
A brief revision of
neural networks

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural Language Processing, Edition 2024

Contents

• a gentle introduction to neural networks

• feed forward neural networks

• backpropagation

• convolutional neural networks

• attacks on neural networks

read Chapter 7 in Jurafsky & Martin, 3rd edition,

2

Sources
• Richard Socher: Deep Learning for Natural

Language Processing. Coursera

• Ian Goodfellow and Yoshua Bengio and Aaron
Courville: Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org

• Yoav Goldberg: A Primer on Neural Network
Models for Natural Language Processing.
Journal of Artificial Intelligence Research
57:345-420, 2016

• Keras library

• PyTorch 3

http://www.deeplearningbook.org/

Artificial neural networks (ANN)

• universal function
approximator

• intuition: neurons
in successive layers
encode useful
features

Artificial neural networks and
brain analogy – a neuron

5• more than a hundred types of neurons in brain

Artificial neuron

6

The brain analogy is far from realistic: a neuron cell is highly complex, and so are
interconnections.

Perceptron

Activation functions

• examples: step function, sigmoid (logistic)

8

Activation functions

• ReLU (rectified linear unit)

f(x) = max(0, x)

• softplus / approximation of ReLU with continuous
derivation

f(x) = ln(1+ex)

• many others

9

Learning: error
backpropagation

10

• learning: error backpropagation

• a single neuron is weak
• a network of neurons can approximate any continuous function
• deep neural network: more than one hidden level

Backpropagation learning algorithm
for NN

• Backpropagation: A neural network learning algorithm

• Started by psychologists and neurobiologists to develop and test computational

analogues of neurons

• During the learning phase, the network learns by adjusting the weights so as to be

able to predict the correct class label of the input tuples

• Also referred to as connectionist learning due to the connections between units

11

How a multi-layer feed-forward NN works?

• The inputs to the network correspond to the attributes measured for each training tuple

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary; if more than 1 hidden layer is used, the network is

called deep neural network

• The weighted outputs of the last hidden layer are input to units making up the output layer,

which emits the network's prediction

• The network is feed-forward if none of the weights cycles back to an input unit or to an output

unit of a previous layer

• If we have backwards connections the network is called recurrent neural network

• From a statistical point of view, networks perform nonlinear regression: Given enough hidden

units and enough training samples, they can closely approximate any function

12

Deep learning =

deep neural networks + large data sets +
GPU

(+many new ideas)

13

Why nonlinear activation function?

• The product of two linear transformations is itself a
linear transformation.

• What is a derivative of a sigmoid?

Feed-Forward Network

• Values are propagated from input through the network
till the output layer which returns the prediction

15
Next 6 slides by Andrew Rosenberg

Feed-Forward Networks

16

Feed-Forward Networks

17

Feed-Forward Networks

18

Feed-Forward Networks

19

Feed-Forward Networks

20

Softmax

• normalizes the output scores
to be a probability
distribution (values between
0 and 1, the sum is 1)

21

Criterion function

• together with softmax we
frequently use cross
entropy as cost function C

22

Learning with error backpropagation

• Backpropagation

• randomly initialize parameters (weights)

• compute error on the output

• compute contributions to error, 𝛿𝑛, on each
step backwards

• gradient

• step

• iteratively

• batch

• minibatch

23

Error Backpropagation
• We will do gradient descent on the whole

network.

• Training will proceed from the last layer to the
first.

24Next 18 slides by Andrew Rosenberg

Error Backpropagation

• Introduce variables over the neural network

25

Error Backpropagation

• Introduce variables over the neural network

– Distinguish the input and output of each node

26

Error Backpropagation

27

Error Backpropagation

28

Training: Take the gradient of the last component and iterate backwards

Error Backpropagation

29

Empirical Risk Function

Error Backpropagation

30

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

31

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

32

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

33

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

34

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

35

Optimize last hidden weights wjk

Error Backpropagation

36

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

37

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

38

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

39

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

40

Repeat for all previous layers

Error Backpropagation

41

Now that we have well defined gradients for each parameter, update using Gradient Descent

Gradient descent (GD)

•Gradient descent is an efficient local optimization in ℝ𝑛

•Local minimum of function f: ℝ𝑛 → ℝ is a point x
for which f(x) ≤ f(x′) for all x′ that are “near” x
•Gradient ∇𝑓 𝑥 is a function ∇𝑓: ℝ𝑛 → ℝ𝑛 comprising n partial
derivatives:

∇𝑓 𝑥 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

•The GD optimization moves in the direction of -∇𝑓 𝑥

Ilustration of GD

GD
algorithm

GRADIENT-DESCENT(f, x0, γ, T) {

// function f, initial value x0, fixed step size γ, number of steps T

x_best = x = x0 ; // n-dimensional vectors, initially set to the initial value

f_best = f_x = f(x_best) ;

for t = 0 to T – 1 do {

x_next = x – γ・ ∇f(x); // ∇f(x), x, and x_next are n-dimensional

f_next = f(x_next)

if (f_next < f_x)

x_best = x_next ;

x = x_next ;

f_x = f_next ;

}

return x_best ;

}

Chain rule of derivation

• In a network, the output of each neuron is a function of activation function and all its
inputs, where the inputs may again be composite functions of neurons in previous layers

• To compute a gradient of a composite function, we use the chain rule of derivation

𝑓 𝑔 𝑥
′
= 𝑓′ 𝑔 𝑥 𝑔′(𝑥)

Error Back-propagation

• Error backpropagation unravels the multivariate chain rule
and solves the gradient for each partial component
separately.

• The target values for each layer come from the next layer.
• This feeds the errors back along the network.

46

Backpropagation algorithm
• Iteratively process a set of training tuples & compare the network's prediction with

the actual known target value

• For each training tuple, the weights are modified to minimize the mean squared

error between the network's prediction and the actual target value

• Modifications are made in the “backwards” direction: from the output layer,

through each hidden layer down to the first hidden layer, hence “backpropagation”

• Steps

– Initialize weights to small random numbers, associated with biases

– Propagate the inputs forward (by applying activation function)

– Backpropagate the error (by updating weights and biases)

– Terminating condition (when error is very small, etc.)

47

Defining a network topology
• Decide the network topology: Specify # of units in the input

layer, # of hidden layers (if > 1), # of units in each hidden layer,

and # of units in the output layer

• Normalize the input values for each attribute measured in the

training tuples to [0.0—1.0]

• One input unit per domain value, each initialized to 0

• Output, if for classification and more than two classes, one

output unit per class is used

• Once a network has been trained and its accuracy is still

unacceptable, repeat the training process with a different

network topology or a different set of initial weights

48

Neural network as a classifier
• Weakness

– Long training time

– Require a number of parameters typically best determined empirically,

e.g., the network topology or “structure.”

– Poor interpretability: difficult to interpret the symbolic meaning behind

the learned weights and of “hidden units” in the network

• Strength

– High tolerance to noisy data

– Ability to classify untrained patterns

– Well-suited for continuous-valued inputs and outputs

– Successful on an array of real-world data, e.g., hand-written letters

– Algorithms are inherently parallel

– Techniques exist for the extraction of explanations from trained neural

networks 49

Efficiency

• Efficiency of backpropagation: Each epoch (one iteration through the

training set) takes O(|D| * w), with |D| tuples and w weights, but # of

epochs can be large (e..g, exponential to n, the number of inputs), in

worst case

50

Interpretation of hidden layers

• What are the hidden layers doing?!

• Feature Extraction

• The non-linearities in the feature extraction
can make interpretation of the hidden layers
very difficult.

• This leads to Neural Networks being treated as
black boxes.

51

Deep learning =
learning of hierarchical representation

52

Overfitting and model complexity

• which curve is
more plausible
given the
data?

• overfitting
• neural nets are

especially
prone to
overfitting

• why?
53

Approaches to prevent overfitting

• Weight-decay

• Weight-sharing

• Early stopping

• Model averaging

• Bayesian fitting of neural nets

• Dropout

• Generative pre-training

• etc.

54

Deep learning successes

55

Weaknesses of deep learning

56

Failures on out-
of-distribution
examples

57

Michael A. Alcorn, Qi Li, Zhitao Gong,
Chengfei Wang, Long Mai, Wei-Shinn
Ku, Anh Nguyen (2018):
Strike (with) a Pose: Neural Networks
Are Easily Fooled by Strange Poses of
Familiar Objects. arXiv:1811.11553

Attacks on
neural
networks

58

