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Lecture outline

• Text preprocessing and normalization

Read Chapter 2 in
Daniel Jurafsky & James H. Martin. Speech and Language 
Processing, 3rd edition draft, 2024. 

Some slides from this source
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Basic text preprocessing for the (classical)
NLP pipeline

• document → paragraphs → sentences → words

• words and sentences  POS tagging

• sentences  syntactical and grammatical analysis

• still present in neural pipeline, but also splits word into tokens
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Text preprocessing

• text normalization: transformation into a standard (canonic) form or any 
useful form, e.g., from non-standard language to standard

• upper/lower casing
• rediacritisation (e.g., for Slovene)
• notation of acronyms
• standard form of dates, time, and numbers
• stress marks, quotation marks, punctuation, 
• non-informative words
• spelling, e.g., US or GB
• emoticons, emoji, hashtags, web links
• editing and presentation markup, e.g., html tags
• spelling correction
• (subword) tokenization
• lemmatization and stemming

• other forms of text preparation, e.g., extraction from PDFs, structured files 
like XML, web crawl, etc.
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Token, type, term

• A token is an instance of a sequence of characters in some text processing 
task that are grouped together as a useful semantic unit for processing. 

• A type is the class of all tokens containing the same character sequence. 

• A term is a (perhaps normalized) type that is included in the system’s 
dictionary. 

• To sleep perchance to dream, 

• 5 tokens, 4 types (2 instances of to)

• if to is omitted from the index (as a stop word), then there will be only 3 
terms: sleep, perchance, and dream

• Warning: neural processing brings some ambiguity what is a (subword) 
token, e.g., ambiguity -> ambig #u #ity



Is the tokenization this simple?

## tokenizing a piece of text

doc = "I wrote this sentence"

for i, w in enumerate(doc.split(" ")):

print("Token " + str(i) + ": " + w)

Token 0: I

Token 1: wrote

Token 2: this

Token 3: sentence

7



How many words?

N = number of tokens

V = vocabulary = set of types, |V| is the size of vocabulary

Heaps Law = Herdan's Law:  𝑉 = 𝑘𝑁𝛽 where often .67 < β < .75

i.e., vocabulary size grows with > square root of the number of word tokens

Tokens = N Types = |V|

Switchboard phone conversations 2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA, edition 2010 440 million 2 million

Google N-grams 1 trillion 13+ million



Corpora

• Words don't appear out of nowhere. 

• A text is produced by a specific writer(s), at a specific time, in a 
specific variety of a specific language, for a specific function.



Corpora vary along dimension like

• Language: 7097 languages in the world
• Variety, like African American Language varieties.

• AAL Twitter posts might include forms like "iont" (I don't)

• Code switching, e.g., Spanish/English, Hindi/English:
S/E: Por primera vez veo a @username actually being hateful! It was 
beautiful:) 
[For the first time I get to see @username actually being hateful! it was 
beautiful:) ] 
H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”] 

• Genre: newswire, fiction, non-fiction, scientific articles, 
Wikipedia

• Author demographics: writer's age, gender, race, 
socioeconomic status, etc. 



Corpus datasheets

• Motivation: Why was the corpus collected, by whom, and who 
funded it? 

• Situation: In what situation was the text written?

• Collection process: If it is a subsample how was it sampled? Was 
there consent? Pre-processing?

• +Annotation process, language variety, speaker demographics

• See, e.g., corpora on Clarin.si



Text Normalization

• Most NLP task need text normalization: 
1. Segmenting/tokenizing words in running text
2. Normalizing word formats
3. Segmenting sentences in running text



Simple Tokenization in UNIX

• (Inspired by Ken Church’s UNIX for Poets.)

• Given a text file, output the word tokens and their frequencies

• Command tr (translate)

tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort 

| uniq –c 

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

....   …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type



Issues in Tokenization

• Can't just blindly remove punctuation:
• m.p.h., Ph.D., AT&T, cap’n. 

• prices ($45.55) 

• dates (01/02/06); 

• URLs; (http://www.stanford.edu), 

• hashtags (#nlproc), 

• email addresses (someone@cs.colorado.edu). 

• Clitics: a part of a word that can't stand on its own
• we're→ we are

• French j'ai, l'honneur

• Slovene: a b’ šlo

• Can "Multiword Expressions (MWE) be words?
• New York, rock ’n’ roll 



Issues in Tokenization

• Finland’s capital → Finland Finlands Finland’s ?

• what’re, I’m, isn’t  → What are, I am, is not

• Hewlett-Packard    → Hewlett Packard ?

• state-of-the-art      → state of the art ?

• Lowercase → lower-case lowercase lower case ?

• San Francisco → one token or two?

• m.p.h., PhD. → ??



Tokenization in NLTK

Bird et al. (2009)



Tokenization: language issues

• French
• L'ensemble→ one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

• German noun compounds are not segmented
• Lebensversicherungsgesellschaftsangestellter
• ‘life insurance company employee’
• German information retrieval needs compound 

splitter



Word Tokenization in Chinese

• Also called Word Segmentation

• Chinese words are composed of characters called hanzi

• Each one represents a meaning unit called a morpheme.
• Characters are generally 1 syllable and 1 morpheme.

• Average word is 2.4 characters long.

• But deciding what counts as a word is complex and not agreed upon

• Standard baseline segmentation algorithm: 
• Maximum Matching  (also called Greedy)

• So in Chinese it's common not to do word segmentation at all

• But in Thai and Japanese, it's required

• The standard algorithms are neural sequence models trained by 
supervised machine learning.



Words in preprocessing

• Lexical analysis (tokenizer, word segmented), not just spaces

• 1,999.00€    1.999,00€!  

• Ravne na Koroškem 

• Port-au-prince

• Rules, finite automata, statistical models, dictionaries (of  proper 
names), lexicons, ML models
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Subword Encoding tokenization

• Learn tokenization based on statistics

• Relevant for modern neural networks

• Use the data to tell us how to tokenize.

• Subword tokenization (because tokens are often parts of words)

• Can include common morphemes like -est or -er. 
• (A morpheme is the smallest meaning-bearing unit of a language; unlikeliest 

has morphemes un-, likely, and -est.) 

• Relevant for all languages, but crucial for morphologically-rich
languages such as Slovene

• What happens if subword tokenization is inadequate?



Subword tokenization

• Common algorithms:
• Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
• WordPiece (Schuster and Nakajima, 2012)

• Both have 2 parts:
• A token learner that takes a raw training corpus 

and induces a vocabulary (a set of tokens). 
• A token segmenter that takes a raw test sentence 

and tokenizes it according to that vocabulary



Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters 

= {A, B, C, D,…,a, b, c, d….}

• Repeat:
• choose the two symbols that are most frequently adjacent in training corpus 

(say ‘A’, ‘B’), 

• adds a new merged symbol ‘AB’ to the vocabulary

• replace every adjacent ’A’ ’B’ in corpus with ‘AB’. 

• Until k merges have been done.



BPE token learner algorithm



BPE in use

• Most subword algorithms are run inside white-space separated 
tokens. 

• So first add a special end-of-word symbol '__' before whitespace in 
training corpus

• Next, separate into letters.



BPE token learner

An example corpus :(

low low low low low lowest lowest newer newer newer        newer newer newer wider 
wider wider new new

Add end-of-word tokens and segment:



BPE token learner

Merge e r to er



BPE

Merge er  _ to er_



BPE

Merge n  e  to ne



BPE

The next merges are:



BPE token learner algorithm

• On the test data, run each merge learned from the training data:
• Greedily

• In the order we learned them

• (test frequencies don't play a role)

• So: merge every e r to er, then merge er _ to er_, etc.

• Result: 
• Test set "n e w e r _" would be tokenized as a full word 

• Test set "l o w e r _" would be two tokens: "low er_"



Term normalization

• Why we need to “normalize” terms 
• Information Retrieval (IR): indexed text & query terms must have the same 

form.
• We want to match U.S.A. and USA
• uhhuh or uh-huh
• Fed or fed
• am, is be, are 

• We implicitly define equivalence classes of terms
• e.g., deleting periods in a term

• Alternative: asymmetric expansion:
• Enter: window Search: window, windows
• Enter: windows Search: Windows, windows, window
• Enter: Windows Search: Windows

• Potentially more powerful, but less efficient



Case folding

• Applications like IR: reduce all letters to lower case
• Since users tend to use lower case
• Possible exception: upper case in mid-sentence?

• e.g., General Motors

• Fed vs. fed

• SAIL vs. sail

• For many uses case is helpful
• sentiment analysis, machine translation (MT), 

information extraction
• US versus us is important



Lemmatization

• Reduce inflections or variant forms to base form

• am, are, is → be

• car, cars, car's, cars'→ car

• the boy's cars are different colors→ the boy car be different color

• Lemmatization: have to find correct dictionary headword form

• Machine translation
• Slovene hočem (‘I want’), hočeš (‘you want’) have the same lemma as hoteti ‘want’



Lemmatization
• Lemmatization  is the process of grouping together the different inflected forms 

of a word so they can be analyzed as a single item.

• Lemmatization difficulty is language dependent i.e., depends on morphology

• English
• walk, walked, walking, walks,  ne pa walker
• go, goes, going, gone, went

• Slovene
• priti, pridem, prideš, pride, prideva, prideta, pridejo, pridemo, pridete, pridejo, ne pa 

prihod, prihodnost, prihajanje, prišlec
• vlak, vlaka, vlaku, vlakom, vlakov,vlakoma,vlakih,vlaki, vlake
• jaz, mene, meni, mano
• Gori na gori gori!
• Gori, na gori gori!

• Use rules, dictionaries, lexicons, machine learning models

• Ambiguity resolution may be difficult

Meni je vzel z mize (zapestnico).

• Quick solutions and heuristics, in English just remove suffixes:  –ing, -ation, -ed, 
…

• essential approach for morphologically rich languages (Slavic, Arabic, Turkish, 
Spanish, etc)
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Morphology

• Morphemes:
• Small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to stems

• Often with grammatical functions

• Morphological Parsers:
• Parse cats into two morphemes cat and s
• Parse Spanish amaren (‘if in the future they would love’) 

into morpheme amar ‘to love’, and the morphological 
features 3PL and future subjunctive. 



Dealing with complex morphology is 
sometimes necessary

• Some languages requires complex morpheme segmentation
• Turkish

• Uygarlastiramadiklarimizdanmissinizcasina

• `(behaving) as if you are among those whom we could not civilize’

• Uygar `civilized’ + las `become’ 
+ tir `cause’ + ama `not able’ 

+ dik `past’ + lar ‘plural’

+ imiz ‘p1pl’ + dan ‘abl’ 

+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 



Stemming

• stem: the root or main part of a word, to which inflections or formative 
elements are added

• in English

• simple solution: remove affixes 

• Stemmer operates on a single word without knowledge of the context, 
and therefore cannot discriminate between words which have different 
meanings depending on part of speech (meeting: a lemma is to meet or 
a meeting). Speed!

• Potter algorithm

• rare nowadays
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for example compressed 

and compression are both 

accepted as equivalent to 

compress.

for exampl compress and

compress ar both accept

as equival to compress



Sentences

• sentence delimiters – punctuation marks and capitalization are  
insufficient

• E.g., remains of  1. Timbuktu from 5c BC, were discovered by  
dr.  Barth.

• Regular expressions, rules, manually segmented corpora
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Sentence segmentation

• !, ? are relatively unambiguous

• Period “.” is quite ambiguous
• Sentence boundary

• Abbreviations like Inc. or Dr.

• Numbers like .02% or 4.3

• Build a binary ML classifier
• Looks at a “.”

• Decides EndOfSentence/NotEndOfSentence

• Classifiers: hand-written rules, regular expressions, or machine-learning



Determining if a word is end-of-sentence: a 
Decision Tree



More sophisticated features

• Case of word with “.”: Upper, Lower, Cap, Number

• Case of word after “.”: Upper, Lower, Cap, Number

• Numeric features
• Length of word with “.”
• Probability(word with “.” occurs at end-of-s)
• Probability(word after “.” occurs at beginning-of-s)



Tools

• every NLP library has a tokenizer, sentence delimiter, lemmatizer, 
e.g., NLTK, spaCy, Gensim

• for Slovene: CLASSLA-Stanza

• https://www.cjvt.si/viri/

• https://github.com/clarinsi

• for nonstandard Slovene (twits, forum messages)
• Nikola Ljubešić, Tomaž Erjavec, Darja Fišer: Orodja za procesiranje 

nestandardne slovenščine. V Fišer, D. (ur). 2018. Viri, orodja in metode za 
analizo spletne slovenščine. Ljubljana: Znanstveni založbi Filozofske 
fakultete Univerze v Ljubljani. 
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