
Static neural embeddings

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural Language Processing, Edition 2024

Contents

• Static neural language models

• word2vec word representation

• cross-lingual embeddings

• properties of dense embeddings

• doc2vec document representation

partially based on Chapter 6.8 to 6.12 in Jurafsky & Martin, 3rd edition,

2

Static neural embeddings

• neural network is trained to predict the context of words (input:
word, output: context of neighboring words)

• Analogy of neural network operations with matrix operations

• Why these embeddings are called static?
• a single fixed representation of a word

• does not take into account polysemy of words (mixing all meanings)

• does not take into account that the meaning of words may slightly change
based on the context

• We will deal with contextual embeddings, such as ELMo and BERT,
later

3

Simple neural network based embedding

4

word2vec method

• Instead of counting how often each word w occurs near "apricot“

• Train a classifier on a binary prediction task:
Is w likely to show up near "apricot"?

• We don’t actually care about this task

• But we'll take the learned classifier weights as the word embeddings

• Words near apricot acts as ‘correct answers’ to the question
“Is word w likely to show up near apricot?”

• No need for hand-labeled supervision

Main Idea of word2vec

• Instead of capturing co-occurrence counts directly, predict
surrounding words of every word

• Faster and can easily incorporate a new sentence/document or
add a word to the vocabulary

• Two variants:
• CBOW: Predict target from the bag of words context

• Skipgram: Predict context words from target (position-independent)

• In general, the skipgram variant with negative sampling is
somewhat more successful

6

Word2vec –Vector
Representation of
Words (Mikolov et
al. 2013)

• Word2vec comes with two models:

7

Model Approach Speed and
Performance

Use case

Continuous Bag-
of-Words model
(CBOW)

The CBOW predicts
the current word
based on the
context.

Faster to train
than the skip-
gram model

Predicts
frequent words
better

Skip-Gram model Skip-gram predicts
surrounding words
given the current
word.

Usually performs
better than CBOW

Predicts rare
words better

Note, that this is
only a schematic
representation,
not the actually
used neural
network
architecture.

Word2vec –Vector Representation of Words
(Mikolov et al. 2013)

• Skip-gram learning:
• Given w0, predict w-2, w-1, w1, and w2

• Conversely, CBOW tries to predict w0 when given w-2, w-1, w1, and w2

8

w-2 w-1 w0 w1 w2

Recurrent Neural Language Model

w-2 w-1 w0 w1 w2

? ? Network ? ?

Skip-grams

• Using a given word, we predict the neighborhood of 2L words, L
previous and L following ones

• for each word wj in a dictionary, we estimate the probability that
the neighborhood contains word wk, p(wk|wj)

• estimate the dot product ck  vj, where ck is the context vector and
vj the target vector of j-th word

9

Skip-gram algorithm

1. Treat the target word and a neighboring context word as
positive examples.

2. Randomly sample other words in the lexicon to get
negative samples

3. Use the logistic regression to train a classifier that
distinguishes those two cases

4. Use the weights as the embeddings

10

Skip-Gram Training Data

•Training sentence:
• ... lemon, a tablespoon of apricot jam a pinch ...

• c1 c2 target c3 c4

3/13/2024

11

Assume context words are those in +/- 2 word window

Skip-Gram Goal

• Given a tuple (tic) = target, context

• (apricot, jam)
• (apricot, aardvark)

• Return probability that c is a real context word:
• P(+|t,c)
• P(−|t,c) = 1−P(+|t,c)

3/13/2024

12

How to compute p(+|t,c)?

• Intuition:
• Words are likely to appear near similar words
• We can model similarity with the dot-product!

• Similarity(t, c) ∝ t ∙ c

• Problem:
• Dot product is not a probability!

• (Neither is cosine)

Turning dot product into a probability

• The sigmoid lies between 0 and 1:

Turning dot product into a probability

For all the context words:

• Assume all context words are independent

Skip-Gram Training Data

•Training sentence:
• ... lemon, a tablespoon of apricot jam a pinch ...

• c1 c2 t c3 c4

•Training data: input/output pairs centering on
apricot

•Assume a +/- 2 word window

17

Skip-Gram Training

•Training sentence:
• ... lemon, a tablespoon of apricot jam a pinch

...

• c1 c2 t c3 c4

18

•For each positive example,
we'll create k negative
examples. Why?
•Using noise words
•Any random word that isn't t

Skip-Gram Training

•Training sentence:
• ... lemon, a tablespoon of apricot jam a pinch

...

• c1 c2 t c3 c4

19

k=2

Choosing noise words

• Could pick w according to their unigram frequency P(w)

• More common to chose according to pα(w)

• α= ¾ works well because it gives rare noise words slightly higher
probability

• To show this, imagine two events p(a)=.99 and p(b) = .01:

Setup

• Let's represent words as vectors of some length (say 300),
randomly initialized.

• So we start with 300 * V random parameters

• Over the entire training set, we’d like to adjust those word
vectors such that we
• Maximize the similarity of the target word, context word

pairs (t,c) drawn from the positive data
• Minimize the similarity of the (t,c) pairs drawn from the

negative data.
21

Learning the classifier

• Iterative process.

• We’ll start with 0 or random weights

• Then adjust the word weights to
• make the positive pairs more likely
• and the negative pairs less likely

• Repeat over the entire training set.

Objective Criteria

• We want to maximize

• Maximize the + label for the pairs from the positive
training data, and the – label for the pairs sample from
the negative data.

23

Focusing on one target word t:

• going back to the dot product

Train using gradient descent

• Actually learns two separate embedding matrices W and C

• Can use W and throw away C, or merge them somehow

Summary:
How to learn word2vec (skip-gram) embeddings

• Start with V random 300-dimensional vectors as initial
embeddings

• Use logistic regression,
• Take a corpus and take pairs of words that co-occur as

positive examples
• Take pairs of words that don't co-occur as negative

examples
• Train the classifier to distinguish these by slowly adjusting

all the embeddings to improve the classifier performance

• Throw away the classifier code and keep the
embeddings.

CBOW (Continuous Bag of Words) schema

28

CBOW learns a word embedding by maximizing the
log conditional probability of a word given the bag of
context words occurring within a fixed-sized window
around that word.

(in practice, a single input vector is used)

Details of 1 word context CBOW

• Objective function: Maximize the log probability of a target word
given a context word

29

One-hot
vector

Attempts
to predict
one-hot
vector

These matrices
have word vectors!

Training regime

• Start with small, random vectors for words

• Iteratively go through millions of words in contexts
• Work out prediction, work out error
• Backpropagate error to update word vectors
• Repeat

• Result is dense vectors for all words

linguistics =

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271

Training word2Vec embeddings

• Download, e.g., https://code.google.com/archive/p/word2vec/

• To learn Word2Vec, you need a corpus (e.g., collection of tweets, news
articles, product reviews)

• Word2Vec expects a sequence of sentences as input

• One input file containing many sentences, with one sentence per line

• Precomputed embeddings exist for many languages

• Word Embedding Visualization http://ronxin.github.io/wevi/

• fastText variant or word2vec uses subword input and is more suitable for
morphologically rich languages https://fasttext.cc

32

https://code.google.com/archive/p/word2vec/
http://ronxin.github.io/wevi/
https://fasttext.cc/

FastText representation

• First appeared in 2016

• Based on the word2vec skipgram model, only that is uses
the subword information (revised later in the slides)

• A word is represented as a sum of character n-gram
embeddings that appeared in the word

33

FastText compared with word2vec skipgram model

• FastText outperforms skipgram in most scenarios and datasets
when dealing with syntactic tasks

• For sematic tasks, the fastText is (2-5 per cent) less accurate than
the skipgram model

• Is able to generate out-of-vocabulary word embeddings

Pre-trained models (157 languages, aligned vectors)
https://fasttext.cc/docs/en/english-vectors.html

Several variants for Slovene, see Clarin.si

34

https://fasttext.cc/docs/en/english-vectors.html

Phrase representation based on word2vec

• Word embedding models in their most basic form is based
on unigrams

• Enriching the models with word n-grams to capture richer
information

• The chosen bigrams are merged
in a selected n-gram into a single
token

• Usually done in 2-6 passes with
decreasing threshold value

Word2phrase from word2vec (C programming language)
https://github.com/tmikolov/word2vec

35

https://github.com/tmikolov/word2vec

Subword Information

• Standard word embedding models ignore the internal
structure and information of the words

• An effective approach is to enrich the word vectors with a
bag of character n-grams (as in fastText)
• Can be also derived from the singular value decomposition (SVD)

of the co-occurrence matrix

• In practice, the set of n-grams is restricted with 3-6
characters

36

Position-dependent weighting
Common Practice when Training Models

• The context vector is simply the average of the word vectors
contained in it – oblivious to the position of each word

• A simple solution is to learn position representations and
use them to reweight the word vectors

• Adds minimal computational cost

37

Model Comparison

Model Advantages Disadvantages

Continuous BOW
• Mediocre semantic accuracy
• Absence in papers; unpopular in practice

• Ignores global vocabulary
information

• Does not handle out-of-vocabulary
wordsSkipgram

• Good semantic accuracy
• Pre-trained models available

GloVe

• Uses global information of vocabulary
• Captures local and global context of words
• Good syntactic and semantic accuracy
• Pre-trained models available

• Does not handle out-of-vocabulary
words

FastText

• Handles out-of-vocabulary words
• Good at syntactic tasks
• Pre-trained models available
• Available aligned word vectors

• Takes 1.5x longer to train than
skipgram

38

Evaluation of embeddings

• Related to general evaluation in NLP: intrinsic vs. extrinsic

• Intrinsic:
• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if really helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other
subsystems

• If replacing exactly one subsystem with another improves accuracy then we
are doing well

39

Intrinsic human-based evaluation

• Compare to human scores on word similarity-type tasks:

• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• CoSimLex (SemEval 2020, words in context)

• Stanford Contextual Word Similarity (SCWS) dataset (Huang
et al., 2012)

• TOEFL dataset: Levied is closest in meaning to: imposed,
believed, requested, correlated

Properties of embeddings

41

• C = ±2 The nearest words to Hogwarts:
• Sunnydale
• Evernight

• C = ±5 The nearest words to Hogwarts:
• Dumbledore
• Malfoy
• halfblood

Similarity depends on window size C

Examples of embeddings

• groups of similar words (extension to multi word expressions)

• relational similarity

42

Simlex-999

• ask humans to judge how similar one word is to another

• SimLex-999 dataset (Hill et al., 2015) gives values on a scale from 0 to 10

• weakness: no context

43

CoSimLex

• human judgement of word similarity in context

• 4 languages (English, Slovene, Croatian, Finnish)

Armendariz, C.S., Purver, M., Ulčar, M., Pollak, S., Ljubešić, N., Robnik-Šikonja, M., Granroth-Wilding, M. and Vaik,
K., 2020, May. CoSimLex: A Resource for Evaluating Graded Word Similarity in Context. In Proceedings of The 12th
Language Resources and Evaluation Conference, pp. 5878-5886.

44

Linear Relationships in word2vec

These representations are very good at encoding similarity
and dimensions of similarity!

• Analogies testing dimensions of similarity can be solved
quite well just by doing vector subtraction in the embedding
space

• Syntactically
• xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

• Similarly for verb and adjective morphological form

• Semantically (Semeval 2012 task 2)
• xshirt − xclothing ≈ xchair − xfurniture

• xking − xman ≈ xqueen − xwoman

• 15 relations in 7 languages
• Ulčar, M., Vaik, K., Lindström, J., Dailidėnaitė, M. and Robnik-Šikonja, M., 2020. Multilingual Culture-Independent Word

Analogy Datasets. In Proceedings of The 12th Language Resources and Evaluation Conference (pp. 4074-4080).

45

king

man

woman

Test for linear relationships, examined by Mikolov et al.

a:b :: c:?

man

woman

[0.20 0.20]

[0.60 0.30]

king [0.30 0.70]

[0.70 0.80]

−

+

+

queen

queen

man:woman :: king:?

a:b :: c:?

Word Analogies

Relational similarity

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

47

Embeddings visualization

• https://projector.tensorflow.org/

50

https://projector.tensorflow.org/

Embeddings can help study word history

• Train embeddings on old books to study changes in
word meaning

Diachronic word embeddings for studying
language change

5
2

1900 1950 2000

vs.

Word vectors for 1920 Word vectors 1990

“dog” 1920 word vector

“dog” 1990 word vector

Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data

54

The evolution of sentiment words

Negative words change faster than positive words

Embeddings reflect cultural bias

• Ask “Paris : France :: Tokyo : x”

• x = Japan

• Ask “father : doctor :: mother : x”

• x = nurse

• Ask “man : computer programmer :: woman : x”

• x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In Advances in Neural Information
Processing Systems, pp. 4349-4357. 2016.

Embeddings reflect cultural bias

• Implicit Association test (Greenwald et al 1998): How associated are
• concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?

• Studied by measuring timing latencies for categorization.

• Psychological findings on US participants:
• African-American names are associated with unpleasant words (more than

European-American names)

• Male names associated more with math, female names with arts

• Old people's names with unpleasant words, young people with pleasant words.

• Caliskan et al. replication with embeddings:
• African-American names (Leroy, Shaniqua) had a higher GloVe cosine with

unpleasant words (abuse, stink, ugly)

• European American names (Brad, Greg, Courtney) had a higher cosine with pleasant
words (love, peace, miracle)

• Embeddings reflect and replicate all sorts of pernicious biases.

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain
human-like biases. Science 356:6334, 183-186.

Change in linguistic framing 1910-1990

Change in association of Chinese names with adjectives framed as
"othering" (barbaric, monstrous, bizarre)

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the
National Academy of Sciences, 115(16), E3635–E3644

Embeddings as a window onto history

• Use the Hamilton historical embeddings

• The cosine similarity of embeddings for decade X for
occupations (like teacher) to male vs female names
• Is correlated with the actual percentage of women teachers

in decade X

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic
stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

History of biased framings of women

• Embeddings for competence adjectives are biased toward
men
• Smart, wise, brilliant, intelligent, resourceful, thoughtful,

logical, etc.

• This bias is slowly decreasing

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and
ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Embeddings reflect ethnic stereotypes over time

• Princeton trilogy experiments

• Attitudes toward ethnic groups (1933, 1951, 1969) scores for
adjectives
• industrious, superstitious, nationalistic, etc.

• Cosine of Chinese name embeddings with those adjective
embeddings correlates with human ratings.

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic
stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Changes in framing: adjectives associated with Chinese

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

Debiasing

• Debiasing algorithms for embeddings
• Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y., Saligrama, Venkatesh, and

Kalai, Adam T. (2016). Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Advances in Neural Information
Processing Systems, pp. 4349–4357.

• hard to remove all biases

Cross-lingual embeddings

• embeddings are trained on monolingual resources

• words of one language form a cloud in high dimensional
space

• clouds for different
languages can be aligned

• W1S ≈ W2E or W1S ≈ E

Cross-lingual embeddings

• alignment of different word clouds

• in unsupervised or supervised way

Conneau, A., Lample, G., Ranzato, M.A., Denoyer, L. and Jégou, H., 2018. Word translation without parallel data.
Proceedings of ICLR 2018,
also ArXiv preprint arXiv:1710.04087.

Improving cross-lingual embeddings

• bilingual and multilingual resources can provide anchoring points for
alignment of different word clouds

• alignment of contextual embeddings

Artetxe, M. and Schwenk, H., 2018. Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer
and Beyond. ArXiv preprint arXiv:1812.10464.

Cross-lingual
transfer with
embeddings

• Transfer of tools
trained on mono-
lingual resources

the president announced today ... predsednik je danas najavil ...

...

...

...

...

67

Conclusion of static dense word
embeddings

• Concepts or word senses
• Have a complex many-to-many association with words

(homonymy, multiple senses)
• Have relations with each other

• Synonymy, Antonymy, Superordinate
• But are hard to define formally (necessary & sufficient

conditions)

• Embeddings = vector models of meaning

• More fine-grained than just a string or index
• Static embeddings merge all sense into one vector
• Especially good at modeling similarity/analogy

• Just download them and use cosines
• Useful in practice but know they encode cultural stereotypes

Doc2vec representation

• Doc2Vec is an extension of Word2vec that encodes entire documents
(or sentence, paragraph, article, etc.)

• The idea is to use Document ID vector as a context and use it to
predict words from the document

69doc2vec images by Manish Nayak

Two doc2vec flavours

• similar to word2vec CBOW:
Distributed Memory Model Of Paragraph Vectors (PV-DM)

• similar to word2vec Skipgram:
Paragraph Vector With A Distributed Bag Of Words (PVDBOW)

• both extend the word context with the paragraph vector

• word vectors are the same (usually word2vec vectors), but paragraph
vectors are unique for each text unit

70

Doc2vec PV-DM

• Paragraph Vector - Distributed Memory doc2vec resembles the
CBOW word2vec

• predicts a target word given the context words and additional
paragraph ID

• The paragraph token can be thought of as another word. It acts as a
memory that remembers what is missing from the current context –
or the topic of the paragraph.

• the projection is either concatenation or averaging of input vectors

• for prediction layer, doc2vec usey softmax,
i.e. logistic regression

71

Doc2vec PV-DBOW

• Paragraph Vector - Distributed Bag of Words doc2vec resembles the
word2vec Skipgram model

• instead of using the target word as the input, it uses the document ID
as the input and tries to predict randomly sampled words from the
document.

72

Doc2vec for new documents

• For a new document, a doc2vec model needs a bit of additional
training to construct a paragraph vector that will predict the words in
the new document

• at this learning step, word vector and prediction weights are fixed

73

Doc2vec properties

• doc2vec learns which words go together in the document, i.e. which
words are specific for a document

• Le & Mikolov recommend merging PV-DM and PV-DBOW vectors

• doc2vec vectors work well in finding similar documents and other
document level tasks

• Advantage over bag-of-words document representation:
• doc2vwc includes semantics of the words from word2vec

• paragraph vectors in PV-DM take into consideration the word order

• We will meet more advanced document representations when we
cover the transformers and LLMs

74

Le, Quoc, and Tomaš Mikolov. "Distributed representations of sentences and documents."
In International conference on machine learning, pp. 1188-1196. PMLR, 2014.

Document similarity based on words

• Compare two words using cosine similarity to see if they are
similar

• Compare two documents
• Take the centroid of vectors of all the words in the document

• Centroid document vector is:

Trend: Embed all the things!

Lots of applications whenever knowing word context or similarity
helps prediction:

• Synonym handling in search

• Document topics and similarity

• Ad serving

• Language models: from spelling correction to email response

• Machine translation

• Sentiment analysis

• …

• Similar ideas applied to graphs, electronic health records,
relational data, etc.

