University of Ljubljana, Faculty of Computer and Information Science

Text preprocessing

Prof Dr Marko Robnik-Šikonja Natural language processing, Edition 2024

Lecture outline

• Text preprocessing and normalization

Read Chapter 2 in Daniel Jurafsky & James H. Martin. Speech and Language Processing, 3rd edition draft, 2024.

Some slides from this source

Basic text preprocessing for the (classical) NLP pipeline

- document \rightarrow paragraphs \rightarrow sentences \rightarrow words
- words and sentences \leftarrow POS tagging
- sentences \leftarrow syntactical and grammatical analysis
- still present in neural pipeline, but also splits word into tokens

Text preprocessing

LooL :-)

- text normalization: transformation into a standard (canonic) form or any useful form, e.g., from non-standard language to standard
 - upper/lower casing
 - rediacritisation (e.g., for Slovene)
 - notation of acronyms
 - standard form of dates, time, and numbers
 - stress marks, quotation marks, punctuation,
 - non-informative words
 - spelling, e.g., US or GB
 - emoticons, emoji, hashtags, web links
 - editing and presentation markup, e.g., html tags
 - spelling correction
 - (subword) tokenization
 - lemmatization and stemming
- other forms of text preparation, e.g., extraction from PDFs, structured files like XML, web crawl, etc.

Token, type, term

- A *token* is an instance of a sequence of characters in some text processing task that are grouped together as a useful semantic unit for processing.
- A type is the class of all tokens containing the same character sequence.
- A *term* is a (perhaps normalized) type that is included in the system's dictionary.
- To sleep perchance to dream,
- 5 tokens, 4 types (2 instances of to)
- if *to* is omitted from the index (as a stop word), then there will be only 3 terms: *sleep*, *perchance*, and *dream*
- Warning: neural processing brings some ambiguity what is a (subword) token, e.g., ambiguity -> ambig #u #ity

Is the tokenization this simple?

```
## tokenizing a piece of text
doc = "I wrote this sentence"
for i, w in enumerate(doc.split(" ")):
    print("Token " + str(i) + ": " + w)
```

Token 0: I Token 1: wrote Token 2: this Token 3: sentence

How many words?

N = number of tokens

V = vocabulary = set of types, **|V|** is the size of vocabulary

Heaps Law = Herdan's Law: $|V| = kN^{\beta}$ where often .67 < β < .75

i.e., vocabulary size grows with > square root of the number of word tokens

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
COCA, edition 2010	440 million	2 million
Google N-grams	1 trillion	13+ million

Corpora

- Words don't appear out of nowhere.
- A text is produced by a specific writer(s), at a specific time, in a specific variety of a specific language, for a specific function.

Corpora vary along dimension like

- Language: 7097 languages in the world
- Variety, like African American Language varieties.
 - AAL Twitter posts might include forms like "iont" (I don't)
- Code switching, e.g., Spanish/English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:)]

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe

["he was and will remain a friend ... don't worry ... but have faith"]

- Genre: newswire, fiction, non-fiction, scientific articles, Wikipedia
- Author demographics: writer's age, gender, race, socioeconomic status, etc.

Corpus datasheets

- **Motivation**: Why was the corpus collected, by whom, and who funded it?
- **Situation**: In what situation was the text written?
- **Collection process**: If it is a subsample how was it sampled? Was there consent? Pre-processing?
- +Annotation process, language variety, speaker demographics
- See, e.g., corpora on Clarin.si

Text Normalization

- Most NLP task need text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

Simple Tokenization in UNIX

- (Inspired by Ken Church's UNIX for Poets.)
- Given a text file, output the word tokens and their frequencies
- Command tr (translate)

.

- 6 Abbey
- 3 Abbot

.... ...

Issues in Tokenization

- Can't just blindly remove punctuation:
 - m.p.h., Ph.D., AT&T, cap'n.
 - prices (\$45.55)
 - dates (01/02/06);
 - URLs; (http://www.stanford.edu),
 - hashtags (#nlproc),
 - email addresses (someone@cs.colorado.edu).
- Clitics: a part of a word that can't stand on its own
 - we're \rightarrow we are
 - French j'ai, l'honneur
 - Slovene: a b' šlo
- Can "Multiword Expressions (MWE) be words?
 - New York, rock 'n' roll

Issues in Tokenization

- Finland's capital \rightarrow Finland Finlands Finland's ?
- what're, I'm, isn't \rightarrow What are, I am, is not
- Hewlett-Packard \rightarrow Hewlett Packard ?
- state-of-the-art \rightarrow state of the art ?
- Lowercase \rightarrow lower-case lowercase lower case ?
- San Francisco \rightarrow one token or two?
- m.p.h., PhD. \rightarrow ??

Tokenization in NLTK

Bird et al. (2009)

>>> text = 'That U.S.A. poster-print costs \$12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
... | \w+(-\w+)* # words with optional internal hyphens
... | \\$?\d+(\.\d+)?%? # currency and percentages, e.g. \$12.40, 82%
... | \.\.\ # ellipsis
... | [][.,;"'?():-_'] # these are separate tokens; includes], [
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '\$12.40', '...']

Tokenization: language issues

- French
 - *L'ensemble* \rightarrow one token or two?
 - *L* ? *L*′ ? *Le* ?
 - Want *l'ensemble* to match with *un ensemble*
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Word Tokenization in Chinese

- Also called Word Segmentation
- Chinese words are composed of characters called hanzi
- Each one represents a meaning unit called a morpheme.
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- But deciding what counts as a word is complex and not agreed upon
- Standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)
- So in Chinese it's common not to do word segmentation at all
- But in Thai and Japanese, it's required
- The standard algorithms are neural sequence models trained by supervised machine learning.

Words in preprocessing

- Lexical analysis (tokenizer, word segmented), not just spaces
- 1,999.00€ 1.999,00€!
- Ravne na Koroškem
- Port-au-prince
- Rules, finite automata, statistical models, dictionaries (of proper names), lexicons, ML models

Subword Encoding tokenization

- Learn tokenization based on statistics
- Relevant for modern neural networks
- Use the data to tell us how to tokenize.
- Subword tokenization (because tokens are often parts of words)
- Can include common morphemes like *-est* or *-er*.
 - (A morpheme is the smallest meaning-bearing unit of a language; *unlikeliest* has morphemes *un-*, *likely*, and *-est*.)
- Relevant for all languages, but crucial for morphologically-rich languages such as Slovene
- What happens if subword tokenization is inadequate?

Subword tokenization

- Common algorithms:
 - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
 - WordPiece (Schuster and Nakajima, 2012)
- Both have 2 parts:
 - A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters

= {A, B, C, D,...,a, b, c, d....}

- Repeat:
 - choose the two symbols that are most frequently adjacent in training corpus (say 'A', 'B'),
 - adds a new merged symbol 'AB' to the vocabulary
 - replace every adjacent 'A' 'B' in corpus with 'AB'.
- Until *k* merges have been done.

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

 $V \leftarrow$ all unique characters in C# initial set of tokens is charactersfor i = 1 to k do# merge tokens til k times $t_L, t_R \leftarrow$ Most frequent pair of adjacent tokens in C $t_{NEW} \leftarrow t_L + t_R$ # make new token by concatenating $V \leftarrow V + t_{NEW}$ # update the vocabularyReplace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpusreturn V

BPE in use

- Most subword algorithms are run inside white-space separated tokens.
- So first add a special end-of-word symbol '___' before whitespace in training corpus
- Next, separate into letters.

BPE token learner

An example corpus :(

low low low low low est lowest newer newer newer newer newer newer wider wider new new

Add end-of-word tokens and segment:

corp	us						VOC	abu	lary	7							
5	1	0	W		_		,	d,	e,	i,	1,	n,	Ο,	r,	s,	t,	W
2	1	0	W	e	S	t _											
6	n	e	W	e	r												
3	W	i	d	e	r												
2	n	e	W														

BPE token learner

corpus

5 low __
2 lowest__
6 newer__
3 wider__
2 new__

vocabulary _, d, e, i, l, n, o, r, s, t, w

Merge er to er

 corpus
 vocabulary

 5
 low _______, d, e, i, l, n, o, r, s, t, w, er

 2
 low e s t ______

 6
 n e w er _______

 3
 w i d er _______

 2
 n e w ______

BPE

- 6 newer_
- 3 wider_
- 2 new_

BPE

CO	rpus	vocabulary
5		_, d, e, i, l, n, o, r, s, t, w, er, er_
2	lowest_	
6	n e w er_	
3	w i d er_	
2	n e w	
Mer	rgenetone	
corj	pus	vocabulary
5	l o w	, d, e, i, l, n, o, r, s, t, w, er, er, ne
2	lowest_	
6	ne w er_	
3	w i d er_	
2	ne w	

The next merges are:

 Merge
 Current Vocabulary

 (ne, w)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new

 (l, o)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo

 (lo, w)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low

 (new, er_)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer_

 (low, _)
 , d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer_, low_

BPE token learner algorithm

- On the test data, run each merge learned from the training data:
 - Greedily
 - In the order we learned them
 - (test frequencies don't play a role)
- So: merge every e r to er, then merge er _ to er_, etc.
- Result:
 - Test set "n e w e r _" would be tokenized as a full word
 - Test set "I o w e r _" would be two tokens: "low er_"

Term normalization

- Why we need to "normalize" terms
 - Information Retrieval (IR): indexed text & query terms must have the same form.
 - We want to match U.S.A. and USA
 - uhhuh or uh-huh
 - Fed or fed
 - am, is be, are
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:
 - Enter: *window* Search: *window, windows*
 - Enter: *windows* Search: *Windows, windows, window*
 - Enter: *Windows* Search: *Windows*
- Potentially more powerful, but less efficient

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For many uses case is helpful
 - sentiment analysis, machine translation (MT), information extraction
 - **US** versus **us** is important

Lemmatization

- Reduce inflections or variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization: have to find correct dictionary headword form
- Machine translation
 - Slovene hočem ('I want'), hočeš ('you want') have the same lemma as hoteti 'want'

Lemmatization

- Lemmatization is the process of grouping together the different inflected forms of a word so they can be analyzed as a single item.
- Lemmatization difficulty is language dependent i.e., depends on morphology
- English
 - walk, walked, walking, walks, ne pa walker
 - go, goes, going, gone, went
- Slovene
 - priti, pridem, prideš, pride, prideva, prideta, pridejo, pridemo, pridete, pridejo, ne pa prihod, prihodnost, prihajanje, prišlec
 - vlak, vlaka, vlaku, vlakom, vlakov, vlakoma, vlakih, vlaki, vlake
 - jaz, mene, meni, mano
 - Gori na gori gori!
 - Gori, na gori gori!
- Use rules, dictionaries, lexicons, machine learning models
- Ambiguity resolution may be difficult

Meni je vzel z mize (zapestnico).

- Quick solutions and heuristics, in English just remove suffixes: *—ing, -ation, -ed,* ...
- essential approach for morphologically rich languages (Slavic, Arabic, Turkish, Spanish, etc)

Morphology

- Morphemes:
 - Small meaningful units that make up words
 - Stems: The core meaning-bearing units
 - Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions
- Morphological Parsers:
 - Parse *cats* into two morphemes *cat* and *s*
 - Parse Spanish *amaren* ('if in the future they would love') into morpheme *amar* 'to love', and the morphological features *3PL* and *future subjunctive*.

Dealing with complex morphology is sometimes necessary

- Some languages requires complex morpheme segmentation
 - Turkish
 - Uygarlastiramadiklarimizdanmissinizcasina
 - `(behaving) as if you are among those whom we could not civilize'
 - Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Stemming

- stem: the root or main part of a word, to which inflections or formative elements are added
- in English
- simple solution: remove affixes

for example compressed and compression are both accepted as equivalent to compress. for exampl compress and compress ar both accept as equival to compress

- Stemmer operates on a single word without knowledge of the context, and therefore cannot discriminate between words which have different meanings depending on part of speech (meeting: a lemma is to meet or a meeting). Speed!
- Potter algorithm
- rare nowadays

Sentences

- sentence delimiters punctuation marks and capitalization are insufficient
- E.g., remains of 1. Timbuktu from 5c BC, were discovered by dr. Barth.
- Regular expressions, rules, manually segmented corpora

Sentence segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary ML classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Determining if a word is end-of-sentence: a Decision Tree

More sophisticated features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

Tools

- every NLP library has a tokenizer, sentence delimiter, lemmatizer, e.g., NLTK, spaCy, Gensim
- for Slovene: CLASSLA-Stanza
- https://www.cjvt.si/viri/
- <u>https://github.com/clarinsi</u>
- for nonstandard Slovene (twits, forum messages)
 - Nikola Ljubešić, Tomaž Erjavec, Darja Fišer: Orodja za procesiranje nestandardne slovenščine. V Fišer, D. (ur). 2018. Viri, orodja in metode za analizo spletne slovenščine. Ljubljana: Znanstveni založbi Filozofske fakultete Univerze v Ljubljani.