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Artificial neural networks (ANN)

• universal function 
approximator

• intuition: neurons 
in successive layers 
encode useful 
features



Artificial neural networks and 
brain analogy – a neuron

5• more than a hundred types of neurons in brain 



Artificial neuron
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The brain analogy is far from realistic: a neuron cell is highly complex, and so are 
interconnections.



Perceptron



Activation functions

• examples: step function, sigmoid (logistic) 

8



Activation functions

• ReLU (rectified linear unit)

f(x) = max(0, x)

• softplus / approximation of ReLU with continuous 
derivation

f(x) = ln(1+ex)

• many others
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Learning: error 
backpropagation
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• learning: error backpropagation

• a single neuron is weak
• a network of neurons can approximate any continuous function
• deep neural network: more than one hidden level



Backpropagation learning algorithm 
for NN

• Backpropagation: A neural network learning algorithm 

• Started by psychologists and neurobiologists to develop and test computational 

analogues of neurons

• During the learning phase, the network learns by adjusting the weights so as to be 

able to predict the correct class label of the input tuples

• Also referred to as connectionist learning due to the connections between units
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How a multi-layer feed-forward NN works?

• The inputs to the network correspond to the attributes measured for each training tuple 

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary; if more than 1 hidden layer is used, the network is 

called deep neural network 

• The weighted outputs of the last hidden layer are input to units making up the output layer, 

which emits the network's prediction

• The network is feed-forward if none of the weights cycles back to an input unit or to an output 

unit of a previous layer

• If we have backwards connections the network is called recurrent neural network

• From a statistical point of view, networks perform nonlinear regression: Given enough hidden 

units and enough training samples, they can closely approximate any function
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Deep learning = 

deep neural networks + large data sets + 
GPU

(+many new ideas)
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Why nonlinear activation function?

• The product of two linear transformations is itself a 
linear transformation.

• What is a derivative of a sigmoid? 



Feed-Forward Network

• Values are propagated from input through the network 
till the output layer which returns the prediction
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Next 6 slides by Andrew Rosenberg



Feed-Forward Networks
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Feed-Forward Networks
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Feed-Forward Networks

18



Feed-Forward Networks
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Feed-Forward Networks
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Softmax

• normalizes the output scores 
to be a probability 
distribution (values between 
0 and 1, the sum is 1)
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Criterion function

• together with softmax we 
frequently use cross 
entropy as cost function C
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Learning with error backpropagation

• Backpropagation

• randomly initialize parameters (weights)

• compute error on the output

• compute contributions to error, 𝛿𝑛, on each 
step backwards

• gradient

• step

• iteratively

• batch

• minibatch
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Error Backpropagation
• We will do gradient descent on the whole 

network.

• Training will proceed from the last layer to the 
first.

24Next 18 slides by Andrew Rosenberg



Error Backpropagation

• Introduce variables over the neural network
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Error Backpropagation

• Introduce variables over the neural network

– Distinguish the input and output of each node
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Error Backpropagation
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Error Backpropagation
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Training: Take the gradient of the last component and iterate backwards



Error Backpropagation
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Empirical Risk Function



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation

31

Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation

33

Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation

34

Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last hidden weights wjk



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Repeat for all previous layers



Error Backpropagation
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Now that we have well defined gradients for each parameter, update using Gradient Descent



Gradient descent (GD)

•Gradient descent is an efficient local optimization in ℝ𝑛

•Local minimum of  function f: ℝ𝑛 → ℝ is a point x
for which f(x) ≤ f(x′) for all x′ that are “near” x
•Gradient ∇𝑓 𝑥 is a function ∇𝑓: ℝ𝑛 → ℝ𝑛 comprising n partial
derivatives: 

∇𝑓 𝑥 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

•The GD optimization moves in the direction of -∇𝑓 𝑥



Ilustration of GD



GD 
algorithm

GRADIENT-DESCENT(f, x0, γ, T) {

// function f,  initial value x0, fixed step size γ, number of steps T

x_best = x = x0 ; // n-dimensional vectors, initially set to the initial value

f_best = f_x = f(x_best) ;

for t = 0 to T – 1 do {

x_next = x – γ・ ∇f(x); // ∇f(x), x, and x_next are n-dimensional

f_next = f(x_next)

if (f_next < f_x)

x_best = x_next ; 

x = x_next ;

f_x = f_next ;

}

return x_best ;

}



Chain rule of derivation

• In a network, the output of each neuron is a function of activation function and all its
inputs, where the inputs may again be composite functions of neurons in previous layers

• To compute a gradient of a composite function, we use the chain rule of derivation 

𝑓 𝑔 𝑥
′
= 𝑓′ 𝑔 𝑥 𝑔′(𝑥)



Error Back-propagation

• Error backpropagation unravels the multivariate chain rule 
and solves the gradient for each partial component 
separately.

• The target values for each layer come from the next layer.
• This feeds the errors back along the network.
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Backpropagation algorithm
• Iteratively process a set of training tuples & compare the network's prediction with 

the actual known target value

• For each training tuple, the weights are modified to minimize the mean squared 

error between the network's prediction and the actual target value 

• Modifications are made in the “backwards” direction: from the output layer, 

through each hidden layer down to the first hidden layer, hence “backpropagation”

• Steps

– Initialize weights to small random numbers, associated with biases 

– Propagate the inputs forward (by applying activation function) 

– Backpropagate the error (by updating weights and biases)

– Terminating condition (when error is very small, etc.)
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Defining a network topology
• Decide the network topology: Specify # of units in the input 

layer, # of hidden layers (if > 1), # of units in each hidden layer, 

and # of units in the output layer

• Normalize the input values for each attribute measured in the 

training tuples to [0.0—1.0]

• One input unit per domain value, each initialized to 0

• Output, if for classification and more than two classes, one 

output unit per class is used

• Once a network has been trained and its accuracy is still 

unacceptable, repeat the training process with a different 

network topology or a different set of initial weights
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Neural network as a classifier
• Weakness

– Long training time 

– Require a number of parameters typically best determined empirically, 

e.g., the network topology or “structure.”

– Poor interpretability: difficult to interpret the symbolic meaning behind 

the learned weights and of “hidden units” in the network

• Strength

– High tolerance to noisy data 

– Ability to classify untrained patterns 

– Well-suited for continuous-valued inputs and outputs

– Successful on an array of real-world data, e.g., hand-written letters

– Algorithms are inherently parallel

– Techniques exist for the extraction of explanations from trained neural 

networks 49



Efficiency

• Efficiency of backpropagation: Each epoch (one iteration through the 

training set) takes O(|D| * w), with |D| tuples and w weights, but # of 

epochs can be large (e..g, exponential to n, the number of inputs), in 

worst case
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Interpretation of hidden layers

• What are the hidden layers doing?!

• Feature Extraction

• The non-linearities in the feature extraction 
can make interpretation of the hidden layers 
very difficult.

• This leads to Neural Networks being treated as 
black boxes.
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Deep learning = 
learning of hierarchical representation

52



Overfitting and model complexity

• which curve is 
more plausible 
given the 
data?

• overfitting
• neural nets are 

especially 
prone to 
overfitting

• why?
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Approaches to prevent overfitting

• Weight-decay

• Weight-sharing

• Early stopping

• Model averaging

• Bayesian fitting of neural nets

• Dropout

• Generative pre-training

• etc.
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Deep learning successes
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Weaknesses of deep learning
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Failures on out-
of-distribution 
examples
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Michael A. Alcorn, Qi Li, Zhitao Gong, 
Chengfei Wang, Long Mai, Wei-Shinn 
Ku, Anh Nguyen (2018):
Strike (with) a Pose: Neural Networks 
Are Easily Fooled by Strange Poses of 
Familiar Objects. arXiv:1811.11553



Attacks on 
neural 
networks
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