# Machine translation



Prof Dr Marko Robnik-Šikonja Natural Language Processing, Edition 2024

## Contents

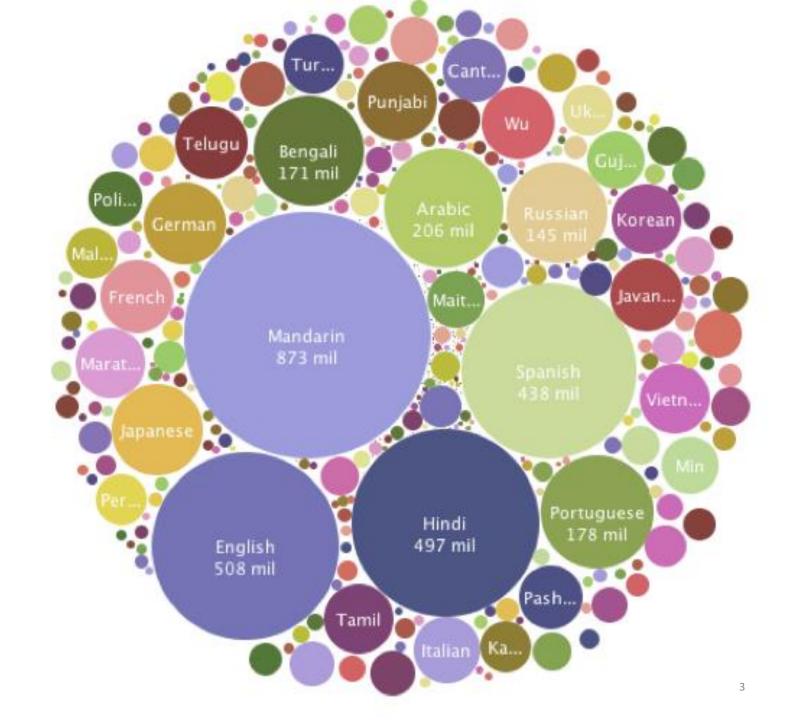
- statistical machine translation
- neural machine translation using sequence to sequence approach

Literature:

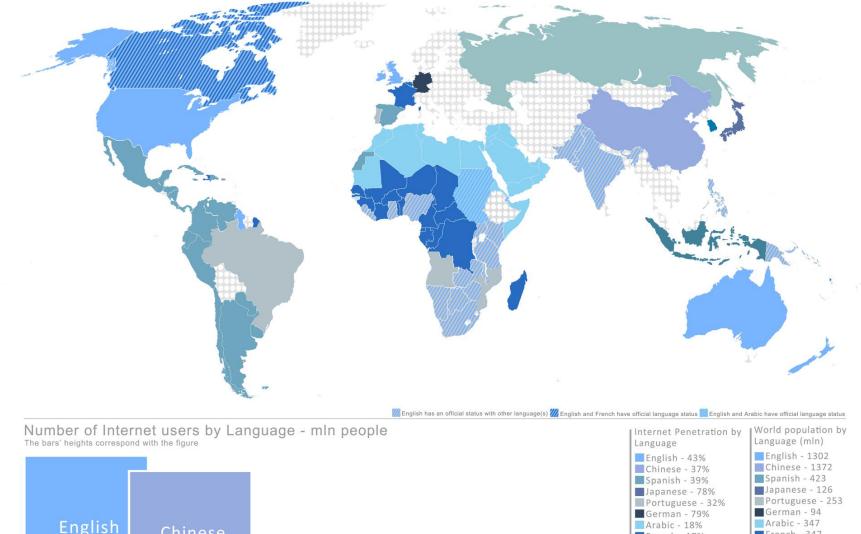
• Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft)

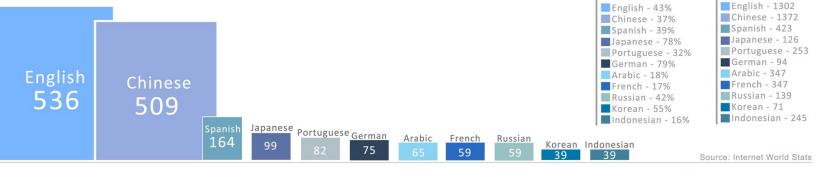
# Word languages

Currently 6909 languages, 6% with more than one million speakers, together they cover 94% of world population.



#### Top Languages on the Internet

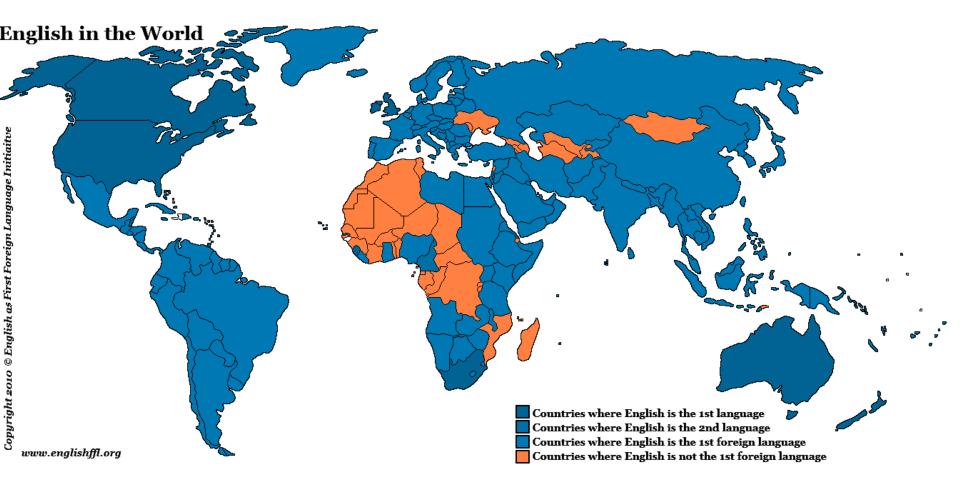




language

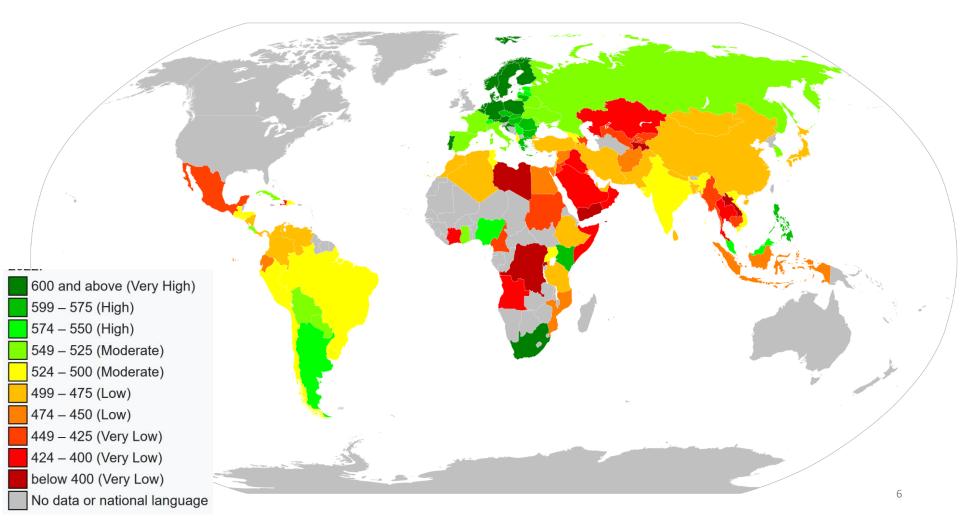
connect

## English as lingua franca?



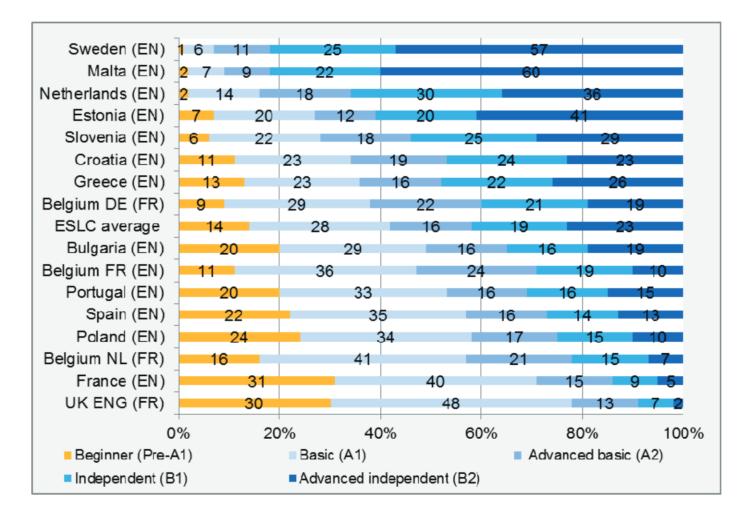
# Global English proficiency index

English proficiency in the world in 2022, 2.1 million self-selected respondents



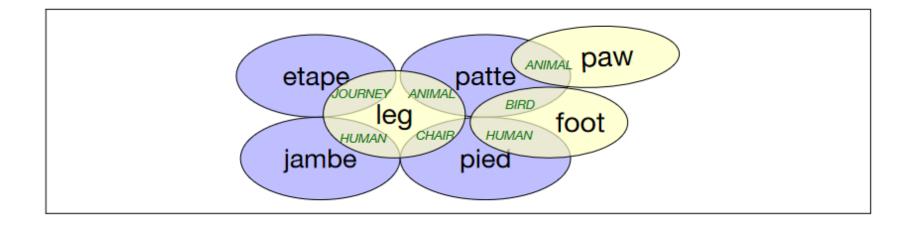
## Language proficiency

• EU survey among pupils aged around 15, altogether 54,000 reponents



# Lexical divergency

 Different languages have different definition of certain concepts



 The complex overlap between English leg, foot, etc., and various French translations as discussed by Hutchins and Somers (1992)

# Statistical machine translation (SMT)

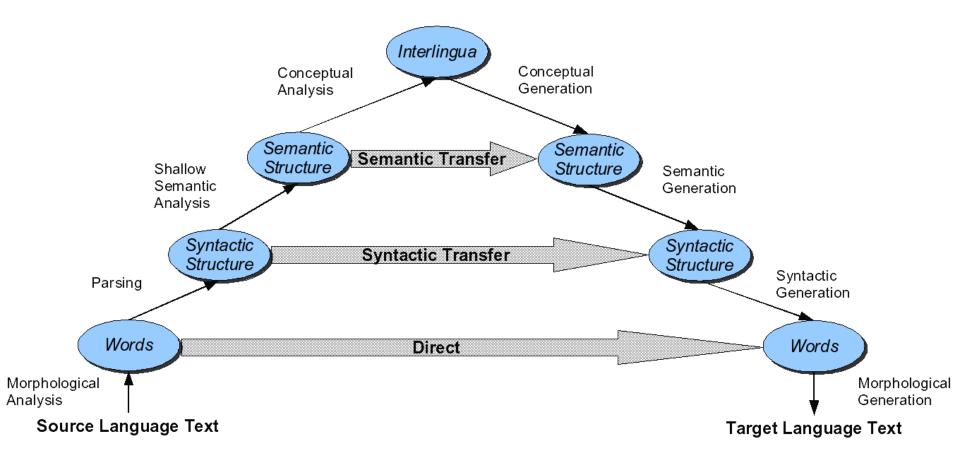
- The intuition for Statistical MT comes from the **impossibility** of perfect translation
- Why perfect translation is impossible
  - -Goal: Translating Hebrew adonai roi ("the lord is my shepherd") for a culture without sheep or shepherds
- Two options:
  - -Something fluent and understandable, but not faithful: The Lord will look after me
  - -Something **faithful**, but not fluent or natural

The Lord is for me like somebody who looks after animals with cotton-like hair

# A good translation is:

- Faithful
  - -Has the same meaning as the source
  - -(Causes the reader to draw the same inferences as the source would have)
- Fluent
  - -Is natural, fluent, grammatical in the target
- Real translations trade off these two factors

# Three MT Approaches: Direct, Transfer, Interlingual



## Machine translation as decoding

 Norbert Wiener (1947, in a letter): ... When I look at an article in Russian, I say, "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode." ...

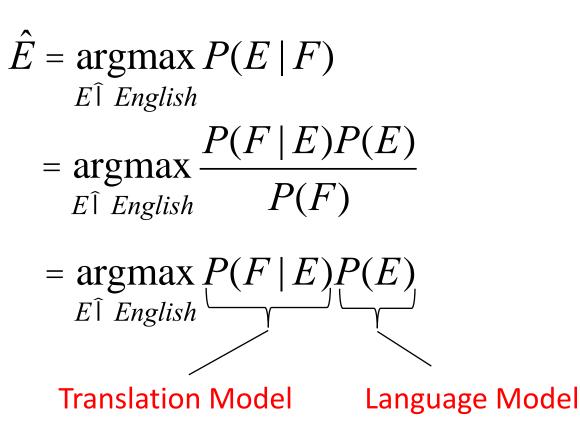
# Classical statistical machine translation

- word-based models
- phrase-based models
- tree based models
- factored models

# Statistical MT: Faithfulness and Fluency formalized

Peter Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19:2, 263-311. **"The IBM Models"** 

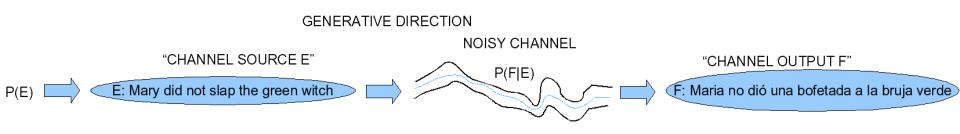
Given a French (foreign) sentence F, find an English sentence



## **Convention in Statistical MT**

- We always refer to translating
  - from input F, the foreign language (originally F = French)
    to output E, English.
- Obviously statistical MT can translate from English into another language or between any pair of languages
- The convention helps avoid confusion about which way the probabilities are conditioned for a given example

## The noisy channel model for MT



# Fluency: P(E)

- We need a metric that ranks this sentence That car almost crash to me
- as less fluent than this one:

That car almost hit me.

- Answer: language models (e.g., N-grams)
   P(me|hit) > P(to|crash)
  - And we can use any other more sophisticated model of grammar
- Advantage: this is monolingual knowledge!

# Faithfulness: P(F|E)

- Spanish:
  - Maria no dió una bofetada a la bruja verde
- English candidate translations:
  - Mary didn't slap the green witch
  - Mary not give a slap to the witch green
  - The green witch didn't slap Mary
  - Mary slapped the green witch
- More faithful translations will be composed of phrases that are high probability translations
  - How often was "slapped" translated as "dió una bofetada" in a large bitext (parallel English-Spanish corpus)
  - in classical MT, we'll need to align phrases and words to each other in bitext

# We treat Faithfulness and Fluency as independent factors

- P(F|E)'s job is to model "bag of words"; which words come from English to Spanish.
  - P(F|E) doesn't have to worry about internal facts about English word order.
- P(E)'s job is to do bag generation: put the following words in order:

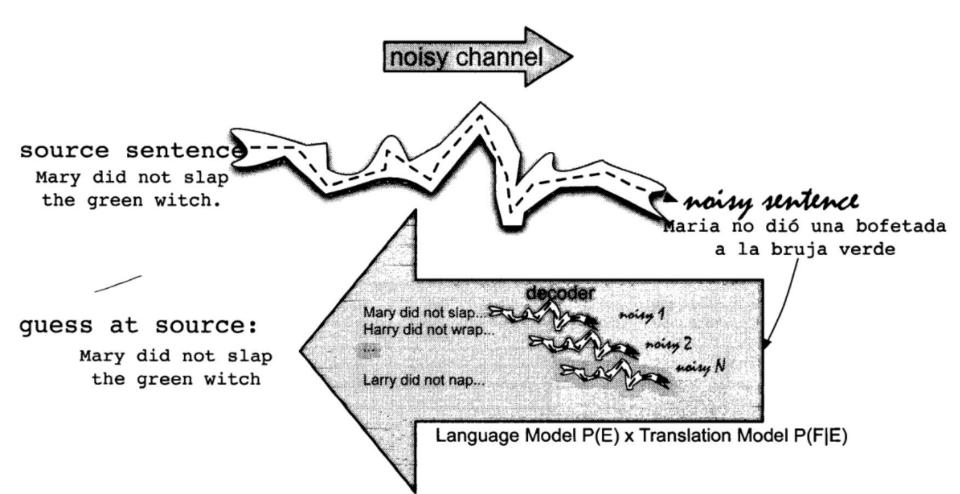
- a ground there in the hobbit hole lived a in

## **Three Problems for Statistical MT**

- Language Model: given E, compute P(E) good English string → high P(E) random word sequence → low P(E)
- Translation Model: given (F,E) compute P(F | E) (F,E) look like translations → high P(F | E) (F,E) don't look like translations → low P(F | E)
- Decoding algorithm: given LM, TM, F, find Ê Find translation E that maximizes P(E) \* P(F | E)

## Noisy channel model

inference goes backwards



# Parallel corpora

- EuroParl: <u>http://www.statmt.org/europarl/</u>
  - A parallel corpus extracted from proceedings of the European Parliament.
  - Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. MT Summit
  - around 50 million words per EU language
    - Danish, Dutch, English, Finnish, French, German, Greek, Italian, Portuguese, Spanish, Swedish, Bulgarian, Czech, Estonian, Hungarian, Latvian, Lithuanian, Polish, Romanian, Slovak, and Slovene
- LDC: <u>http://www.ldc.upenn.edu/</u>
  - Large amounts of parallel English-Chinese and English-Arabic text
- Subtitles
- OPUS website

# Sentence alignment

| E1: "Good morning," said the little prince.                                             | F1: -Bonjour, dit le petit prince.                                                                                                  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| E2: "Good morning," said the merchant.                                                  | F2: -Bonjour, dit le marchand de pilules perfectionnées qui apaisent la soif.                                                       |
| E3: This was a merchant who sold pills that had<br>been perfected to quench thirst.     | F3: On en avale une par semaine et l'on n'éprouve plus le besoin de boire.                                                          |
| E4: You just swallow one pill a week and you won't feel the need for anything to drink. | F4: -C'est une grosse économie de temps, dit le marchand.                                                                           |
| E5: "They save a huge amount of time," said the merchant.                               | F5: Les experts ont fait des calculs.                                                                                               |
| E6: "Fifty–three minutes a week."                                                       | F6: On épargne cinquante-trois minutes par semaine.                                                                                 |
|                                                                                         |                                                                                                                                     |
| E7: "If I had fifty–three minutes to spend?" said the little prince to himself.         | F7: "Moi, se dit le petit prince, si j'avais cinquante-trois minutes<br>à dépenser, je marcherais tout doucement vers une fontaine" |
| E8: "I would take a stroll to a spring of fresh water"                                  |                                                                                                                                     |

Sentence alignment takes sentences
 E<sub>1</sub>, ..., E<sub>n</sub>, and F<sub>1</sub>, ..., F<sub>n</sub> and finds minimal sets of sentences that

are translations of each other, including

- single sentence mappings like  $(E_1, F_1)$ ,  $(E_4, F_3)$ ,  $(E_5, F_4)$ ,  $(E_6, F_6)$
- many-to-one (2-1) alignments: (E<sub>2</sub>/E<sub>3</sub>, F<sub>2</sub>), (E<sub>7</sub>/E<sub>8</sub>, F<sub>7</sub>),
- null alignments (F<sub>5</sub>).

# Alignment procedure 1/2

- compute cost function that takes a span of source sentences and a span of target sentences and returns a score measuring how likely these spans are to be translations
- for that we use multilingual embedding space of both languages

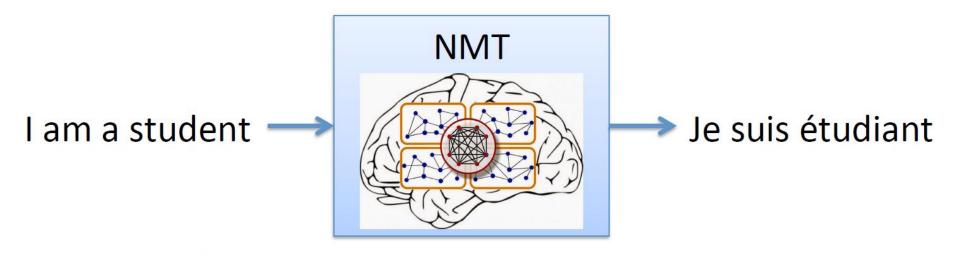
$$c(x,y) = \frac{(1 - \cos(x,y)) \text{nSents}(x) \text{ nSents}(y)}{\sum_{s=1}^{S} 1 - \cos(x,y_s) + \sum_{s=1}^{S} 1 - \cos(x_s,y)}$$

- where nSents() is the number of sentences (biases toward many alignments of single sentences instead of aligning very large spans).
- the denominator helps to normalize the similarities, so x<sub>1</sub>, ..., x<sub>s</sub>, y<sub>1</sub>, ..., y<sub>s</sub> are randomly selected sentences sampled from the respective documents.

# Alignment procedure 1/2

- an alignment algorithm that takes the alignment scores to find a good alignment between the documents
- Usually dynamic programming is used as the alignment algorithm, i.e. an extension of the minimum edit distance algorithm
- Finally, corpus cleanup:
  - remove noisy sentence pairs, e.g., too long or too short sentences,
  - too similar sentences (just copies instead of translations),
  - rank by the multilingual embedding cosine score and remove lowscoring pairs

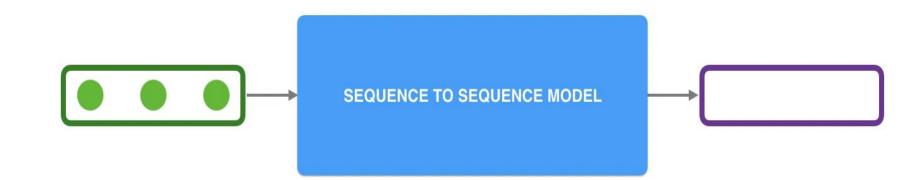
# Neural machine translation (NMT)



(Sutskever et al., 2014; Cho et al., 2014)

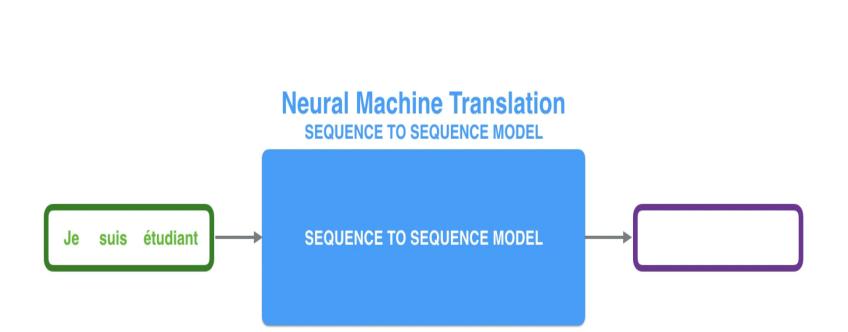
- direct translation based on sequences
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves *two* networks.

## Seq2Seq model

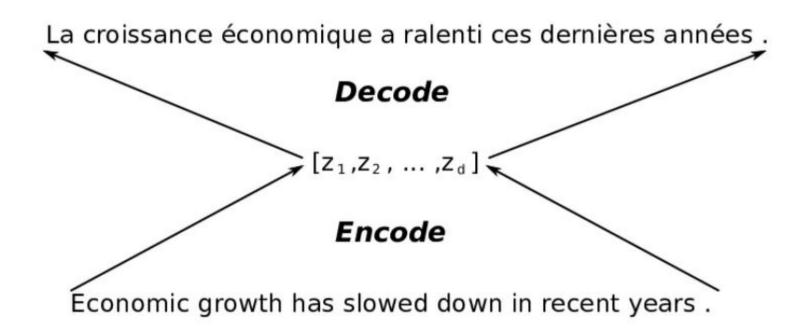


Videos by Jay Alammar: <u>Visualizing A Neural Machine Translation Model</u> (Mechanics of Seq2seq Models With Attention), 2018

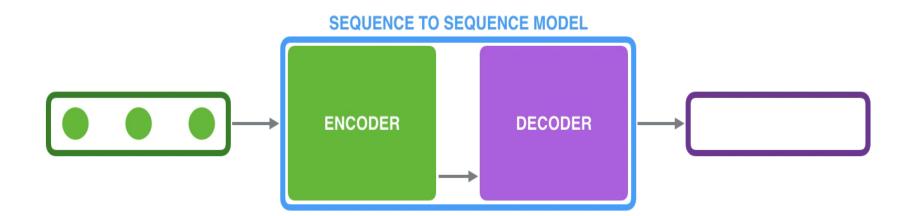
## Seq2Seq for NMT



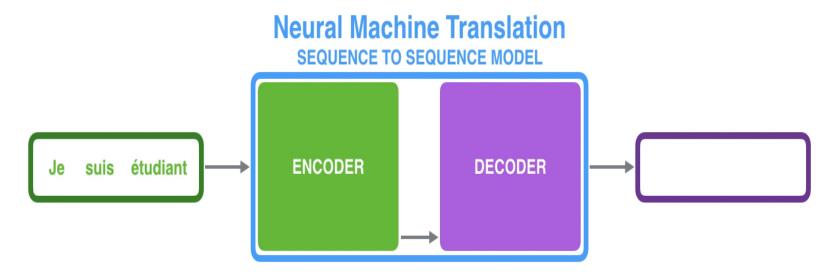
## **Encoder-Decoder Model**



## Encoder-decoder for sequences



## Encoder-decoder for NMT



|         | 0.11  | 0.11  |
|---------|-------|-------|
| CONTEXT | 0.03  | 0.03  |
| FEXT    | 0.81  | 0.81  |
|         | -0.62 | -0.62 |

# Seq2seq NMT

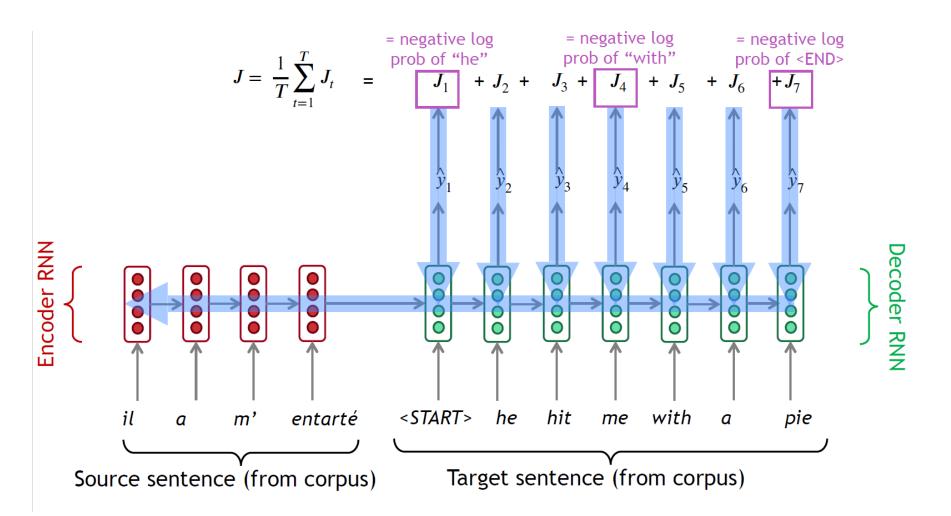
- The sequence-to-sequence model is an example of a **Conditional Language Model**.
  - Language Model because the decoder is predicting the next word of the target sentence y
  - Conditional because its predictions are also conditioned on the source sentence x
- NMT directly calculates P(y|x) :

 $P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$ 

Probability of next target word, given target words so far and source sentence x

- **<u>Question</u>**: How to train a NMT system?
- Answer: Get a big parallel corpus...

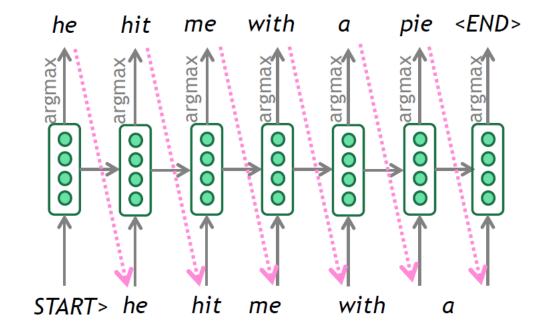
# **Training NMT**



Seq2seq is optimized as a single system. Backpropagation operates "*end-to-end*".

# Decoding

- We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder
- This is greedy decoding (take most probable word on each step)
- Problems with this method?

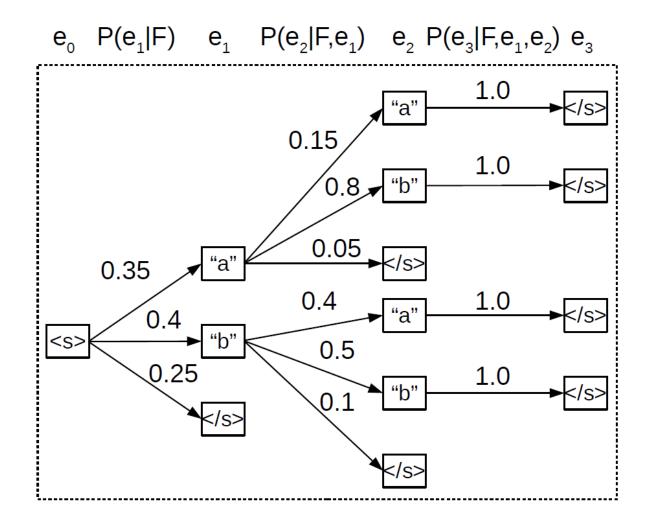


# Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
- Input: *il a m'entarté (he hit me with a pie)*
- → he \_\_\_\_
- $\rightarrow$  he hit \_\_\_\_
- → *he hit a* \_\_\_\_\_ (whoops! no going back now...)
- How to fix this?

# Greedy prediction

• Example: greedy 1-best does not return the most probable sequence



#### Exhaustive search

 Ideally we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$
$$= \prod_{t=1}^T P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
- This means that on each step t of the decoder, we're tracking Vt possible partial translations, where V is vocab size
- This O(VT) complexity is far too expensive!

#### Beam search decoding

- Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
- *k* is the beam size (in practice around 5 to 10)
- A hypothesis has a score which is its log probability:

score
$$(y_1, \dots, y_t) = \log P_{LM}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, \dots, y_{i-1}, x)$$

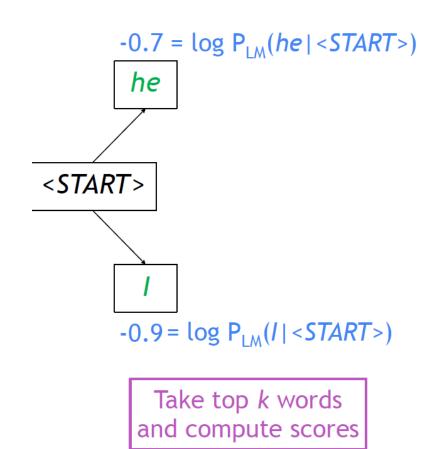
- Scores are all negative, and higher score is better
- We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 

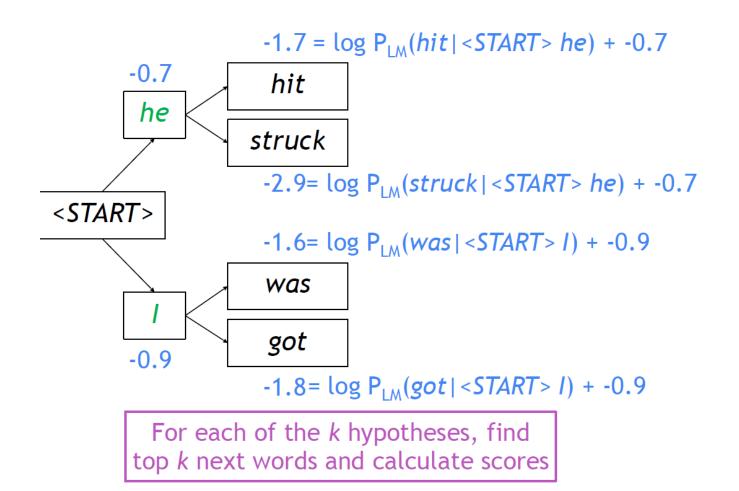
<START>

Calculate prob dist of next word

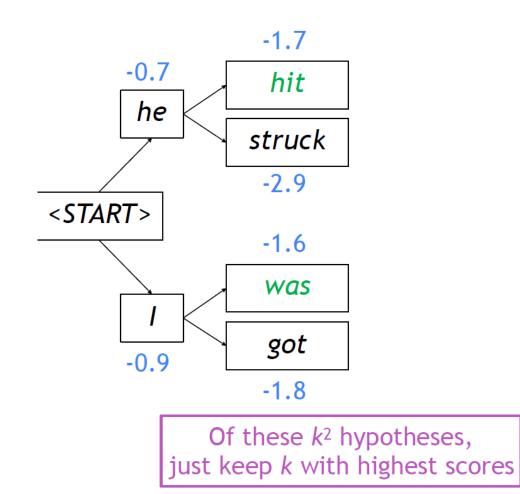
Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



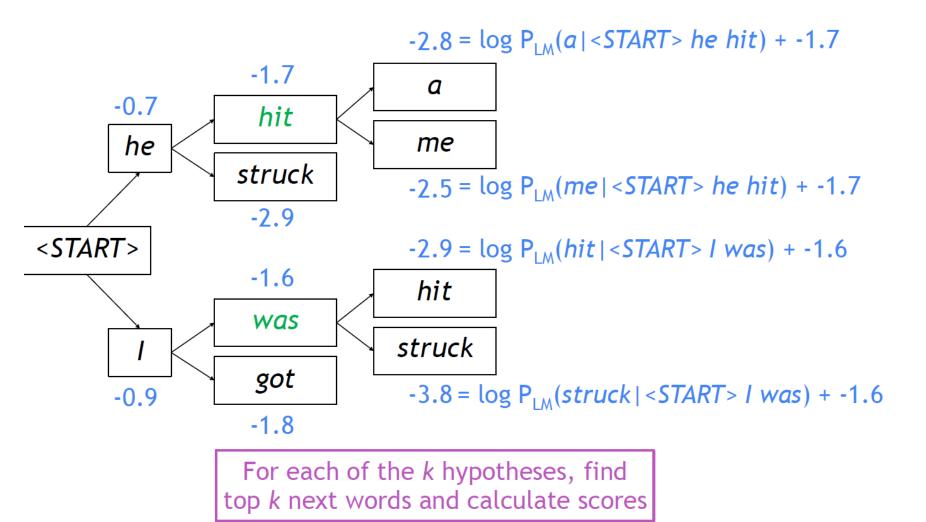
Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



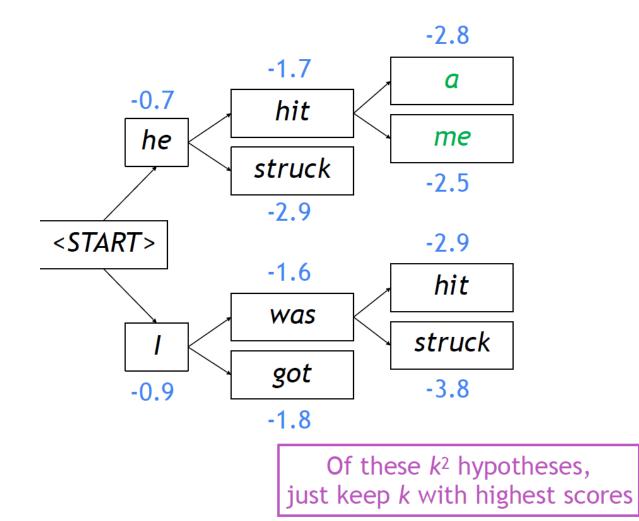
Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^{n} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



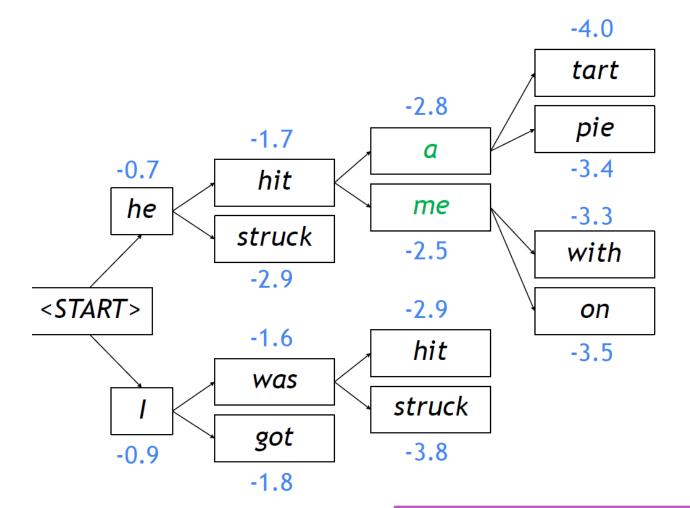
Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 

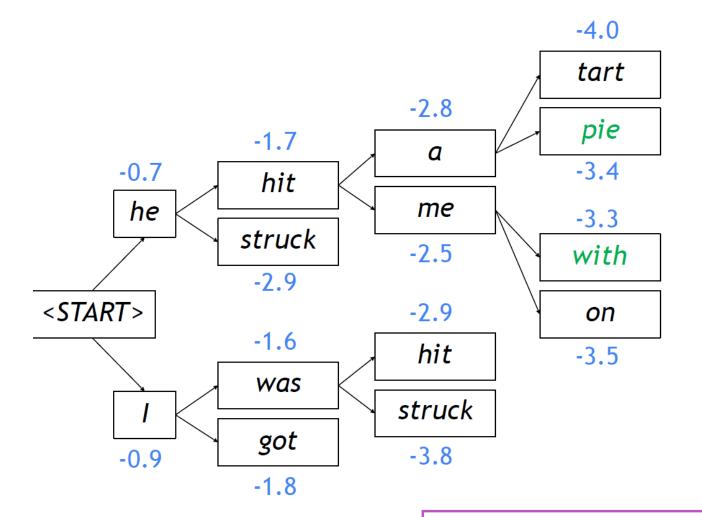


Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



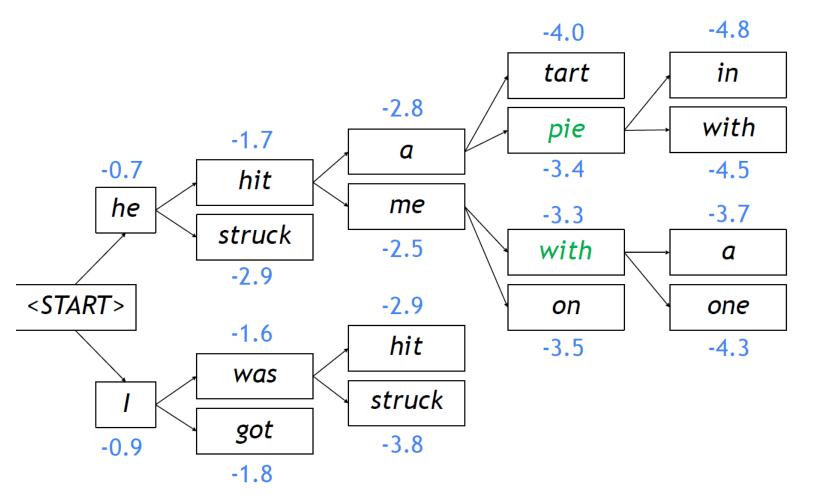
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



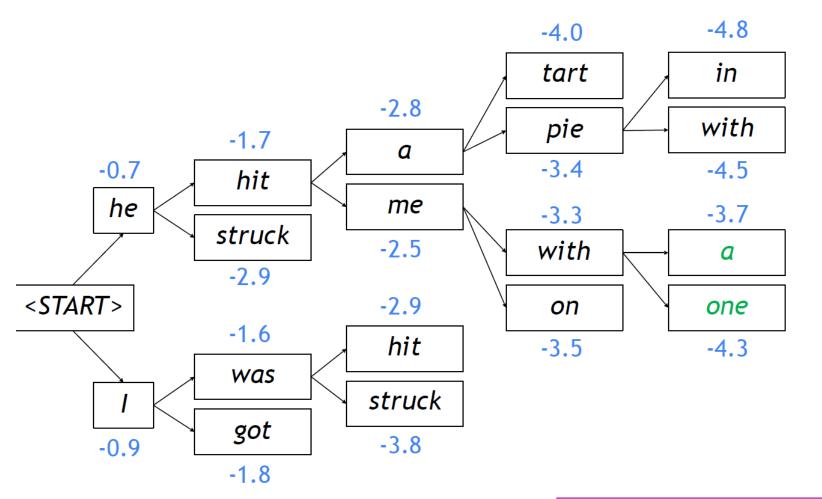
Of these  $k^2$  hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



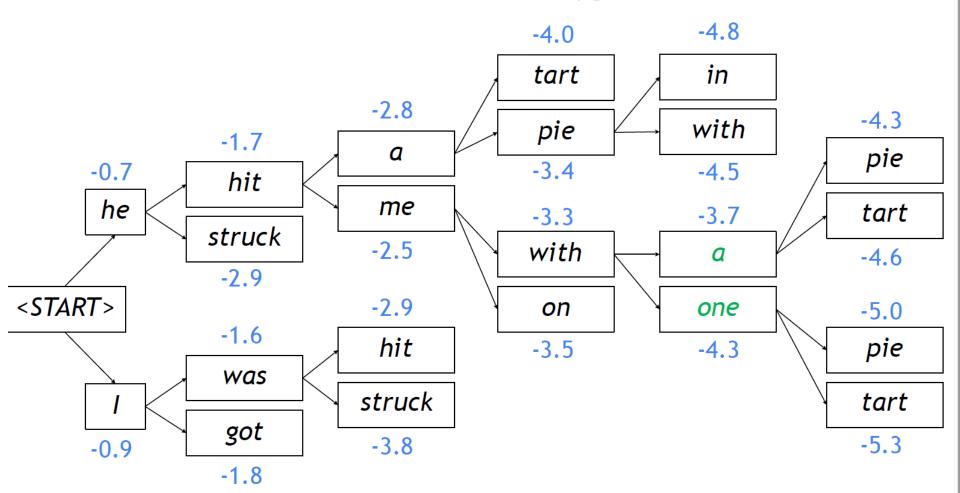
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



Of these k<sup>2</sup> hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^t \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



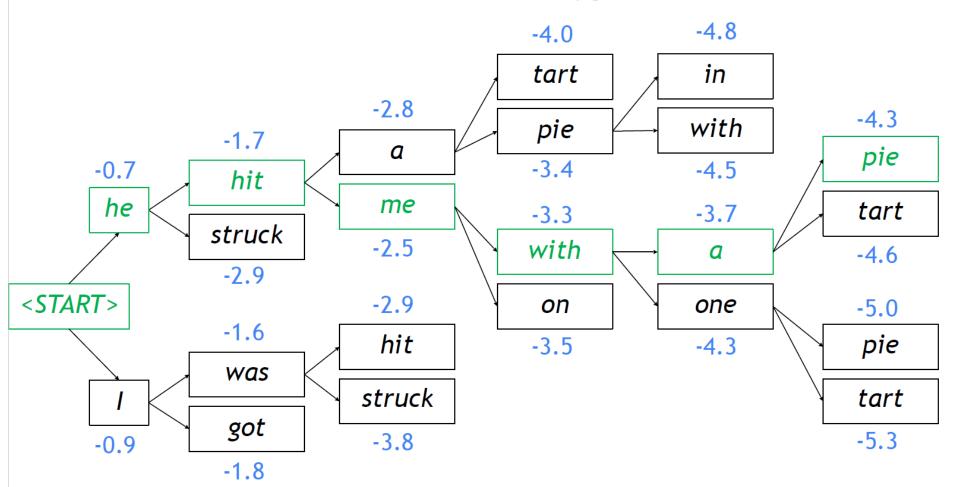
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



This is the top-scoring hypothesis!

Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



Backtrack to obtain the full hypothesis

#### Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces a <END> token
  - For example: <START> he hit me with a pie <END>
- In beam search decoding, different hypotheses may produce <END> tokens on different time steps
  - When a hypothesis produces <END>, that hypothesis is complete.
  - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
  - We reach time step T (where T is some pre-defined cutoff), or
  - We have at least *n* completed hypotheses (where *n* is pre-defined cutoff)

#### Beam search decoding: finishing up

- We have our list of completed hypotheses.
- How to select top one with highest score?
- Each hypothesis  $y_1, \ldots, y_t$  on our list has a score

score
$$(y_1, \ldots, y_t) = \log P_{LM}(y_1, \ldots, y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$$

- Problem with this: longer hypotheses have lower scores
- Fix: normalize by length. Use this to select top one instead:

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\text{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

#### What's the effect of changing beam size k?

- Small k has similar problems to greedy decoding (k=1)
  - Ungrammatical, unnatural, nonsensical, incorrect
- Larger *k* means you consider more hypotheses
  - Increasing k reduces some of the problems above
  - Larger k is more computationally expensive
    - -But increasing k can introduce other problems:
    - For NMT, increasing k too much decreases BLEU score (Tu et al, Koehn et al). This is primarily because large-k beam search produces too short translations (even with score normalization!)
    - It can even produce empty translations (Stahlberg & Byrne 2019)
    - In open-ended tasks like chit-chat dialogue, large k can make output more generic

#### Effect of beam size in chit-chat dialogue

I mostly eat a fresh and raw diet, so I save on groceries



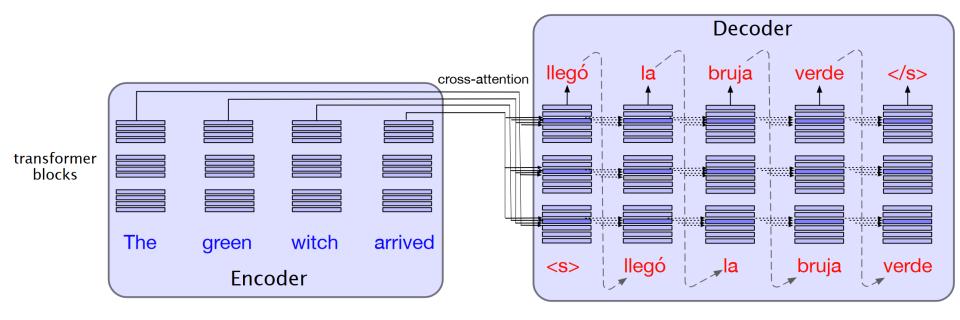
Human chit-chat partner

| Beam size | Model response                        |  |  |  |
|-----------|---------------------------------------|--|--|--|
| 1         | I love to eat healthy and eat healthy |  |  |  |
| 2         | That is a good thing to have          |  |  |  |
| 3         | I am a nurse so I do not eat raw food |  |  |  |
| 4         | l am a nurse so l am a nurse          |  |  |  |
| 5         | Do you have any hobbies?              |  |  |  |
| 6         | What do you do for a living?          |  |  |  |
| 7         | What do you do for a living?          |  |  |  |
| 8         | What do you do for a living?          |  |  |  |

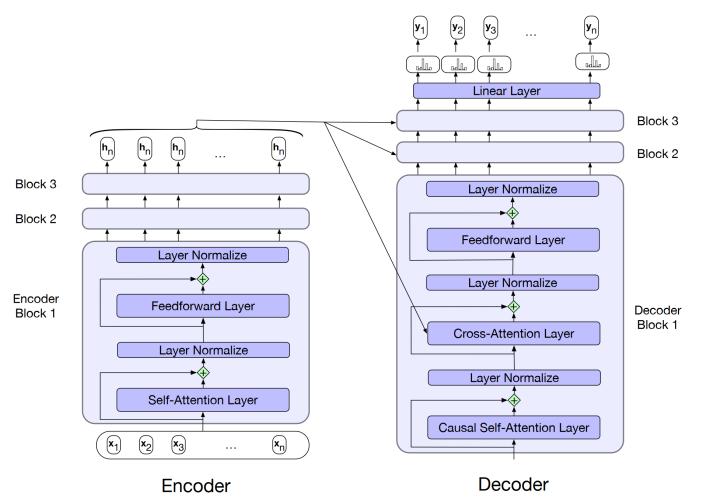
Low beam size: More on-topic but nonsensical; bad English

High beam size: Converges to safe, "correct" response, but it's generic and less relevant

#### Transformer is encoder-decoder



#### Attention in transformer



The final output of the encoder  $H_{enc} = h_1, ..., h_T$  is the context used in the decoder. The decoder is a standard transformer except for the cross-attention layer, which takes the decoder output  $H_{enc}$  and uses it to form its K and V inputs.

#### Advantages of NMT

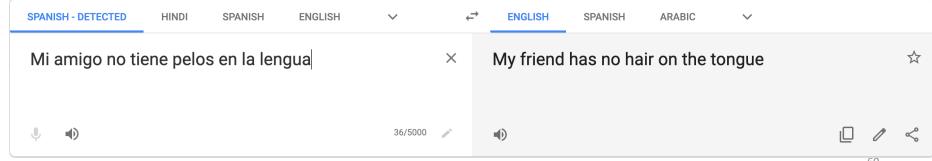
- Compared to SMT, NMT has many advantages:
  - Better performance
  - More fluent
  - Better use of context
  - Better use of phrase similarities
- A single neural network to be optimized end-to-end
   No subcomponents to be individually optimized
- Requires much less human engineering effort
  - No feature engineering
  - Same method for all language pairs

#### Disadvantages of NMT?

- Compared to SMT:
- NMT is less interpretable
   Hard to debug
- NMT is difficult to control
  - For example, can't easily specify rules or guidelines for translation
  - Safety concerns!

#### So is Machine Translation solved?

- Many difficulties remain:
- Out-of-vocabulary words
- Domain mismatch between train and test data
- Maintaining context over longer text
- Low-resource language pairs
- Using common sense is still hard
- Idioms are difficult to translate



#### So is Machine Translation solved?

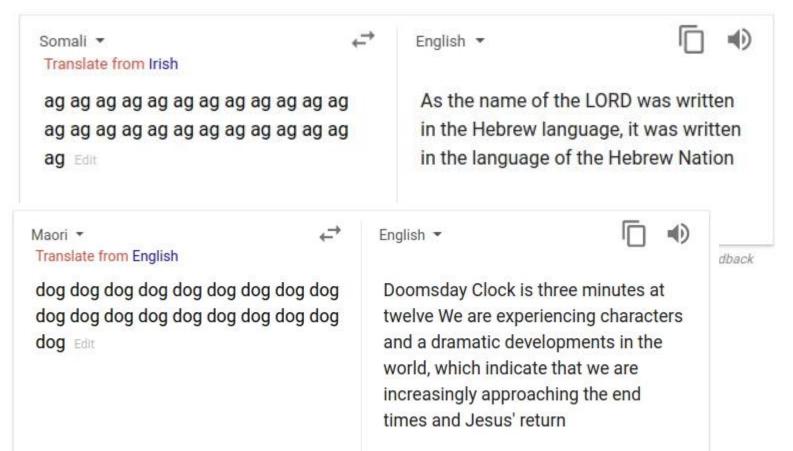
• NMT picks up biases in training data

| Malay - detected • |                                        | $\stackrel{\rightarrow}{\leftarrow}$ | English -                                          |  |
|--------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|--|
|                    | bagai jururawat.<br>bagai pengaturcara | . Edit                               | She works as a nurse.<br>He works as a programmer. |  |
|                    |                                        |                                      |                                                    |  |

Didn't specify gender

#### So is Machine Translation solved?

• Uninterpretable systems do strange things



Picture source: <u>https://www.vice.com/en\_uk/article/j5npeg/why-is-google-translate-</u> <u>spitting-out-sinister-religious-prophecies</u> Explanation: <u>https://www.skynettoday.com/briefs/google-nmt-prophecies</u>

#### Evaluating MT: Using human evaluators

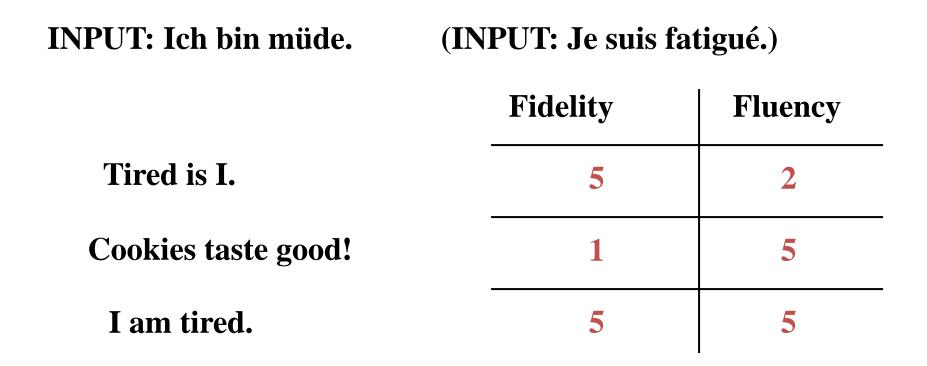
- Fluency: How intelligible, clear, readable, or natural in the target language is the translation?
- Fidelity: Does the translation have the same meaning as the source?
   Adequacy: Does the translation convey the same information as
  - source?
    - Bilingual judges given source and target language, assign a score —Monolingual judges given reference translation and MT result.
  - Informativeness: Does the translation convey enough information as the source to perform a task?
    - What % of questions can monolingual judges answer correctly about the source sentence given only the translation.

#### Automatic Evaluation of MT

George A. Miller and J. G. Beebe-Center. 1958. Some Psychological Methods for Evaluating the Quality of Translations. Mechanical Translation 3:73-80.

- Human evaluation is expensive and very slow
- Need an evaluation metric that takes seconds, not months
- Intuition: MT is good if it looks like a human translation
- 1. Collect one or more human *reference translations* of the source.
- 2. Score MT output based on its similarity to the reference translations.
  - BLEU
  - NIST
  - TER
  - METEOR

#### **Human evaluation**



#### WER measure

- Word Error Rate (WER): Levenhstein distance to the reference translation (insert, delete, substitute)
- good for fluency
- not so well for fidelity
- inflexible
- Hypothesis 1 = "he saw a man and a woman"
   Reference = "he saw a woman and a man"
   WER does not take into account "woman" or "man" !

#### PER measure

- Position-Independent Word Error Rate (PER)
- PER: matching on the level of unigrams
- not good for fluency
- too flexible for fidelity

Hypothesis 1 = "he saw a man" Hypothesis 2 = "a man saw he" Reference = "he saw a man"

Both hypotheses have the same value of PER!

#### **BLEU (Bilingual Evaluation Understudy)**

Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu. 2002. BLEU: A method for automatic evaluation of machine translation. Proceedings of ACL 2002.

- "n-gram precision"
- Ratio of correct n-grams to the total number of output n-grams
  - Correct: Number of *n*-grams (unigram, bigram, etc.) the MT output shares with the reference translations.
  - Total: Number of *n*-grams in the MT result.
- The higher the precision, the better the translation
- Recall is ignored

#### **Multiple Reference Translations**

#### Slide from Bonnie Dorr

this matter.

#### **Reference translation 2:** Reference translation 1: The U.S. island of Guam is maintaining Guam International Airport and its) offices are maintaining a high state of a high state of alert after the Guam airport and its offices both received an alert after receiving an e-mail that was e-mail from someone calling himself from a person claiming to be the the Saudi Arabian Osama bin Laden wealthy Saudi Arabian businessman and threatening a biological/chemical Bin Laden and that threatened to attack against public places such as launch a biological and chemical attack the airport. on the airport and other public places . Machine translation: The American [?] (international airport and its the office all receives one calls sett the sand Arab rich business [2] and so phatestronic mail, which sends out : The threat will be able atter public place and so on the airport to start the biochemistry attack [?] highly alerts after the maintenance. **Reference translation 3: Reference translation 4:** US Guam International Airport and its The US International Airport of Guam and its office has received an email office received an email from Mr. Bin from a self-claimed Arabian millionaire Laden and other rich businessman from Saudi Arabia . They said there named Laden, which threatens to launch a biochemical attack on such would be biochemistry air raid to Guam public places as airport. Guam Airport and other public places . Guam authority has been on alert. needs to be in high precaution about

#### Computing BLEU: Unigram precision

Slides from Ray Mooney

Cand 1: Mary no slap the witch green Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch. Ref 3: Mary did not hit a green sorceress.

Candidate 1 Unigram Precision: 5/6

#### **Computing BLEU: Bigram Precision**

Cand 1: Mary no slap the witch green. Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch. Ref 3: Mary did not hit a green sorceress.

Candidate 1 Bigram Precision: 1/5

#### **Computing BLEU: Unigram Precision**

Cand 1: Mary no slap the witch green.

Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch. Ref 3: Mary did not hit a green sorceress.

Clip the count of each *n*-gram

to the maximum count of the *n*-gram in any single reference

Candidate 2 Unigram Precision: 7/10

#### **Computing BLEU: Bigram Precision**

Cand 1: Mary no slap the witch green.

Cand 2: Mary did not give a smack to a green witch.

- Ref 1: Mary did not slap the green witch.
- Ref 2: Mary did not smack the green witch.
- Ref 3: Mary did not hit a green sorceress.

Candidate 2 Bigram Precision: 4/9

#### **Brevity Penalty**

- BLEU is precision-based: no penalty for dropping words
- Instead, we use a brevity penalty for translations that are shorter than the reference translations.

brevity-penalty = 
$$\min_{e}^{\mathcal{R}} 1$$
,  $\frac{\text{output-length}}{\text{reference-length}} \overset{\ddot{0}}{\div}$ 

#### Computing BLEU

 Precision<sub>1</sub>, precision<sub>2</sub>, etc., are computed over all candidate sentences C in the test set

$$precision_{n} = \frac{\overset{\circ}{C}\hat{i} corpus n - gram\hat{i} C}{\overset{\circ}{a} & \overset{\circ}{a} count (n - gram)}$$

$$BLEU-4 = min \overset{\circ}{C}\hat{i}, \frac{output-length}{reference-length} \overset{\circ}{\beta} \overset{\circ}{O}_{i=1}^{4} precision_{i}$$

$$BLEU-2:$$

Candidate 1: Mary no slap the witch green. Best Reference: Mary did not slap the green witch.

Candidate 2: Mary did not give a smack to a green witch. Best Reference: Mary did not smack the green witch.  $\frac{6}{7} \cdot \frac{5}{6} \cdot \frac{1}{5} = .14$  $\frac{7}{10} \cdot \frac{4}{9} = .31$ 

#### Properties of BLEU

- BLEU works well in comparing similar MT systems , e.g., competing variants or using different parameters
- not so good in comparison of different systems

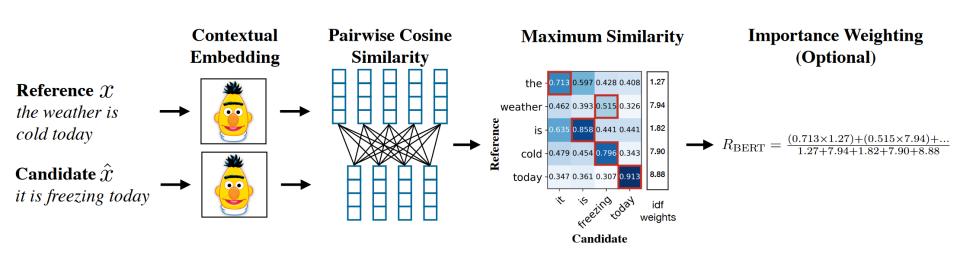
- no good measure exists on the level of sentence
- no good measure exists of an absolute translation quality

#### BERTScore

- for the reference x and the candidate  $\tilde{x}$ , compute a BERT embedding for each token  $x_i$  and  $\tilde{x}_j$ .
- For each pair of tokens, compute their cosine similarity.
   Each token in x is matched to a token in x to compute recall, and each token in x is matched to a token in x to compute precision (with each token greedily matched to the most similar token in the corresponding sentence).
- BERTSCORE provides precision, recall, and F<sub>1</sub>

$$R_{\text{BERT}} = \frac{1}{|x|} \sum_{x_i \in x} \max_{\tilde{x}_j \in \tilde{x}} x_i \cdot \tilde{x}_j \qquad P_{\text{BERT}} = \frac{1}{|\tilde{x}|} \sum_{\tilde{x}_j \in \tilde{x}} \max_{x_i \in x} x_i \cdot \tilde{x}_j$$

#### **BERTScore** illustration



### Improvements in MT

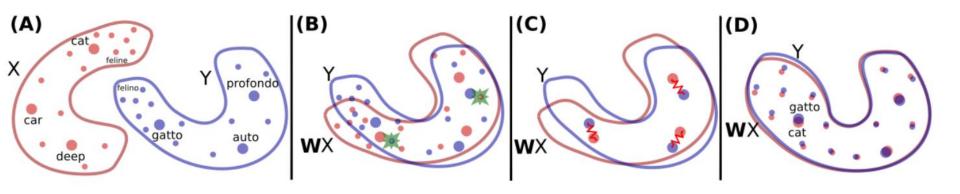
- large corpora
- adaptations to specific domains, e.g., IT, pharmacy, automotive industry
- terminological dictionaries, terminology lists, translation memories

#### Are translators an endangered profession?

- Will translators soon be just quality controllers of MT systems and only fix minor details?
- Douglas Hofstadter: <u>The Shallowness of Google Translate</u>. The Atlantic, Jan 30, 2018
- Conclusion: Translation requires understanding the text, not only syntactic manipulation.
- But: many different purposes of translation, using modern tools.

# Unsupervised translation from word embeddings

alignment of two languages for low-resource languages



 Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou (2017): Word Translation Without Parallel Data. arXiv:1710.04087

#### NMT in Slovene

- RSDO project
- English-Slovene and Slovene-English
- Demo at <u>https://www.slovenscina.eu/prevajalnik</u>
- following the NVIDIA NeMo NMT AAYN recipe
- the training corpus Parallel corpus EN-SL RSDO4 1.0 (<u>https://www.clarin.si/repository/xmlui/handle/11356/1457</u>)
- training 32.638.758 translation pairs
- validation: 8.163 translation pairs.
- BLEU score: 48.3191 Slovene to English
- BLEU score: 53.8191 English to Slovene