_like (prototype, dtype=None, order="K’, subok="True, shape=None)

Return a new array with the same shape and type as a given array.

Parameters

prototype

[array_like] The shape and data-type of prototype define these same attributes of the returned
array.

dtype
[data-type, optional] Overrides the data type of the result.
New in version 1.6.0.

order

[{‘C, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F if prototype is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of prototype as closely as possible.

New in version 1.6.0.
subok

[bool, optional.] If True, then the newly created array will use the sub-class type of prototype,
otherwise it will be a base-class array. Defaults to True.

shape

[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns

out

[ndarray] Array of uninitialized (arbitrary) data with the same shape and type as prototype.

See also:

5.1. Array creation routines 543

NumPy Reference, Release 1.23.0

ones_like

Return an array of ones with shape and type of input.
zeros_like

Return an array of zeros with shape and type of input.
full_like

Return a new array with shape of input filled with value.
empty

Return a new uninitialized array.

Notes

This function does not initialize the returned array; to do that use zeros_1ike or ones_11ike instead. It may
be marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,31, [4,5,6]) # a is array-like

>>> np.empty_like (a)

array ([[-1073741821, -1073741821, 3],
[0, 0, -1073741821]11)

>>> a = np.array ([[1., 2., 3.]1,[4.,5.,6.11)

>>> np.empty_like (a)

array ([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+0007,
[4.38791518e-305, -2.00000715e+000, 4.17269252e-309]1)

uninitialized

uninitialized

numpy . eye (N, M=None, k=0, dtype=<class float’>, order="C’, *, like=None)

Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters

N
[int] Number of rows in the output.
M

[int, optional] Number of columns in the output. If None, defaults to N.

[int, optional] Index of the diagonal: O (the default) refers to the main diagonal, a positive value
refers to an upper diagonal, and a negative value to a lower diagonal.

dtype
[data-type, optional] Data-type of the returned array.
order

[{‘C, ‘F’}, optional] Whether the output should be stored in row-major (C-style) or column-
major (Fortran-style) order in memory.

New in version 1.14.0.

544 5. Routines

NumPy Reference, Release 1.23.0

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.
Returns
I
[ndarray of shape (N,M)] An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.
See also:
identity

(almost) equivalent function
diag

diagonal 2-D array from a 1-D array specified by the user.

Examples

>>> np.eye (2, dtype=int)
array ([[1, O],

[0, 111)
>>> np.eye (3, k=1)

array ([[0., 1., 0.1,
[0., 0., 1.1,
(0., 0., 0.10)

numpy . identity (n, dtype=None, *, like=None)
Return the identity array.

The identity array is a square array with ones on the main diagonal.

Parameters

[int] Number of rows (and columns) in z x n output.
dtype

[data-type, optional] Data-type of the output. Defaults to f1oat.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.

5.1. Array creation routines 545

NumPy Reference, Release 1.23.0

Returns

out

[ndarray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity (3)

array ([[1., 0., 0.1,
[0., 1., 0.7,
[0., 0., 1.11)

numpy . ones (shape, dtype=None, order="C’, *, like=None)
Return a new array of given shape and type, filled with ones.

Parameters

shape
[int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.
dtype

[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order

[{‘C’,‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major (C-style)
or column-major (Fortran-style) order in memory.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function___ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[ndarray] Array of ones with the given shape, dtype, and order.
See also:

ones_like

Return an array of ones with shape and type of input.
empty

Return a new uninitialized array.
zeros

Return a new array setting values to zero.

546 5. Routines

NumPy Reference, Release 1.23.0

full

Return a new array of given shape filled with value.

Examples

array ([1.,

>>> np.ones (5)

1., 1., 1., 1.])

array ([1,

>>> np.ones((5,), dtype=int)
1, 1, 1, 11)

array ([[1
[1.

>>> np.ones((2, 1))
-1,
17)

array ([[1.
[1

>>> s = (2,2)

>>> np.ones(s)

;1]
1.

.7

2

11)

numpy .ones_1like (a, dtype=None, order="K’, subok="True, shape=None)

Return an array of ones with the same shape and type as a given array.

Parameters

[array_like] The shape and data-type of a define these same attributes of the returned array.

dtype

[data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order

[{‘C, F, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

New in version 1.6.0.

subok

[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape

Returns

[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.

5.1. Array creation routines 547

NumPy Reference, Release 1.23.0

out

[ndarray] Array of ones with the same shape and type as a.
See also:

empty like

Return an empty array with shape and type of input.
zeros_like

Return an array of zeros with shape and type of input.
full like

Return a new array with shape of input filled with value.
ones

Return a new array setting values to one.

Examples

>>> x np.arange (6)

x.reshape ((2, 3))

>>> x
>>> x
array ([[0, 1, 21,
[3, 4, 5]1)
>>> np.ones_like (x)
array ([[1, 1, 11,
(1, 1, 111)

>>> y = np.arange (3, dtype=float)
>>> y

array ([0., 1., 2.1)

>>> np.ones_like (y)

array ([1., 1., 1.1)

numpy . zeros (shape, dtype=float, order="C’, *, like=None)

Return a new array of given shape and type, filled with zeros.

Parameters

shape
[int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.
dtype

[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order

[{C, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

like

548 5. Routines

NumPy Reference, Release 1.23.0

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function___ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[ndarray] Array of zeros with the given shape, dtype, and order.
See also:

zeros_like
Return an array of zeros with shape and type of input.
empty
Return a new uninitialized array.
ones
Return a new array setting values to one.
full

Return a new array of given shape filled with value.

Examples

>>> np.zeros (5)
array ([0., 0., 0., 0., 0.1)

>>> np.zeros((5,), dtype=int)
array ([0, 0, 0, 0, 07])

>>> np.zeros ((2, 1))

array ([[0.1,
[0.11)
>>> 5 = (2,2)
>>> np.zeros(s)
array ([[O., 0.1,
[0., 0.1D)
>>> np.zeros((2,), dtype=[('x", '"i4'), ('y', 'i4')]1) # custom dtype

array ([(0, 0), (0, 0)1,
dtype=[("'x", '<id4'"), ('y', '<i4")1])

numpy . zeros_1like (a, dtype=None, order="K’, subok="True, shape=None)

Return an array of zeros with the same shape and type as a given array.

Parameters

5.1. Array creation routines 549

NumPy Reference, Release 1.23.0

a
[array_like] The shape and data-type of a define these same attributes of the returned array.
dtype
[data-type, optional] Overrides the data type of the result.
New in version 1.6.0.
order
[{‘C, ‘F, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.
New in version 1.6.0.
subok
[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.
shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.
New in version 1.17.0.
Returns
out
[ndarray] Array of zeros with the same shape and type as a.
See also:
empty like

Return an empty array with shape and type of input.
ones_like

Return an array of ones with shape and type of input.
full_ like

Return a new array with shape of input filled with value.
zeros

Return a new array setting values to zero.

550 5. Routines

NumPy Reference, Release 1.23.0

Examples

>>> x = np.arange (6)

>>> x = x.reshape ((2, 3))
>>> x

array ([[0, 1, 21,
[3, 4, 511)

>>> np.zeros_like (x)

array([[0, O, O],
[0, 0, 011

>>> y = np.arange (3, dtype=float)
>>> y

array ([0., 1., 2.1)

>>> np.zeros_like (y)

array ([0., 0., 0.1)

numpy . £ull (shape, fill_value, dtype=None, order="C’, *, like=None)
Return a new array of given shape and type, filled with fill_value.

Parameters

shape
[int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.
fill_value
[scalar or array_like] Fill value.
dtype
[data-type, optional]
The desired data-type for the array The default, None, means
np.array (fill_value) .dtype.
order

[{‘C’, ‘F’}, optional] Whether to store multidimensional data in C- or Fortran-contiguous (row-
or column-wise) order in memory.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[ndarray] Array of fill_value with the given shape, dtype, and order.

See also:

5.1. Array creation routines 551

NumPy Reference, Release 1.23.0

numpy . full_1like (q, fill_value, dtype=None, order="K’, subok="True, shape=None)

full_like
Return a new array with shape of input filled with value.
empty
Return a new uninitialized array.
ones
Return a new array setting values to one.
zeros

Return a new array setting values to zero.

Examples

>>> np.full((2, 2), np.inf)
array ([[inf, inf],

[inf, inf]])
>>> np.full((2, 2), 10)
array ([[10, 107,

[10, 1011)

>>> np.full((2, 2), [1, 21])
array ([[1, 21,
(1, 211

Return a full array with the same shape and type as a given array.

Parameters

[array_like] The shape and data-type of a define these same attributes of the returned array.

fill_value
[array_like] Fill value.
dtype

[data-type, optional] Overrides the data type of the result.

order

[{‘C, ‘F, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the

layout of a as closely as possible.

subok

[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise

it will be a base-class array. Defaults to True.

shape

[int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.

552

5. Routines

NumPy Reference, Release 1.23.0

Returns

out

[ndarray] Array of fill_value with the same shape and type as a.
See also:

empty like

Return an empty array with shape and type of input.
ones_like

Return an array of ones with shape and type of input.
zeros_like

Return an array of zeros with shape and type of input.
full

Return a new array of given shape filled with value.

Examples

>>> x = np.arange (6, dtype=int)

>>> np.full_like(x, 1)

array ([1, 1, 1, 1, 1, 11)

>>> np.full_like(x, 0.1)

array ([0, O, O, 0, 0, 0])

>>> np.full_like(x, 0.1, dtype=np.double)
array([(0.1, 0.1, 0.1, 0.1, 0.1, 0.11)

>>> np.full_like(x, np.nan, dtype=np.double)
array ([nan, nan, nan, nan, nan, nanj)

>>> y = np.arange (6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.11])

>>> y = np.zeros([2, 2, 3], dtype=int)
>>> np.full_like(y, [0, 0, 255])

array ([[[O, 0, 255],
[0, 0, 25511,

[r o, 0, 2557,
[0, 0, 255111)

5.1. Array creation routines 553

NumPy Reference, Release 1.23.0

5.1.2 From existing data

array(object[, dtype, copy, order, subok, ...]) Create an array.

asarray(al, dtype, order, like]) Convert the input to an array.

asanyarray(al, dtype, order, like]) Convert the input to an ndarray, but pass ndarray sub-
classes through.

ascontiguousarray(al, dtype, like]) Return a contiguous array (ndim >= 1) in memory (C or-
der).

asmat rix(data[, dtype]) Interpret the input as a matrix.

copy(al, order, subok]) Return an array copy of the given object.

frombuf fer(buffer[, dtype, count, offset, like]) Interpret a buffer as a 1-dimensional array.

from _dlpack(x,/) Create a NumPy array from an object implementing the
__dlpack__ protocol.

fromfile(file[, dtype, count, sep, offset, like]) Construct an array from data in a text or binary file.

fromfunction(function, shape, *[, dtype, like]) Construct an array by executing a function over each co-
ordinate.

fromiter(iter, dtype[, count, like]) Create a new 1-dimensional array from an iterable object.

fromstring(string[, dtype, count, like]) A new 1-D array initialized from text data in a string.

loadtxt(fnamel, dtype, comments, delimiter, ...]) Load data from a text file.

numpy . array (object, dtype=None, *, copy=True, order="K’, subok=False, ndmin=0, like=None)
Create an array.

Parameters

object

[array_like] An array, any object exposing the array interface, an object whose __array_
method returns an array, or any (nested) sequence. If object is a scalar, a O-dimensional array
containing object is returned.

dtype

[data-type, optional] The desired data-type for the array. If not given, then the type will be
determined as the minimum type required to hold the objects in the sequence.

copy

[bool, optional] If true (default), then the object is copied. Otherwise, a copy will only be made
if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of
the other requirements (dt ype, order, etc.).

order

[{K’, ‘A’, “C, ‘F’}, optional] Specify the memory layout of the array. If object is not an array,
the newly created array will be in C order (row major) unless ‘F’ is specified, in which case it
will be in Fortran order (column major). If object is an array the following holds.

order | no copy copy=True

K’ unchanged | F & C order preserved, otherwise most similar order
‘A unchanged | F order if input is F and not C, otherwise C order
‘C C order C order

‘P F order F order

When copy=False and a copy is made for other reasons, the result is the same as if
copy=True, with some exceptions for ‘A’, see the Notes section. The default order is ‘K.

554 5. Routines

NumPy Reference, Release 1.23.0

subok

[bool, optional] If True, then sub-classes will be passed-through, otherwise the returned array
will be forced to be a base-class array (default).

ndmin

[int, optional] Specifies the minimum number of dimensions that the resulting array should
have. Ones will be prepended to the shape as needed to meet this requirement.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[ndarray] An array object satisfying the specified requirements.
See also:

empty_like

Return an empty array with shape and type of input.
ones_like

Return an array of ones with shape and type of input.
zeros_like

Return an array of zeros with shape and type of input.
full_like

Return a new array with shape of input filled with value.
empty

Return a new uninitialized array.
ones

Return a new array setting values to one.
zeros

Return a new array setting values to zero.
full

Return a new array of given shape filled with value.

5.1. Array creation routines

555

NumPy Reference, Release 1.23.0

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype,

then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

>>> np.array([1, 2, 3])
array ([1, 2, 31)

Upcasting:

>>> np.array([1, 2, 3.01])
array ([1., 2., 3.1)

More than one dimension:

>>> np.array ([[1, 21, [3, 411)
array ([[1, 21,
[3, 411)

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array ([[1, 2, 311])

Type provided:

>>> np.array([1l, 2, 3], dtype=complex)
array ([1.+0.3, 2.40.3, 3.+0.31)

Data-type consisting of more than one element:

>>> x = np.array ([(1,2),(3,4)],dtype=[("'a','<id"), ('b","'<id")])
>>> x['a']

array ([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat ('1 2; 3 4"))
array ([[1, 2],
[3, 411)

>>> np.array(np.mat ('l 2; 3 4"), subok=True)
matrix ([[1, 27,
(3, 411)

numpy .asarray (a, dtype=None, order=None, *, like=None)

Convert the input to an array.

Parameters

[array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

556 5. Routines

https://docs.python.org/3/library/functions.html#object

NumPy Reference, Release 1.23.0

dtype
[data-type, optional] By default, the data-type is inferred from the input data.
order

[{‘C, ‘F’, ‘A’, ‘K’}, optional] Memory layout. ‘A’ and ‘K’ depend on the order of input array

a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any)

means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function___ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out
[ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray
with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

See also:

asanyarray
Similar function which passes through subclasses.
ascontiguousarray
Convert input to a contiguous array.
asfarray
Convert input to a floating point ndarray.
asfortranarray
Convert input to an ndarray with column-major memory order.
asarray_chkfinite
Similar function which checks input for NaNs and Infs.
fromiter
Create an array from an iterator.
fromfunction

Construct an array by executing a function on grid positions.

5.1. Array creation routines 557

NumPy Reference, Release 1.23.0

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray (a)
array ([1, 21])

Existing arrays are not copied:

>>> a = np.array([1l, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1l, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True

>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass (np.recarray, np.ndarray)

True

>>> a = np.array ([(1.0, 2), (3.0, 4)], dtype='f4,i4") .view(np.recarray)
>>> np.asarray(a) is a

False

>>> np.asanyarray(a) is a

True

numpy . asanyarray (a, dtype=None, order=None, *, like=None)
Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters

[array_like] Input data, in any form that can be converted to an array. This includes scalars,
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype
[data-type, optional] By default, the data-type is inferred from the input data.
order

[{‘C, ‘F’, ‘A’, ’K’}, optional] Memory layout. ‘A’ and ‘K’ depend on the order of input array
a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any)
means ‘F if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to
‘C.

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.

558 5. Routines

NumPy Reference, Release 1.23.0

Returns

out
[ndarray or an ndarray subclass] Array interpretation of a. If a is an ndarray or a subclass of
ndarrays, it is returned as-is and no copy is performed.

See also:

asarray

Similar function which always returns ndarrays.
ascontiguousarray

Convert input to a contiguous array.
asfarray

Convert input to a floating point ndarray.
asfortranarray

Convert input to an ndarray with column-major memory order.
asarray_chkfinite

Similar function which checks input for NaNs and Infs.
fromiter

Create an array from an iterator.
fromfunction

Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray (a)
array ([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.array ([(1.0, 2), (3.
>>> np.asanyarray(a) is a

True

0, 4)], dtype='f4,1i4") .view (np.recarray)

numpy . ascontiguousarray (a, dtype=None, *, like=None)
Return a contiguous array (ndim >= 1) in memory (C order).

Parameters

[array_like] Input array.
dtype

[str or dtype object, optional] Data-type of returned array.

5.1. Array creation routines

559

NumPy Reference, Release 1.23.0

like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[ndarray] Contiguous array of same shape and content as a, with type dt ype if specified.
See also:

asfortranarray

Convert input to an ndarray with column-major memory order.
require

Return an ndarray that satisfies requirements.
ndarray.flags

Information about the memory layout of the array.

Examples

>>> x = np.arange (6) .reshape (2, 3)
>>> np.ascontiguousarray (x, dtype=np.float32)
array ([[0., 1., 2.1,
[3., 4., 5.]1], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True

Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays.

numpy . copy (a, order="K’, subok=False)

Return an array copy of the given object.

Parameters

[array_like] Input data.
order

[{‘C, F, ‘A’, K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible. (Note that this function and ndarray.copy are very
similar, but have different default values for their order= arguments.)

subok

[bool, optional] If True, then sub-classes will be passed-through, otherwise the returned array
will be forced to be a base-class array (defaults to False).

560 5. Routines

NumPy Reference, Release 1.23.0

New in version 1.19.0.
Returns

arr

[ndarray] Array interpretation of a.
See also:
ndarray.copy
Preferred method for creating an array copy
Notes

This is equivalent to:

>>> np.array(a, copy=True)

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = x
>>> 7z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10

>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

Note that, np.copy clears previously set WRITEABLE=False flag.

>>> a = np.array([1, 2, 31)

>>> a.flags["WRITEABLE"] = False
>>> b = np.copy(a)

>>> pb.flags["WRITEABLE"]

True

>>> b[0] = 3

>>> b

array ([3, 2, 31)

Note that np.copy is a shallow copy and will not copy object elements within arrays. This is mainly important for
arrays containing Python objects. The new array will contain the same object which may lead to surprises if that
object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = np.copy (a)

>>> pb[2][0] = 10

>>> a

array ([1, 'm', 1list([10, 3, 4]1)]1, dtype=object)

5.1. Array creation routines 561

NumPy Reference, Release 1.23.0

To ensure all elements within an object array are copied, use copy . deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)

>>> c = copy.deepcopy (a)

>>> c[2][0] = 10

>>> ¢

array([1, 'm', 1list([10, 3, 4]1)]1, dtype=object)
>>> 3

array([1, 'm', list([2, 3, 4])]1, dtype=object)

numpy . fErombuf fer (buffer, dtype=float, count=- 1, offset=0, *, like=None)

Interpret a buffer as a 1-dimensional array.

Parameters

buffer

[buffer_like] An object that exposes the buffer interface.
dtype

[data-type, optional] Data-type of the returned array; default: float.
count

[int, optional] Number of items to read. —1 means all data in the buffer.
offset

[int, optional] Start reading the buffer from this offset (in bytes); default: 0.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as 1ike supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.

New in version 1.20.0.
Returns

out

[ndarray]

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype (int)
>>> dt = dt.newbyteorder('>")
>>> np.frombuffer (buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

This function creates a view into the original object. This should be safe in general, but it may make sense to copy
the result when the original object is mutable or untrusted.

562

5. Routines

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.23.0

Examples

>>> s = b'hello world'
>>> np.frombuffer (s, dtype='Sl', count=5, offset=6)
array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1l'")

>>> np.frombuffer (b'\x01\x02', dtype=np.uint8)

array ([1, 2], dtype=uint8)

>>> np.frombuffer (b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array ([1, 2, 3], dtype=uints8)

numpy . from_dlpack (x, /)

Create a NumPy array from an object implementing the __dlpack___ protocol. Generally, the returned NumPy
array is a read-only view of the input object. See [1] and [2] for more details.

Parameters

[object] A Python object that implements the __dlpack__ and __dlpack_device_
methods.

Returns
out
[ndarray]

References

(11, [2]

Examples

>>> import torch
>>> x = torch.arange (10)

" n

>>> # create a view of the torch tensor
>>> y = np.from_dlpack (x)

x" in NumPy

numpy . fEromfile (file, dtype=float, count=- 1, sep=", offset=0, *, like=None)

Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text files.
Data written using the fofile method can be read using this function.

Parameters

file
[file or str or Path] Open file object or filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

5.1. Array creation routines 563

https://docs.python.org/3/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.23.0

dtype

[data-type] Data type of the returned array. For binary files, it is used to determine the size
and byte-order of the items in the file. Most builtin numeric types are supported and extension
types may be supported.

New in version 1.18.0: Complex dtypes.
count

[int] Number of items to read. —1 means all items (i.e., the complete file).
sep

730)

[str] Separator between items if file is a text file. Empty (“”) separator means the file should
be treated as binary. Spaces (” “) in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one whitespace.

offset

[int] The offset (in bytes) from the file’s current position. Defaults to 0. Only permitted for
binary files.

New in version 1.17.0.
like

[array_like, optional] Reference object to allow the creation of arrays which a