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Retrieval Augmented Generation (RAG)

• For complex and knowledge-intensive tasks, LLM accesses external 
knowledge sources to complete tasks. 

• Improves factual consistency, reliability of the generated responses, 
reduces hallucinations

• RAG takes an input and retrieves a set of relevant/supporting 
documents given a source (e.g., Wikipedia). The documents are 
concatenated as context with the original input prompt and used as 
the input to LLM which produces the final output. 

• RAG adapts to dynamic situations (facts could evolve over time)
• successful in QA
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RAG details
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Obtaining relevant context for a query

• a part of traditional information retrieval

• But still relevant even for LLMs

• The context can constitute a part of the prompt to LLM

• Well-known approaches

– BM25 (Best match 25)

– DPR (Dense Passage Retrieval)

– Dot product on sentence encoders, e.g., LaBSE

– CovBERT
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Ranking documents with BM25

• Okapi BM25 (Best match 25)

• uses bag-of-words document representation, works similarly
to tf-idf weighting

• Given a query Q, with words q1,..., qn the BM25 score of a 
document D is:

• f(qi,D) is the number of times that qi occurs in D, 

• avgdl is the average document length in the text collection

• k1 and b are parameters, usually chosen from k1 ∈ [ 1.2 , 2.0 ] 
and b = 0.75 6



IDF variant

• IDF (inverse document frequency) weights the query term qi

• where N is the total number of documents in the collection, and n(qi) is the number 
of documents containing qi
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Neural Ranking

• Use neural representations
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Query-Document Interaction Approach

• IR Ranking refers to scoring query-document 
pairs, sorting them in descending order, and 
then getting the top K results:

– Tokenize query and documents

– Embed tokens to vector

– Make query-document interaction matrix and 
compute cosine similarity for each pair of words.

– Compress the matrix into a score. Use a neural 
layer (convolution, linear layers)

• considerably better than non-neural methods 
but computationally expensive

• why?
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All-to-all Interaction with BERT

• 1. Feed BERT “[CLS] Query [SEP] Document [SEP]”

• 2. Run this through all the BERT layers

• 3. Extract the final [CLS] output embedding

• 4. Reduce to a single score through a linear layer

• This is essentially a standard BERT classifier, used for 
ranking passages.

• We must fine-tune BERT for this task with positives and 
negatives to be effective

• Much better quality—but also a dramatic increase in 
computational cost

• How to get a better query latency?
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Faster IR: precomputing

• Is there a value in jointly representing queries and documents? 

• BERT rankers are slow because their computations can be redundant:

– Represent the query (1000 times for 1000 documents)

– Represent the document (once for every query!)

– Conduct matching between the query and the document

• We have the documents in advance.

– Can we pre-compute the document representations?

– And “cache” these representations for use across queries
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A bad solution: Neural bag-of-words

• BM25 decomposed a document’s score into a 
summation over term–document weights. Can 
we learn term weights with BERT?

• Tokenize the query/document

• Use BERT to produce a score for each token in 
the document

• Add the scores of the tokens that also appear in 
the query
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Neural IR: Representation similarity 

• Tokenize the query and the document

• Independently encode the query and the 
document into a single-vector representation each

• Estimate relevance as a dot product or a cosine 
similarity

• Like learning term weights, this paradigm offers
strong efficiency advantages:

– Document representations can be pre-computed!

– Query computations can be amortized.

– Similarity computations are very cheap.
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Example of representation similarity: Dense Passage Retrieval (DPR)

• BERT based passage retrieval

• Encodes each passage and each query into a 768-dimensional vector

• ranks passages in the document collection relative to query q using dot product similarity

• BERT is additionally pretrained to maximize the similarity between q and correct passages 
and minimize the similarity between q and wrong passages using the loss:

• A negative passage is sampled from BM25 top-100

• passages and query are encoded with modified BERT (using the CLS token representation) 
then ranked based on the dot product similarity
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LaBSE sentence encoder
• LaBSE (Language-agnostic BERT Sentence Encoder)

• dual-encoder architecture, where source and target sentences 
(in different languages) are encoded separately using a shared 
BERT-based encoder 

• pre-trained on masked language modeling and translated 
language modeling

• supports 109 languages

• allows finding similar sentences across different languages.

• loss
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LaBSE architecture

• Dual encoder model with BERT based encoding modules.
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Representation Similarity: Downsides

• Single-Vector Representations “cram” queries and documents into a coarse-grained 
representation!

• No fine-grained interactions

• They estimate relevance as single dot product!

• We lose term-level interactions, which we had in query–document interaction 
models (e.g., BERT) and even term-weighting models (e.g., BM25)

• Can we keep precomputation and still have fine-grained interactions?
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Neural IR: Late interactions

• Independent Encoding

• Fine-Grained Representations

• End-to-End Retrieval

• ColBERT represents the document 
as a MATRIX, not a vector
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ColBERT: MaxSim
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Soft alignment with ColBERT
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Common Evaluation Metrics

1. Accuracy (does answer match gold-labeled answer?)
2. Mean Reciprocal Rank

– For each query return a ranked list of M candidate answers.
–Query score is 1/Rank of the first correct answer 

• If first answer is correct: 1 
• else if second answer is correct: ½
• else if third answer is correct:  ⅓,  etc.
• Score is 0 if none of the M answers are correct

– Take the mean over all N queries

MRR=

1

rankii=1

N

å
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IR evaluation datasets

• Text REtrieval Conference (TREC) has annual competitions for comparing IR systems.

• MS MARCO Ranking is the largest public IR benchmark.

– It is adapted from a Question Answering dataset

– It consists of more than 500k Bing search queries

– Passage Ranking: 9M short passages; sparse labels

– Document Ranking: 3M long documents; sparse labels

• Many others
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