
Formal languages
University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural language processing, Edition 2024

Tiny introduction

Lecture outline

• regular expressions (here just for your quick revision)

• context dependent grammars

• Chomsky hierarchy

2

Regular expressions - a quick resume 1/3

• standard notation for characterizing text sequences

• used in all kinds of text processing and information extraction tasks

• many different syntaxes (Perl, grep, sed, awk, Python, etc)

• let‘s use regular expressions (RE) from python

• if A and B are REs then AB is RE

• a,b,…,z, A, B,… Z,0,1,…,9 are REs

• e.g. abeceda is RE

• . matches any character, e.g.: va.a matches vaba or vaza or vaya

• ^ matches the start of a string; ^.oga matches noga or joga, but not nadloga

• $ matches the end of a string

• * matches 0 or more repetitions of the previous RE: ab* matches a, ab, abb, …

• + matches 1 or more repetitions of the previous RE: ab+ matches ab, abb, … but not a

3

Regular expressions 2/3

• ? matches 0 or 1 repetitions of the previous RE: ab? matches a or ab

• *, + and ? are greedy: they match the longest possible string, e.g., <.*> on the
string <a> b <c> matches the whole string

• *?, +?, ?? cause minimal matching of *, +, and ?, e.g.,.: <.*?> on the string <a> b
<c> will match <a>

• {m} matches m repetitions of a previous RE: b{5} matches only bbbbb

• {m,n} matches from m to n repetitions of a previous RE

• {,n} is the same as {0,n}

• {m,} is the same as {m,∞}

• {m,n}? is a non-greedy variant of {m,n}

• \ is an escape character, it makes the next character special, e.g.,
\\ matches \
* matches * 4

Regular expressions 3/3

• [] represents a set of characters, e.g., [abc] matches a, b, or c;
with [] we can represent a sequence of characters, e.g., [a-z] matches all lowercase
letters from a to z
special characters inside the set are not special, e.g., ?,+,*

• [^] (^ as the first character) represents a complement of a set, e.g., [^abc] matches all
characters except a, b, and c

• | in A|B, where A and B are REs, means that RE matches A or B, several REs separated
with | is tested from left to right,
operator | is not greedy

• (…) matches RE in the parenthesis and marks a group, which can be used later or
retrieved with \group_number

• (?aiLmsux), where after ? there are one or more letters means:
a – only ASCII matches, i – ignore lower/uppercase, L – depend on the local settings,
m – multi-line, s – the dot matches everything, etc. – check the manual

• many other useful details

5

Example

• Find me all instances of the word “the” in a text.
the

Misses capitalized examples
[tT]he

Incorrectly returns other or theology
[^a-zA-Z][tT]he[^a-zA-Z]

Errors

• The process we just went through was based on fixing two
kinds of errors:

1. Matching strings that we should not have matched (there, then,
other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)
False negatives (Type II errors)

Errors cont.

• In NLP we are always dealing with these kinds of errors.

• Reducing the error rate for an application often involves two
antagonistic efforts:
• Increasing accuracy or precision (minimizing false positives)

• Increasing coverage or recall (minimizing false negatives).

Substitutions

• Substitution in Python and UNIX commands:

• s/regexp1/pattern/

• e.g.:

• s/colour/color/

Simple Application: ELIZA

• Early NLP system that imitated a Rogerian psychotherapist
(Weizenbaum, 1966).

• Uses pattern matching to match, e.g.,:
• “I need X”

and translates them into, e.g.
• “What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike.
IN WHAT WAY

They're always bugging us about something or other. CAN YOU
THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

• s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

• s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

• s/.* all .*/IN WHAT WAY?/

• s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Summary

• Regular expressions play a surprisingly large role
• Sophisticated sequences of regular expressions are often the first model for

any text processing text

• For hard tasks, we use machine learning classifiers
• But regular expressions are still used for pre-processing, or as features in the

classifiers

• Can be very useful in capturing generalizations

13

RE exercises

Write regular expressions for the following languages

• the set of all alphabetic strings;

• the set of all lower case alphabetic strings ending in a b

• the set of all strings with two consecutive repeated words (e.g., “Humbert

• Humbert” and “the the” but not “the bug” or “the big bug”);

• the set of all strings from the alphabet a,b such that each a is immediately

• preceded by and immediately followed by a b;

• all strings that start at the beginning of the line with an integer and that end at
the end of the line with a word;

• all strings that have both the word grotto and the word raven in them (but not,
e.g., words like grottos that merely contain the word grotto);

14

Formal Languages and Models

• Language: a (possibly infinite) set of strings made up of
symbols from a finite alphabet

• Model of a language: can recognize and generate all
and only the strings from the language
• Serves as a definition of the formal language

• Alphabet Σ is a finite set of symbols, e.g., Σ ={0,1} or Σ={a,b,c,d}.

• String is a sequence of symbols from alphabet

• ε is an empty set

• Σ  ΣΣ is a set of all strings of length 1 or 2
• Σ* is a set of all strings from alphabet

• imprecise notation, e.g., 0 is a symbol and 0 is a string, depending on the
context

15

Merrill, W., 2021. Formal Language Theory Meets Modern NLP. arXiv preprint arXiv:2102.10094.
About formal languages and their relation with neural networks.

https://arxiv.org/abs/2102.10094

Language

• Language is a subset of Σ* for an alphabet Σ.

• Example: language of 0 and 1, where there are no
two consecutive 1s

• L = {ε, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101,
0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010, .
. . }

16

Chomsky Hierarchy

• Regular language
• Model: regular expressions, finite state automata

• Context free language

• Context sensitive language

• Unrestricted language
• Model: Turning Machine

17

Regular Expressions and Languages

• A regular expression pattern can be mapped to a set of strings

• A regular expression pattern defines a language (in the formal sense)
– the class of this type of languages is called a regular language

18

An example of non-regular language

L1 = {0n1n | n ≥ 1}

L1 = {01, 0011, 000111,…}

19

An example

L2 = {w | w  {(,)}* with balanced brackets}.

E.g.: (), ()(), (()), (()()),…

20

21

Context Free Grammars (CFG)

• A context-free grammar is a notation for describing languages.

• It is more powerful than finite automata or RE’s, but still cannot
define all possible languages.

• Useful for nested structures, e.g., parentheses in programming
languages.

• Basic idea is to use “variables” to stand for sets of strings (i.e.,
languages).

• These variables are defined recursively, in terms of one another.

• Recursive rules (“productions”) involve only concatenation.

• Alternative rules for a variable allow union.

Example: CFG for { 0n1n | n > 1}

• Productions:
S -> 01

S -> 0S1

• 01 is part of a language

• if w is in the language, so is 0w1

22

Syntax

• Syntax = rules describing how words can connect to each other

• that and after year last

• I saw you yesterday

• colorless green ideas sleep furiously

• the kind of implicit knowledge of your native language that you had
mastered by the time you were 3 or 4 years old without explicit
instruction

• not necessarily the type of rules you were later taught in school.

Syntax

• Why should you care?
• Grammar checkers

• Question answering

• Information extraction

• Machine translation

25

CFG Formalism

• Terminals = symbols of the alphabet of the language being defined.

• Variables = nonterminals = a finite set of other symbols, each of which
represents a language.

• Start symbol = the variable whose language is the one being defined.

• A production has the form variable -> string of variables and terminals.

• Convention:
• A, B, C,… are variables.
• a, b, c,… are terminals.
• …, X, Y, Z are either terminals or variables.
• …, w, x, y, z are strings of terminals only.
• , , ,… are strings of terminals and/or variables.

26

Example: Formal CFG

• Here is a formal CFG for { 0n1n | n > 1}.

• Terminals = {0, 1}.

• Variables = {S}.

• Start symbol = S.

• Productions =
S -> 01

S -> 0S1

27

Derivations – Intuition

• We derive strings in the language of a CFG by starting with the start
symbol, and repeatedly replacing some variable A by the right side of
one of its productions.
• That is, the “productions for A” are those that have A on the left side of the ->.

28

Derivations – Formalism

• We say A =>  if A ->  is a production.

• Example: S -> 01; S -> 0S1.

• S => 0S1 => 00S11 => 000111.

29

Iterated Derivation

• =>* means “zero or more derivation steps.”

• Basis:  =>*  for any string .

• Induction: if  =>*  and  => , then  =>* .

30

Example: Iterated Derivation

• Productions: S -> 01; S -> 0S1.

• Derivation: S => 0S1 => 00S11 => 000111.

• So: S =>* S; S =>* 0S1; S =>* 00S11; S =>* 000111.

31

Language of a Grammar

• If G is a CFG, then L(G), the language of G, is {w | S =>* w}.
• Note: w must be a terminal string, S is the start symbol.

• Example: G has productions S -> ε and S -> 0S1.

• L(G) = {0n1n | n > 0}.

• Note: ε is a legitimate right side.

32

Context-Free Languages

• A language that is defined by some CFG is called a context-free
language.

• There are CFL’s that are not regular languages, such as the example
just given.

• But not all languages are CFL’s.

• Intuitively: CFL’s can count two things, not three.

33

Parse Trees

• Parse trees are trees labeled by symbols of a particular CFG.

• Leaves: labeled by a terminal or ε.

• Interior nodes: labeled by a variable.
• Children are labeled by the right side of a production for the parent.

• Root: must be labeled by the start symbol.

34

Example: Parse Tree

S -> SS | (S) | ()

S

SS

S)(

()

()

35

Ambiguous Grammars

• A CFG is ambiguous if there is a string in the language that is the yield
of two or more parse trees.

• Example: S -> SS | (S) | ()

• Two parse trees for ()()() on next slide.

36

Example

S

SS

S S

()

S

SS

SS

()()

() ()

()

37

Ambiguity is a Property of Grammars, not
Languages

• For the balanced-parentheses language, here is
another CFG, which is unambiguous.

B -> (RB | ε

R ->) | (RR

B, the start symbol,
derives balanced strings.

R generates strings that
have one more right bracket
than left.

38

Inherent Ambiguity

• It would be nice if for every ambiguous grammar, there were some
way to “fix” the ambiguity, as we did for the balanced-parentheses
grammar.

• Unfortunately, certain CFL’s are inherently ambiguous, meaning that
every grammar for the language is ambiguous.

39

Example: Inherent Ambiguity

• The language {0i1j2k | i = j or j = k} is inherently ambiguous.

• Intuitively, at least some of the strings of the form 0n1n2n must be
generated by two different parse trees, one based on checking the 0’s
and 1’s, the other based on checking the 1’s and 2’s.

40

One Possible Ambiguous Grammar

S -> AB | CD

A -> 0A1 | 01

B -> 2B | 2

C -> 0C | 0

D -> 1D2 | 12

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string with equal numbers of 0’s, 1’s, and 2’s. E.g.:
S => AB => 01B =>012
S => CD => 0D => 012

Exercises

• Write CFG for a language

• 𝐿 𝐺 = {all words of a form 𝑎𝑛𝑏𝑚𝑐𝑘 , where 𝑛 +
𝑚 = 𝑘}

• 𝐿 𝐺 = {all words of a form 𝑎𝑛𝑏𝑚𝑐𝑘 , where 𝑛 +
𝑘 = 𝑚}

41

42

Chomsky Normal Form

• A CFG is said to be in Chomsky Normal Form if every production is of
one of these two forms:

1. A -> BC (right side is two variables).

2. A -> a (right side is a single terminal).

• Theorem: If L is a CFL, then L – {ε} has a CFG in CNF.

Decision properties of CFG

1. w  L
2. L = {}
3. L is infinite
4. L1 = L2

5. L1  L2 = {}

43

Algorithm CYK – testing membership

• CYK: Cocke – Younger – Kasami

• CFG={V,T,S,P}

• answers the question x L (or equivalently S * x)

• examples
• is a given program correct according to the given grammar

• is the given sentence grammatically correct

• requires CFG in Chomsky normal form

• O(n3), where n = |w|.

44

45

CYK Algorithm

• Let w = a1…an.

• We construct an n-by-n triangular array of sets of variables.

• Xij = {variables A | A =>* ai…aj}.

• Induction on j–i+1.
• The length of the derived string.

• Finally, ask if S is in X1n.

46

CYK Algorithm – (2)

• Basis: Xii = {A | A -> ai is a production}.

• Induction: Xij = {A | there is a production A -> BC and an integer k,
with i < k < j, such that B is in Xik and C is in Xk+1,j.

CYK example

• S → A B
A → BC | a
B → CC | b
C → a

• ? S → aaab

47

a a a b

1 A,C A,C A,C B

2 B B S

3 S,A /

4 S

CYK exercises

• S → P N | other
P → I E
I → if
E → expression
N → T S
T → then

• is the sentence correct
S → if expression then if expression then other

48

• S → A C | B D | A E
C → B B
D → A A
E → B A | A B
A → a | A E | E A | B D
B → b | B E | E B | A C

• ? S → baabba

Tools for grammars

• gnu programs bison and yacc

• based on CFG, they generate a recognizer code in C, C++, or java

49

Chomsky hierarchy

50

Order 3

• Order 3 grammars are regular languages

• Grammars of the form

S → aA
S →a

51

Order 2

• CFGs

• Form A→

•  is a string of terminals and nonterminals

• programming languages

52

Order 1

• Context dependent grammars CDG

• Form A→

• A is a variable, , , and  are strings of terminals and nonterminals

•  and  can be empty,  has to be non-empty

• natural languages

53

Order 0

• Unbounded (Turing) grammars and Turing languages, i.e., languages
recognizable by Turing machines

• Form →

• There are languages unrecognizable with Turing machines – diagonal
proof

54

