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On the Worst-Case Complexity of TimSort
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Abstract

TimSort is an intriguing sorting algorithm designed in 2002 for Python, whose worst-case complexity was

announced, but not proved until our recent preprint. In fact, there are two slightly different versions of

TimSort that are currently implemented in Python and in Java respectively. We propose a pedagogical and

insightful proof that the Python version runs in time O(n log n). The approach we use in the analysis also

applies to the Java version, although not without very involved technical details. As a byproduct of our study,

we uncover a bug in the Java implementation that can cause the sorting method to fail during the execution.

We also give a proof that Python’s TimSort running time is in O(n + nH), where H is the entropy of the

distribution of runs (i.e. maximal monotonic sequences), which is quite a natural parameter here and part of

the explanation for the good behavior of TimSort on partially sorted inputs. Finally, we evaluate precisely

the worst-case running time of Python’s TimSort, and prove that it is equal to 1.5nH + O(n).
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1 Introduction

TimSort is a sorting algorithm designed in 2002 by Tim Peters [9], for use in the Python programming

language. It was thereafter implemented in other well-known programming languages such as Java. The

algorithm includes many implementation optimizations, a few heuristics and some refined tuning, but

its high-level principle is rather simple: The sequence S to be sorted is first decomposed greedily into

monotonic runs (i.e. nonincreasing or nondecreasing subsequences of S as depicted on Figure 1), which

are then merged pairwise according to some specific rules.

S = ( 12, 10, 7, 5
︸ ︷︷ ︸

first run

, 7, 10, 14, 25, 36
︸ ︷︷ ︸

second run

, 3, 5, 11, 14, 15, 21, 22
︸ ︷︷ ︸

third run

, 20, 15, 10, 8, 5, 1
︸ ︷︷ ︸

fourth run

)

Figure 1 A sequence and its run decomposition computed by TimSort: for each run, the first two elements

determine if it is increasing or decreasing, then it continues with the maximum number of consecutive elements

that preserves the monotonicity.

The idea of starting with a decomposition into runs is not new, and already appears in Knuth’s

NaturalMergeSort [6], where increasing runs are sorted using the same mechanism as in MergeSort.

Other merging strategies combined with decomposition into runs appear in the literature, such as the

MinimalSort of [10] (see also [2] for other considerations on the same topic). All of them have nice

properties: they run in O(n log n) and even O(n+n log ρ), where ρ is the number of runs, which is optimal

in the model of sorting by comparisons [7], using the classical counting argument for lower bounds. And

yet, among all these merge-based algorithms, TimSort was favored in several very popular programming

languages, which suggests that it performs quite well in practice.

TimSort running time was implicitly assumed to be O(n log n), but our unpublished preprint [1]

contains, to our knowledge, the first proof of it. This was more than ten years after TimSort started

being used instead of QuickSort in several major programming languages. The growing popularity of

this algorithm invites for a careful theoretical investigation. In the present paper, we make a thorough

analysis which provides a better understanding of the inherent qualities of the merging strategy of Tim-

Sort. Indeed, it reveals that, even without its refined heuristics,1 this is an effective sorting algorithm,

computing and merging runs on the fly, using only local properties to make its decisions.

1 These heuristics are useful in practice, but do not improve the worst-case complexity of the algorithm.

http://arxiv.org/abs/1805.08612v3
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Algorithm 1: TimSort (Python 3.6.5)

Input : A sequence S to sort

Result: The sequence S is sorted into a single run, which remains on the stack.

Note: The function merge_force_collapse repeatedly pops the last two runs on the stack R, merges

them and pushes the resulting run back on the stack.

1 runs← a run decomposition of S

2 R ← an empty stack

3 while runs 6= ∅ do // main loop of TimSort

4 remove a run r from runs and push r onto R

5 merge_collapse(R)

6 if height(R) 6= 1 then // the height of R is its number of runs

7 merge_force_collapse(R)

We first propose in Section 3 a new pedagogical and self-contained exposition that TimSort runs in

time O(n+n log n), which we want both clear and insightful. In fact, we prove a stronger statement: on an

input consisting of ρ runs of respective lengths r1, . . . , rρ, we establish that TimSort runs in O(n+nH) ⊆
O(n + n log ρ) ⊆ O(n + n log n), where H = H(r1/n, . . . , rρ/n) and H(p1, . . . , pρ) = − ∑ρ

i=1 pi log2(pi) is

the binary Shannon entropy.

We then refine this approach, in Section 4, to derive precise bounds on the worst-case running time

of TimSort, and we prove that it is equal to 1.5nH + O(n). This answers positively a conjecture of [3].

Of course, the first result follows from the second, but since we believe that each one is interesting on its

own, we devote one section to each of them.

To introduce our last contribution, we need to look into the evolution of the algorithm: there are

actually not one, but two main versions of TimSort. The first version of the algorithm contained a flaw,

which was spotted in [4]: while the input was correctly sorted, the algorithm did not behave as announced

(because of a broken invariant). This was discovered by De Gouw and his co-authors while trying to prove

formally the correctness of TimSort. They proposed a simple way to patch the algorithm, which was

quickly adopted in Python, leading to what we consider to be the real TimSort. This is the one we

analyze in Sections 3 and 4. On the contrary, Java developers chose to stick with the first version of

TimSort, and adjusted some tuning values (which depend on the broken invariant; this is explained in

Sections 2 and 5) to prevent the bug exposed by [4]. Motivated by its use in Java, we explain in Section 5

how, at the expense of very complicated technical details, the elegant proofs of the Python version can be

twisted to prove the same results for this older version. While working on this analysis, we discovered yet

another error in the correction made in Java. Thus, we compute yet another patch, even if we strongly

agree that the algorithm proposed and formally proved in [4] (the one currently implemented in Python)

is a better option.

2 TimSort core algorithm

The idea of TimSort is to design a merge sort that can exploit the possible “non randomness” of the

data, without having to detect it beforehand and without damaging the performances on random-looking

data. This follows the ideas of adaptive sorting (see [7] for a survey on taking presortedness into account

when designing and analyzing sorting algorithms).

The first feature of TimSort is to work on the natural decomposition of the input sequence into

maximal runs. In order to get larger subsequences, TimSort allows both nondecreasing and decreasing

runs, unlike most merge sort algorithms.

Then, the merging strategy of TimSort (Algorithm 1) is quite simple yet very efficient. The runs

are considered in the order given by the run decomposition and successively pushed onto a stack. If some

conditions on the size of the topmost runs of the stack are not satisfied after a new run has been pushed,

this can trigger a series of merges between pairs of runs at the top or right under. And at the end, when

all the runs in the initial decomposition have been pushed, the last operation is to merge the remaining
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Algorithm 2: The merge_collapse procedure (Python 3.6.5)

Input : A stack of runs R

Result: The invariant of Equations (1) and (2) is established.

Note: The runs on the stack are denoted by R[1] . . .R[height(R)], from top to bottom. The length of

run R[i] is denoted by ri. The blue highlight indicates that the condition was not present in the

original version of TimSort (this will be discussed in section 5).

1 while height(R) > 1 do

2 n← height(R)− 2

3 if (n > 0 and r3 6 r2 + r1) or (n > 1 and r4 6 r3 + r2) then

4 if r3 < r1 then

5 merge runs R[2] and R[3] on the stack

6 else merge runs R[1] and R[2] on the stack

7 else if r2 6 r1 then

8 merge runs R[1] and R[2] on the stack

9 else break

runs two by two, starting at the top of the stack, to get a sorted sequence. The conditions on the stack

and the merging rules are implemented in the subroutine called merge_collapse detailed in Algorithm 2.

This is what we consider to be TimSort core mechanism and this is the main focus of our analysis.

Another strength of TimSort is the use of many effective heuristics to save time, such as ensuring

that the initial runs are not to small thanks to an insertion sort or using a special technique called

“galloping” to optimize the merges. However, this does not interfere with our analysis and we will not

discuss this matter any further.

Let us have a closer look at Algorithm 2 which is a pseudo-code transcription of the merge_collapse

procedure found in the latest version of Python (3.6.5). To illustrate its mechanism, an example of

execution of the main loop of TimSort (lines 3-5 of Algorithm 1) is given in Figure 2. As stated in its

note [9], Tim Peter’s idea was that:

“The thrust of these rules when they trigger merging is to balance the run lengths as closely as

possible, while keeping a low bound on the number of runs we have to remember.”

To achieve this, the merging conditions of merge_collapse are designed to ensure that the following

invariant2 is true at the end of the procedure:

ri+2 > ri+1 + ri, (1)

ri+1 > ri. (2)

This means that the runs lengths ri on the stack grow at least as fast as the Fibonacci numbers and,

therefore, that the height of the stack stays logarithmic (see Lemma 10, section 3).

Note that the bound on the height of the stack is not enough to justify the O(n log n) running time

of TimSort. Indeed, without the smart strategy used to merge the runs “on the fly”, it is easy to build

an example using a stack containing at most two runs and that gives a Θ(n2) complexity: just assume

that all runs have size two, push them one by one onto a stack and perform a merge each time there are

two runs in the stack.

We are now ready to proceed with the analysis of TimSort complexity. As mentioned earlier, Al-

gorithm 2 does not correspond to the first implementation of TimSort in Python, nor to the current

one in Java, but to the latest Python version. The original version will be discussed in details later, in

Section 5.

2 Actually, in [9], the invariant is only stated for the 3 topmost runs of the stack.
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Figure 2 The successive states of the stack R (the values are the lengths of the runs) during an execution of

the main loop of TimSort (Algorithm 1), with the lengths of the runs in runs being (24, 18, 50, 28, 20, 6, 4, 8, 1).

The label #1 indicates that a run has just been pushed onto the stack. The other labels refer to the different

merges cases of merge_collapse as translated in Algorithm 3.

Algorithm 3: TimSort: translation of Algorithm 1 and Algorithm 2

Input : A sequence to S to sort

Result: The sequence S is sorted into a single run, which remains on the stack.

Note: At any time, we denote the height of the stack R by h and its ith top-most run (for 1 6 i 6 h) by

Ri. The size of this run is denoted by ri.

1 runs← the run decomposition of S

2 R ← an empty stack

3 while runs 6= ∅ do // main loop of TimSort

4 remove a run r from runs and push r onto R // #1

5 while true do

6 if h > 3 and r1 > r3 then merge the runs R2 and R3 // #2

7 else if h > 2 and r1 > r2 then merge the runs R1 and R2 // #3

8 else if h > 3 and r1 + r2 > r3 then merge the runs R1 and R2 // #4

9 else if h > 4 and r2 + r3 > r4 then merge the runs R1 and R2 // #5

10 else break

11 while h 6= 1 do merge the runs R1 and R2

3 TimSort runs in O(n log n)

At the first release of TimSort [9], a time complexity of O(n log n) was announced with no element of

proof given. It seemed to remain unproved until our recent preprint [1], where we provide a confirmation of

this fact, using a proof which is not difficult but a bit tedious. This result was refined later in [3], where

the authors provide lower and upper bounds, including explicit multiplicative constants, for different

merge sort algorithms.

Our main concern is to provide an insightful proof of the complexity of TimSort, in order to highlight

how well designed is the strategy used to choose the order in which the merges are performed. The present

section is more detailed than the following ones as we want it to be self-contained once TimSort has

been translated into Algorithm 3 (see below).

As our analysis is about to demonstrate, in terms of worst-case complexity, the good performances

of TimSort do not rely on the way merges are performed. Thus we choose to ignore their many

optimizations and consider that merging two runs of lengths r and r′ requires both r + r′ element moves

and r + r′ element comparisons. Therefore, to quantify the running time of TimSort, we only take into

account the number of comparisons performed.

In particular, aiming at computing precise bounds on the running time of TimSort, we follow [5, 1,

3, 8] and define the merge cost for merging two runs of lengths r and r′ as r + r′, i.e., the length of the

resulting run. Henceforth, we will identify the time spent for merging two runs with the merge cost of

this merge.
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◮ Theorem 1. Let C be the class of arrays of length n, whose run decompositions consist of ρ mono-

tonic runs of respective lengths r1, . . . , rρ. Let H(p1, . . . , pρ) = − ∑ρ
i=1 pi log2(pi) be the binary Shannon

entropy, and let H = H(r1/n, . . . , rρ/n).

The running time of TimSort on arrays in C is O(n + nH).

From this result, we easily deduce the following complexity bound on TimSort, which is less precise

but more simple.

◮ Theorem 2. The running time of TimSort on arrays of length n that consist of ρ monotonic runs is

O(n + n log ρ), and therefore O(n log n).

Proof. The function f : x 7→ −x ln(x) is concave on the interval R>0 of positive real numbers, since its

second derivative is f ′′(x) = −1/x. Hence, when p1, . . . , pρ are positive real numbers that sum up to one,

we have H(p1, . . . , pρ) =
∑ρ

i=1 f(pi)/ ln(2) 6 ρf(1/ρ)/ ln(2) = log2(ρ). In particular, this means that

H 6 log2(ρ), and therefore that TimSort runs in time O(n + n log ρ). Since ρ 6 n, it further follows

that O(n + n log ρ) ⊆ O(n + n log n) = O(n log n), which completes the proof. ◭

Before proving Theorem 1, we first show that it is optimal up to a multiplicative constant, by recalling

the following variant of a result from [2, Theorem 2].

◮ Proposition 3. For every algorithm comparing only pairs of elements, there exists an array in the class

C whose sorting requires at least nH − 3n element comparisons.

Proof. In the comparison model, at least log2(|C|) element comparisons are required for sorting all arrays

in C. Hence, we prove below that log2(|C|) > nH − 3n.

Let π = (π1, . . . , πρ) be a partition of the set {1, . . . , n} into ρ subsets of respective sizes r1, . . . , rρ;

we say that π is nice if max πi > min πi+1 for all i 6 ρ − 1. Let us denote by P the set of partitions π of

{1, . . . , n} such that |πi| = ri for all i 6 ρ, and by N the set of nice partitions.

Let us transform every partition π ∈ P into a nice partition as follows. First, by construction of the

run decomposition of an array, we know that r1, . . . , rρ−1 > 2, and therefore that min πi < max πi for

all i 6 ρ − 1. Then, for all i 6 ρ − 1, if max πi < min πi+1, we exchange the partitions to which belong

max πi and min πi+1, i.e., we move max πi from the set πi to πi+1, and min πi+1 from πi+1 to πi. Let π∗

be the partition obtained after these exchanges have been performed.

Observe that π∗ is nice, and that at most 2ρ−1 partitions π ∈ P can be transformed into π∗. This

proves that 2ρ−1|N | > |P|. Let us further identify every nice partition π∗ with an array in C, which starts

with the elements of π∗

1 (listed in increasing order), then of π∗

2 , . . . , π∗

ρ. We thereby define an injective

map from N to C, which proves that |C| > |N |.
Finally, variants of the Stirling formula indicate that (k/e)k 6 k! 6 e

√
k(k/e)k for all k > 1. This

proves that

log2(|C|) > log2(|C|) > (1 − ρ) + log2(|P|)
> (1 − ρ) + n log2(n) − ρ log2(e) − ∑ρ

i=1(ri + 1/2) log2(ri)

> nH + (1 − ρ − ρ log2(e)) − 1/2
∑ρ

i=1 log2(ri).

By concavity of the function x 7→ log2(x), it follows that
∑ρ

i=1 log2(ri) 6 ρ log2(n/ρ). One checks easily

that the function x 7→ x log2(n/x) takes its maximum value at x = n/e, and since n > ρ, we conclude

that log2(|C|) > nH − (1 + log2(e) + log2(e)/e)n > nH − 3n. ◭

We focus now on proving Theorem 1. The first step consists in rewriting Algorithm 1 and Algorithm 2

in a form that is easier to deal with. This is done in Algorithm 3.

◮ Claim 4. For any input, Algorithms 1 and 3 perform the same comparisons.

Proof. The only difference is that Algorithm 2 was changed into the while loop of lines 5 to 10 in

Algorithm 3. Observing the different cases, it is straightforward to verify that merges involving the same

runs take place in the same order in both algorithms. Indeed, if r3 < r1, then r3 6 r1 + r2, and therefore

line 5 is triggered in Algorithm 2, so that both algorithms merge the 2nd and 3rd runs. On the contrary,
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if r3 > r1, then both algorithms merge the 1st and 2nd runs if and only if r2 6 r1 or r3 6 r1 + r2 (or

r4 6 r2 + r3). ◭

◮ Remark 5. Proving Theorem 2 only requires analyzing the main loop of the algorithm (lines 3 to 10).

Indeed, computing the run decomposition (line 1) can be done on the fly, by a greedy algorithm, in time

linear in n, and the final loop (line 11) might be performed in the main loop by adding a fictitious run of

length n + 1 at the end of the decomposition.

In the sequel, for the sake of readability, we also omit checking that h is large enough to trigger the

cases #2 to #5. Once again, such omissions are benign, since adding fictitious runs of respective lengths

8n, 4n, 2n and n (in this order) at the beginning of the decomposition would ensure that h > 4 during

the whole loop.

We sketch now the main steps of our proof, i.e., the amortized analysis of the main loop. A first step

is to establish the invariant (1) and (2), ensuring an exponential growth of the run lengths within the

stack.

Elements of the input array are easily identified by their starting position in the array, so we consider

them as well-defined and distinct entities (even if they have the same value). The height of an element

in the stack of runs is the number of runs that are below it in the stack: the elements belonging to the

run Ri in the stack S = (R1, . . . , Rh) have height h − i, and we recall that the length of the run Ri is

denoted by ri.

◮ Lemma 6. At any step during the main loop of TimSort, we have ri + ri+1 < ri+2 for all i ∈
{3, . . . , h − 2}.

Proof. We proceed by induction. The proof consists in verifying that, if the invariant holds at some

point, then it still holds when an update of the stack occurs in one of the five situations labeled #1 to #5

in the algorithm. This can be done by a straightforward case analysis. We denote by S = (R1, . . . , Rh)

the new state of the stack after the update:

If Case #1 just occurred, a new run R1 was pushed. This implies that none of the conditions of Cases

#2 to #5 hold in S, otherwise merges would have continued. In particular, we have r2 + r3 < r4. As

ri = ri−1 for all i > 2, and since the invariant holds for S, it also holds for S.

If one of the Cases #2 to #5 just occurred, ri = ri+1 for all i > 3. Since the invariant holds for S, it

must also hold for S. ◭

◮ Corollary 7. During the main loop of TimSort, whenever a run is about to be pushed onto the stack,

we have ri 6 2(i+1−j)/2rj for all integers i 6 j 6 h.

Proof. Since a run is about to be pushed, none of the conditions of Cases #2 to #5 hold in the stack S.

Hence, we have r1 < r2, r1 +r2 < r3 and r2 +r3 < r4, and Lemma 6 further proves that ri+ri+1 < ri+2 for

all i ∈ {3, . . . , h − 2}. In particular, for all i 6 h − 2, we have ri < ri+1, and thus 2ri 6 ri + ri+1 6 ri+2.

It follows immediately that ri 6 2−kri+2k 6 2−kri+2k+1 for all integers k > 0, which is exactly the

statement of Corollary 7. ◭

Corollary 7 will be crucial in proving that the main loop of TimSort can be performed for a merge

cost O(n + nH). However, we do not prove this upper bound directly. Instead, we need to distinguish

several situations that may occur within the main loop.

Consider the sequence of Cases #1 to #5 triggered during the execution of the main loop of TimSort.

It can be seen as a word on the alphabet {#1, . . . , #5} that starts with #1, which completely encodes

the execution of the algorithm. We split this word at every #1, so that each piece corresponds to an

iteration of the main loop. Those pieces are in turn split into two parts, at the first occurrence of a

symbol #3, #4 or #5. The first half is called a starting sequence and is made of a #1 followed by the

maximal number of #2’s. The second half is called an ending sequence, it starts with #3, #4 or #5 (or

is empty) and it contains no occurrence of #1 (see Figure 3 for an example).
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#1 #2 #2 #2
︸ ︷︷ ︸

starting seq.

#3 #2 #5 #2 #4 #2
︸ ︷︷ ︸

ending seq.

#1 #2 #2 #2 #2 #2
︸ ︷︷ ︸

starting seq.

#5 #2 #3 #3 #4 #2
︸ ︷︷ ︸

ending seq.

Figure 3 The decomposition of the encoding of an execution into starting and ending sequences.

We bound the merge cost of starting sequences first, and will deal with ending sequences afterwards.

◮ Lemma 8. The cost of all merges performed during the starting sequences is O(n).

Proof. More precisely, for a stack S = (R1, . . . , Rh), we prove that a starting sequence beginning with

a push of a run R of size r onto S uses at most γr comparisons in total, where γ is the real constant

2
∑

j>1 j/2j/2. After the push, the stack is S = (R, R1, . . . , Rh) and, if the starting sequence contains

k > 1 letters, i.e. k − 1 occurrences of #2, then this sequence amounts to merging the runs R1, R2, . . . ,

Rk. Since no merge is performed if k = 1, we assume below that k > 2.

More precisely, the total cost of these merges is

C = (k − 1)r1 + (k − 1)r2 + (k − 2)r3 + . . . + rk 6
∑k

i=1(k + 1 − i)ri.

The last occurrence of Case #2 ensures that r > rk, hence applying Corollary 7 to the stack S =

(R1, . . . , Rh) shows that r > rk > 2(k−1−i)/2ri for all i = 1, . . . , k. It follows that

C/r 6
∑k

i=1(k + 1 − i)2(i+1−k)/2 = 2
∑k

j=1j2−j/2 < γ.

This concludes the proof, since each run is the beginning of exactly one starting sequence, and the

sum of their lengths is n. ◭

Now, we must take care of run merges that take place during ending sequences. The cost of merging

two runs will be taken care of by making run elements pay tokens: whenever two runs of lengths r and

r′ are merged, r + r′ tokens are paid (not necessarily by the elements of those runs that are merged). In

order to do so, and to simplify the presentation, we also distinguish two kinds of tokens, the ♦-tokens

and the ♥-tokens, which can both be used to pay for comparisons.

Two ♦-tokens and one ♥-token are credited to an element when its run is pushed onto the stack or

when its height later decreases because of a merge that took place during an ending sequence: in the latter

case, all the elements of R1 are credited when R1 and R2 are merged, and all the elements of R1 and R2

are credited when R2 and R3 are merged. Tokens are spent to pay for comparisons, depending on the

case triggered:

Case #2: every element of R1 and R2 pays 1 ♦. This is enough to cover the cost of merging R2 and

R3, because r1 > r3 in this case, and therefore r2 + r1 > r2 + r3.

Case #3: every element of R1 pays 2 ♦. In this case r1 > r2, and the cost is r1 + r2 6 2r1.

Cases #4 and #5: every element of R1 pays 1 ♦ and every element of R2 pays 1 ♥. The cost r1 + r2

is exactly the number of tokens spent.

◮ Lemma 9. The balances of ♦-tokens and ♥-tokens of each element remain non-negative throughout

the main loop of TimSort.

Proof. In all four cases #2 to #5, because the height of the elements of R1 and possibly the height of

those of R2 decrease, the number of credited ♦-tokens after the merge is at least the number of ♦-tokens

spent. The ♥-tokens are spent in Cases #4 and #5 only: every element of R2 pays one ♥-token, and

then belongs to the topmost run R1 of the new stack S = (R1, . . . , Rh−1) obtained after merging R1

and R2. Since Ri = Ri+1 for i > 2, the condition of Case #4 implies that r1 > r2 and the condition of

Case #5 implies that r1 + r2 > r3: in both cases, the next modification of the stack S is another merge,

which belongs to the same ending sequence.

This merge decreases the height of R1, and therefore decreases the height of the elements of R2, who

will regain one ♥-token without losing any, since the topmost run of the stack never pays with ♥-tokens.

This proves that, whenever an element pay one ♥-token, the next modification is another merge during

which it regains its ♥-token. This concludes the proof by direct induction. ◭
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Finally, consider some element belonging to a run R. Let S be the stack just before pushing the

run R, and let S = (R1, . . . , Rh) be the stack just after the starting sequence of the run R (i.e., the

starting sequence initiated when R is pushed onto S) is over. Every element of R will be given at most

2h ♦-tokens and h ♥-tokens during the main loop of the algorithm.

◮ Lemma 10. The height of the stack when the starting sequence of the run R is over satisfies the

inequality h 6 4 + 2 log2(n/r).

Proof. Since none of the runs R3, . . . , Rh has been merged during the starting sequence of R, applying

Corollary 7 to the stack S proves that r3 6 22−h/2rh 6 22−h/2n. The run R has not yet been merged

either, which means that r = r1. Moreover, at the end of this starting sequence, the conditions of case

#2 do not hold anymore, which means that r1 6 r3. It follows that r = r1 6 r3 6 22−h/2n, which entails

the desired inequality. ◭

Collecting all the above results is enough to prove Theorem 1. First, as mentioned in Remark 5,

computing the run decomposition can be done in linear time. Then, we proved that the starting sequences

of the main loop have a merge cost O(n), and that the ending sequences have a merge cost O(
∑ρ

i=1(1 +

log(n/ri))ri) = O(n + nH). Finally, the additional merges of line 11 may be taken care of by Remark 5.

This concludes the proof of the theorem.

4 Refined analysis and precise worst-case complexity

The analysis performed in Section 3 proves that TimSort sorts arrays in time O(n+nH). Looking more

closely at the constants hidden in the O notation, we may in fact prove that the cost of merges performed

during an execution of TimSort is never greater than 6nH + O(n). However, the lower bound provided

by Proposition 3 only proves that the cost of these merges must be at least nH+O(n). In addition, there

exist sorting algorithms [8] whose merge cost is exactly nH + O(n).

Hence, TimSort is optimal only up to a multiplicative constant. We focus now on finding the least

real constant κ such that the merge cost of TimSort is at most κnH+O(n), thereby proving a conjecture

of [3].

◮ Theorem 11. The merge cost of TimSort on arrays in C is at most κnH + O(n), where κ = 3/2.

Furthermore, κ = 3/2 is the least real constant with this property.

The rest of this Section is devoted to proving Theorem 11. The theorem can be divided into two

statements: one that states that TimSort is asymptotically optimal up to a multiplicative constant of

κ = 3/2, and one that states that κ is optimal. The latter statement was proved in [3]. Here, we borrow

their proof for the sake of completeness.

◮ Proposition 12. There exist arrays of length n on which the merge cost of TimSort is at least

3/2n log2(n) + O(n).

Proof. The dynamics of TimSort when sorting an array involves only the lengths of the monotonic runs

in which the array is split, not the actual array values. Hence, we identify every array with the sequence

of its run lengths. Therefore, every sequence of run lengths 〈r1, . . . , rρ〉 such that r1, . . . , rρ−1 > 2, rρ > 1

and r1 + . . . + rρ = n represents at least one possible array of length n.

We define inductively a sequence of run lengths R(n) as follows:

R(n) =







〈n〉 if 1 6 n 6 6,

R(k) · R(k − 2) · 〈2〉 if n = 2k for some k > 4,

R(k) · R(k − 1) · 〈2〉 if n = 2k + 1 for some k > 3,

where the concanetation of two sequences s and t is denoted by s · t.

Then, let us apply the main loop of TimSort on an array whose associated monotonic runs have

lengths r = 〈r1, . . . , rρ〉, starting with an empty stack. We denote the associated merge cost by c(r) and,
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if S = (R1, . . . , Rh) is the stack obtained after the main loop has been applied, we denote by s(r) the

sequence 〈r1, . . . , rh〉.
An immediate induction shows that, if r1 > r2 + . . . + rρ + 1, then c(r) = c(〈r2, . . . , rρ〉) and s(r) =

〈r1〉 ·s(〈r2, . . . , rρ〉). Similarly, if r1 > r2 + . . .+rρ +1 and r2 > r3 + . . .+rρ +1, then c(r) = c(〈r3, . . . , rρ〉)
and s(r) = 〈r1, r2〉 · s(〈r3, . . . , rρ〉).

Consequently, and by another induction on n, it holds that s(R(n)) = 〈n〉 and that

c(R(n)) =







0 if 1 6 n 6 6,

c(R(k)) + c(R(k − 2)) + 3k if n = 2k for some k > 4,

c(R(k)) + c(R(k − 1)) + 3k + 2 if n = 2k + 1 for some k > 3.

Let ux = c(R(⌊x⌋)) and vx = (ux−4 − 15/2)/x − 3 log2(x)/2. An immediate induction shows that

c(R(n)) > c(R(n + 1)) for all integers n > 0, which means that x 7→ ux is non-decreasing. Then, we have

un = un/2 + u(n−3)/2 + ⌈3n/2⌉ for all integers n > 6, and therefore ux > 2ux/2−2 + 3(x − 1)/2 for all real

numbers x > 6. Consequently, for x > 11, it holds that

xvx = ux−4 − 3x log2(x)/2 − 15/2 > 2ux/2−4 + 3(x − 5)/2 − 3x log2(x)/2 − 15/2 = xvx/2.

This proves that vx > vx/2, from which it follows that vx > inf{vt : 11/2 6 t < 11}. Since vt =

−15/(2t) − 3 log2(t)/2 > −15/11 − 3 log2(11)/2 > −7 for all t ∈ [11/2, 11), we conclude that vx > −7 for

all x > 11, and thus that

c(R(n)) = un > (n + 4)vn+4 + 3(n + 4) log2(n + 4)/2 > 3n log2(n)/2 − 7(n + 4),

thereby proving Proposition 12. ◭

It remains to prove the first statement of Theorem 11. Our initial step towards this statement consists

in refining Lemma 6. This is the essence of Lemmas 13 to 15.

◮ Lemma 13. At any step during the main loop of TimSort, if h > 4, we have r2 < r4 and r3 < r4.

Proof. We proceed by induction. The proof consists in verifying that, if the invariant holds at some

point, then it still holds when an update of the stack occurs in one of the five situations labeled #1 to #5

in the algorithm. This can be done by a straightforward case analysis. We denote by S = (R1, . . . , Rh)

the stack just before the update, and by S = (R1, . . . , Rh) the new state of the stack after the update:

If Case #1 just occurred, a new run R1 was pushed. This implies that the conditions of Cases #2 and

#4 did not hold in S, otherwise merges would have continued. In particular, we have r2 = r1 < r3 = r4

and r3 = r2 < r1 + r2 < r3 = r4.

If one of the Cases #2 to #5 just occurred, it holds that r2 6 r2 + r3, that r3 = r4 and that r4 = r5.

Since Lemma 6 proves that r3 + r4 < r5, it follows that r2 6 r2 + r3 < r3 + r4 < r5 = r4 and that

r3 = r4 < r3 + r4 < r5 = r4. ◭

◮ Lemma 14. At any step during the main loop of TimSort, and for all i ∈ {3, . . . , h}, it holds that

r2 + . . . + ri−1 < φ ri.

Proof. Like for Lemmas 6 and 13, we proceed by induction and verify that, if the invariant holds at

some point, then it still holds when an update of the stack occurs in one of the five situations labeled

#1 to #5 in the algorithm. Let us denote by S = (R1, . . . , Rh) the stack just before the update, and by

S = (R1, . . . , Rh) the new state of the stack after the update:

If Case #1 just occurred, then we proceed by induction on i > 3. First, for i = 3, since the

conditions for Cases #3 and #4 do not hold in S, we know that r2 = r1 < r2 = r3 and that

r2 + r3 = r1 + r2 < r3 = r4. Then, for i > 5, Lemma 6 states that ri−2 + ri−1 < ri, and therefore

(i) if ri−1 6 φ−1 ri, then r2 + . . . + ri−1 < (φ + 1)ri−1 = φ2ri−1 6 φri, and

(ii) if ri−1 > φ−1 ri, then ri−2 6 (1 − φ−1) ri = φ−2 ri, and thus r2 + . . . + ri−1 < (φ + 1) ri−2 + ri−1 6

φ ri−2 + ri 6 (φ−1 + 1)ri = φ ri.

Hence, in that case, it holds that r2 + . . . + ri−1 < φ ri for all i ∈ {3, . . . , h}.
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If one of the Cases #2 to #5 just occurred, it holds that r2 6 r2 + r3 and that rj = rj+1 for all j > 3.

It follows that r2 + . . . + ri−1 6 r2 + . . . + ri < φ ri+1 = ri. ◭

◮ Remark. We could also have derived directly Lemma 13 from Lemma 14, by noting that φ2 r2 =

(φ + 1)r2 < φ r2 + φ r3 < φ2 r4.

◮ Lemma 15. After every merge that occurred during an ending sequence, we have r1 < φ2r2.

Proof. Once again, we proceed by induction. We denote by S = (R1, . . . , Rh) the stack just before an

update occurs, and by S = (R1, . . . , Rh) the new state of the stack after after the update:

If Case #2 just occurred, then this update is not the first one within the ending sequence, hence r1 =

r1 < φ2 r2 < φ2(r2 + r3) = φ2 r2.

If one of the Cases #2 to #5 just occurred, then r1 6 r3 and Lemma 14 proves that r2 < φ r3, which

proves that r1 = r1 + r2 < (φ + 1)r3 = φ2 r2. ◭

◮ Lemma 16. After every merge triggered by Case #2, we have r2 < φ2r1.

Proof. We denote by S = (R1, . . . , Rh) the stack just before an update triggered by Case #2 occurs, and

by S = (R1, . . . , Rh) the new state of the stack after after the update. It must hold that r1 > r3 and

Lemma 14 proves that r2 < φ r3. It follows that r2 = r2 + r3 < (φ + 1)r3 = φ2 r3 < φ2 r1 = φ2 r1. ◭

Our second step towards proving the first statement of Theorem 11 consists in identifying which

sequences of merges an ending sequence may be made of. More precisely, in the proof of Lemma 9, we

proved that every merge triggered by a case #4 or #5 must be followed by another merge, i.e., it cannot

be the final merge of an ending sequence.

We present now a variant of this result, which involves distinguishing between merges triggered by a

case #2 and those triggered by a case #3, #4 or #5. Hence, we denote by #X every #3, #4 or #5.

◮ Lemma 17. No ending sequence contains two conscutive #2’s, nor does it contain a subsequence of

the form #X #X #2.

Proof. Every ending sequence starts with an update #X, where #X is equal to #3, #4 or #5. Hence,

it suffices to prove that no ending sequence contains a subsequence t of the form #X #X #2 or #X

#2 #2.

Indeed, for the sake of contradiction, assume that it does, and let S = (R1, . . . , Rh) be the stack just

before t starts. We distinguish two cases, depending on the value of t:

If t is the sequence #X #X #2, it must hold that r1 +r2 < r4 and that r1 +r2 +r3 > r5, as illustrated

in Figure 4 (top). Since Lemma 6 proves that r3 +r4 < r5, it follows that r1 +r2 +r3 > r5 > r3 +r4 >

r1 + r2 + r3, which is impossible.

If t is the sequence #X #2 #2, it must hold that r1 < r3 and that r1 + r2 > r5, as illustrated in

Figure 4 (bottom). Since Lemmas 6 and 13 prove that r3 + r4 < r5 and that r2 < r4, it comes that

r1 + r2 > r5 > r3 + r4 > r1 + r2, which is also impossible. ◭

Our third step consists in modifying the cost allocation we had chosen in Section 3, which is not

sufficient to prove Theorem 11. Instead, we associate to every run R its potential, which depends only

on the length r of the run, and is defined as pot(r) = 3r log2(r)/2. We also call potential of a set of runs

the sum of the potentials of the runs it is formed of, and potential variation of a (sequence of) merges

the increase in potential caused by these merge(s).

We shall prove that the potential variation of every ending sequence dominates its merge cost, up

to a small error term. In order to do this, let us study more precisely individual merges. Below, we

respectively denote by ∆pot(m) and c(m) the potential variation and the merge cost of a merge m. Then,

we say that m is a balanced merge if c(m) 6 ∆pot(m).

In the next Lemmas, we prove that most merges are balanced or can be grouped into sequences of

merges that are balanced overall.

◮ Lemma 18. Let m be a merge between two runs R and R′. If φ−2 r 6 r′ 6 φ2 r, then m is balanced.
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Figure 4 Applying successively merges #X #2 #2 or #X #X #2 to a stack is impossible.

Proof. Let x = r/(r + r′): we have Φ < x < 1 − Φ, where Φ = 1/(1 + φ2). Then, observe that

∆(m) = 3(r + r′)H(x)/2, where H(x) = −x log2(x) − (1 − x) log2(x) is the binary Shannon entropy of a

Bernoulli law of parameter x. Moreover, the function z 7→ H(z) = H(1 − z) is increasing on [0, 1/2]. It

follows that H(x) > H(Φ) ≈ 0.85 > 2/3, and therefore that ∆(m) > r + r′ = c(m). ◭

◮ Lemma 19. Let m be a merge that belongs to some ending sequence. If m is a merge #2, then m is

balanced and, if m is followed by another merge m′, then m′ is also balanced.

Proof. Lemma 17 ensures that m was preceded by another merge m⋆, which must be a merge #X.

Denoting by S = (R1, . . . , Rh) the stack just before the merge m⋆ occurs, the update m consists in

merging the runs R3 and R4. Then, it comes that r1 6 r3 and that r1 + r2 > r4, while Lemma 13 and 14

respectively prove that r3 < r4 and that r2 < φ r3. Hence, we both have r3 < r4 and r4 < r1 + r2 <

(1 + φ)r3 = φ2 r3, and Lemma 19 proves that m is balanced.

Then, if m is followed by another merge m′, Lemma 17 proves that m′ is also a merge #X, between

runs of respective lengths r1 + r2 and r3 + r4. Note that r1 6 r3 and that r1 + r2 > r4. Since Lemma 13

proves that r2 < r4 and that r3 < r4, it follows that 2(r1 + r2) > 2r4 > r3 + r4 > r1 + r2 and, using the

fact that 2 < 1 + φ = φ2, Lemma 19 therefore proves that m is balanced. ◭

◮ Lemma 20. Let m be a merge #X between two runs R1 and R2 such that r1 < φ−2 r2. Then, m is

followed by another merge m′, and c(m) + c(m′) 6 ∆pot(m) + ∆pot(m
′).

Proof. Let m⋆ be the update the immediately precedes m. Let also S⋆ = (R⋆
1, . . . , R⋆

h⋆), S = (R1, . . . , Rh)

and S′ = (R′

1, . . . , R′

h′) be the respective states of the stack just before m⋆ occurs, just before m occurs

and just after m occurs.

Since r1 < φ−2 r2, Lemma 16 proves that m⋆ is either an update #1 or a merge #X. In both cases,

it follows that r2 < r3 and that r2 + r3 < r4. Indeed, if m⋆ is an update #1, then we must have

r2 = r⋆
1 < r⋆

2 = r3 and r2 + r3 = r⋆
1 + r⋆

2 < r⋆
3 = r4, and if m′ is a merge #X, then Lemmas 6 and 13

respectively prove that r2 + r3 = r⋆
3 + r⋆

4 < r⋆
5 = r4 and that r2 = r⋆

3 < r⋆
4 = r3.

Then, since m is a merge #X, we also know that r1 6 r3. Since r1 < φ−2 r2 and r2 + r3 < r4, this

means that r1 + r2 > r3. It follows that r′

2 = r3 6 r1 + r2 = r′

1 and that r′

1 = r1 + r2 6 r2 + r3 < r4 = r′

3.

Consequently, the merge m must be followed by a merge m′, which is triggered by case #3.

Finally, let x = r1/(r1 + r2) and y = (r1 + r2)/(r1 + r2 + r3). It comes that c(m) + c(m′) =

(r1 +r2 +r3)(1+y) and that ∆pot(m)+∆pot(m
′) = 3(r1 +r2 +r3) (yH(x) + H(y))/2, where we recall that

H is the binary Shannon entropy function, with H(t) = −t log2(t)−(1− t) log2(t). The above inequalities

about r1, r2 and r3 prove that 0 6 2−1/y 6 x 6 1/(1+φ2). Since H is increasing on the interval [0, 1/2],

and since 1 + φ2 > 2, it follows that ∆pot(m) + ∆pot(m
′) > 3(r1 + r2 + r3) (yH(2 − 1/y) + H(y))/2.

Hence, let F (y) = 3 (yH(2 − 1/y) + H(y))/2 − (1 + y). We shall prove that F (y) > 0 for all y > 0

such that 0 6 2 − 1/y 6 1/(1 + φ2), i.e., such that 1/2 6 y 6 (1 + φ2)/(1 + 2φ2). To that mean,

observe that F ′′(y) = 3/((1 − y)(1 − 2y) ln(2)) < 0 for all y ∈ (1/2, 1). Thus, F is concave on (1/2, 1).
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Since F (1/2) = 0 and F (3/4) = 1/2, it follows that F (y) > 0 for all y ∈ [1/2, 3/4]. Checking that

(1 + φ2)/(1 + 2φ2) < 3/4 completes the proof. ◭

◮ Lemma 21. Let m be the first merge of the ending sequence associated with a run R. Let R1 and R2

be the runs that m merges together. If r1 > φ2 r2, it holds that c(m) 6 ∆pot(m) + r.

Proof. By definition of m, we have R = R1, and thus r = r1 > r2. Hence, it follows that ∆pot(m) =

r log((r + r2)/r) + r2 log((r + r2)/r2) > r2 log((r + r2)/r2) > r2 = c(m) − r. ◭

◮ Proposition 22. Let s be the ending sequence associated with a run R, and let ∆pot(s) and c(s) be its

potential variation and its merge cost. It holds that c(s) 6 ∆pot(s) + r.

Proof. Let us group the merges of s as follows:

(i) if m is an unbalanced merge #X between two runs R1 and R2 such that r1 < r2, then m is followed

by another merge m′, and we group m and m′ together;

(ii) otherwise, and if m has not been grouped with its predecessor, it forms its own group.

In case (i), Lemma 21 ensures that m′ itself cannot be grouped with another merge. This means that

our grouping is unambiguous.

Then, let g be such a group, with potential variation ∆pot(g) and merge cost c(g). Lemmas 18 to 21

prove that c(g) 6 ∆pot(g) + r if g is formed of the first merge of s only, and that c(g) 6 ∆pot(g) in all

other cases. Proposition 22 follows. ◭

Collecting all the above results is enough to prove Theorem 11. First, like in Section 3, computing

the run decomposition and merging runs in starting sequences has a cost O(n), and the final merges of

line 11 may be taken care of by Remark 5. Second, by Proposition 22, ending sequences have a merge cost

dominated by ∆pot + n, where ∆pot is the total variation of potential during the algorithm. Observing

that ∆pot = −3/2
∑ρ

i=1 ri log2(ri/n) = −3nH/2 concludes the proof of the theorem.

5 About the Java version of TimSort
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Figure 5 Execution of the main loop of Java’s TimSort (Algorithm 3, without merge case #5, at line 9), with

the lengths of the runs in runs being (24, 18, 50, 28, 20, 6, 4, 8, 1). When the second to last run (of length 8) is

pushed onto the stack, the while loop of line 5 stops after only one merge, breaking the invariant (in red), unlike

what we see in Figure 2 using the Python version of TimSort.

Algorithm 2 (and therefore Algorithm 3) does not correspond to the original TimSort. Before release

3.4.4 of Python, the second part of the condition (in blue) in the test at line 3 of merge_collapse (and

therefore merge case #5 of Algorithm 3) was missing. This version of the algorithm worked fine, meaning

that it did actually sort arrays, but the invariant given by Equation (1) did not hold. Figure 5 illustrates

the difference caused by the missing condition when running Algorithm 3 on the same input as in Figure 2.

This was discovered by de Gouw et al. [4] when trying to prove the correctness of the Java imple-

mentation of TimSort (which is the same as in the earlier versions of Python). And since the Java

version of the algorithm uses the (wrong) invariant to compute the maximum size of the stack used to

store the runs, the authors were able to build a sequence of runs that causes the Java implementation of

TimSort to crash. They proposed two solutions to fix TimSort: reestablish the invariant, which led to

the current Python version, or keep the original algorithm and compute correct bounds for the stack size,

which is the solution that was chosen in Java 9 (note that this is the second time these values had to be

changed). To do the latter, the developers used the claim in [4] that the invariant cannot be violated for
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two consecutive runs on the stack, which turns out to be false,3 as illustrated in Figure 6. Thus, it is

still possible to cause the Java implementation to fail: it uses a stack of runs of size at most 49 and we

were able to compute an example requiring a stack of size 50 (see http://igm.univ-mlv.fr/~pivoteau/

Timsort/Test.java), causing an error at runtime in Java’s sorting method.
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Figure 6 Execution of the main loop of the Java version of TimSort (without merge case #5, at line 9 of

Algorithm 3), with the lengths of the runs in runs being (109, 83, 25, 16, 8, 7, 26, 2, 27). When the algorithm stops,

the invariant is violated twice, for consecutive runs (in red).

Even if the bug we highlighted in Java’s TimSort is very unlikely to happen, this should be corrected.

And, as advocated by de Gouw et al. and Tim Peters himself,4 we strongly believe that the best solution

would be to correct the algorithm as in the current version of Python, in order to keep it clean and

simple. However, since this is the implementation of Java’s sort for the moment, there are two questions

we would like to tackle: Does the complexity analysis holds without the missing condition? And, can we

compute an actual bound for the stack size? We first address the complexity question. It turns out that

the missing invariant was a key ingredient for having a simple and elegant proof.

◮ Proposition 23.Full proof in
Section A.1.1.

At any time during the main loop of Java’s TimSort, if the stack of runs is

(R1, . . . , Rh) then we have r3 < r4 < . . . < rh and, for all i > 3, we have (2 +
√

7)ri > r2 + . . . + ri−1.

Proof ideas. The proof of Proposition 23 is much more technical and difficult than insightful, and there-

fore we just summarize its main steps. As in previous sections, this proof relies on several inductive

arguments, using both inductions on the number of merges performed, on the stack size and on the

run sizes. The inequalities r3 < r4 < . . . < rh come at once, hence we focus on the second part of

Proposition 23.

Since separating starting and ending sequences was useful in Section 4, we first introduce the notion

of stable stacks: a stack S is stable if, when operating on the stack S = (R1, . . . , Rh), Case #1 is triggered

(i.e. Java’s TimSort is about to perform a run push operation).

We also call obstruction indices the integers i > 3 such that ri 6 ri−1 + ri−2: although they do not

exist in Python’s TimSort, they may exist, and even be consecutive, in Java’s TimSort. We prove

that, if i − k, i − k + 1, . . . , i are obstruction indices, then the stack sizes ri−k−2, . . . , ri grow “at linear

speed”. For instance, in the last stack of Figure 6, obstruction indices are 4 and 5, and we have r2 = 28,

r3 = r2 + 28, r4 = r3 + 27 and r5 = r4 + 26.

Finally, we study so-called expansion functions, i.e. functions f : [0, 1] 7→ R such that, for every stable

stack S = (R1, . . . , Rh), we have r2 + . . . + rh−1 6 rhf(rh−1/rh). We exhibit an explicit function f such

that f(x) 6 2 +
√

7 for all x ∈ [0, 1], and we prove by induction on rh that f is an expansion function,

from which we deduce Proposition 23. ◭

Once Proposition 23 is proved, we easily recover the following variant of Lemmas 6 and 10.

◮ Lemma 24. At any time during the main loop of Java’s TimSort, if the stack is (R1, . . . , Rh) then

we have r2/(2 +
√

7) 6 r3 < r4 < . . . < rh and, for all i > j > 3, we have ri > δi−j−4rj , where

δ =
(
5/(2 +

√
7)

)1/5
> 1. Furthermore, at any time during an ending sequence, including just before it

starts and just after it ends, we have r1 6 (2 +
√

7)r3.

3 This is the consequence of a small error in the proof of their Lemma 1. The constraint C1 > C2 has no reason to be.
Indeed, in our example, we have C1 = 25 and C2 = 31.

4 Here is the discussion about the correction in Python: https://bugs.python.org/issue23515.

http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
https://bugs.python.org/issue23515
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Proof. The inequalities r2/(2 +
√

7) 6 r3 < r4 < . . . < rh are just a (weaker) restatement of Proposi-

tion 23. Then, for j > 3, we have (2 +
√

7)rj+5 > rj + . . . + rj+4 > 5rj , i.e. rj+5 > δ5rj , from which one

gets that ri > δi−j−4rj .

Finally, we prove by induction that r1 6 (2 +
√

7)r3 during ending sequences. First, when the

ending sequence starts, r1 < r3 6 (2 +
√

7)r3. Before any merge during this sequence, if the stack is

S = (R1, . . . Rh), then we denote by S = (R1, . . . , Rh−1) the stack after the merge. If the invariant holds

before the merge, in Case #2, we have r1 = r1 6 (2 +
√

7)r3 6 (2 +
√

7)r4 = (2 +
√

7)r3; and using

Proposition 23 in Cases #3 and #4, we have r1 = r1 + r2 and r1 6 r3, hence r1 = r1 + r2 6 r2 + r3 6

(2 +
√

7)r4 = (2 +
√

7)r3, concluding the proof. ◭

We can then recover a proof of complexity for the Java version of TimSort, by following the same

proof as in Sections 3 and 4, but using Lemma 24 instead of Lemmas 6 and 10.

◮ Theorem 25. The complexity of Java’s TimSort on inputs of size n with ρ runs is O(n + n log ρ).

Another question is that of the stack size requirements of Java’s TimSort, i.e. computing hmax. A

first result is the following immediate corollary of Lemma 24.

◮ Corollary 26. On an input of size n, Java’s TimSort will create a stack of runs of maximal size

hmax 6 7 + logδ(n), where δ =
(
5/(2 +

√
7)

)1/5
.

Proof. At any time during the main loop of Java’s TimSort on an input of size n, if the stack is

(R1, . . . , Rh) and h > 3, it follows from Lemma 24 that n > rh > δh−7r3 > δh−7. ◭

Unfortunately, for integers smaller than 231, Corollary 26 only proves that the stack size will never

exceed 347. However, in the comments of Java’s implementation of TimSort,5 there is a remark that

keeping a short stack is of some importance, for practical reasons, and that the value chosen in Python

– 85 – is “too expensive”. Thus, in the following, we go to the extent of computing the optimal bound.

It turns out that this bound cannot exceed 86 for such integers. This bound could possibly be refined

slightly, but definitely not to the point of competing with the bound that would be obtained if the

invariant of Equation (1) were correct. Once more, this suggests that implementing the new version of

TimSort in Java would be a good idea, as the maximum stack height is smaller in this case.

◮ Theorem 27.Full proof in
Sections A.1.2

and A.1.3.

On an input of size n, Java’s TimSort will create a stack of runs of maximal size

hmax 6 3 + log∆(n), where ∆ = (1 +
√

7)1/5. Furthermore, if we replace ∆ by any real number ∆′ > ∆,

the inequality fails for all large enough n.

Proof ideas. The first part of Theorem 27 is proved as follows. Ideally, we would like to show that

ri+j > ∆jri for all i > 3 and some fixed integer j. However, these inequalities do not hold for all i. Yet,

we prove that they hold if i + 2 and i + j + 2 are not obstruction indices, and i + j + 1 is an obstruction

index, and it follows quickly that rh > ∆h−3.

The optimality of ∆ is much more difficult to prove. It turns out that the constants 2+
√

7, (1+
√

7)1/5,

and the expansion function referred to in the proof of Proposition 23 were constructed as least fixed points

of non-decreasing operators, although this construction needed not be explicit for using these constants

and function. Hence, we prove that ∆ is optimal by inductively constructing sequences of run sizes that

show that lim sup{log(rh)/h} > ∆; much care is required for proving that our constructions are indeed

feasible. ◭

6 Conclusion

At first, when we learned that Java’s QuickSort had been replaced by a variant of MergeSort, we

thought that this new algorithm – TimSort – should be really fast and efficient in practice, and that

we should look into its average complexity to confirm this from a theoretical point of view. Then, we

5 Comment at line 168: http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java.

http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java
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realized that its worst-case complexity had not been formally established yet and we first focused on giving

a proof that it runs in O(n log n), which we wrote in a preprint [1]. In the present article, we simplify this

preliminary work and provide a short, simple and self-contained proof of TimSort’s complexity, which

sheds some light on the behavior of the algorithm. Based on this description, we were also able to answer

positively a natural question, which was left open so far: does TimSort runs in O(n + n log ρ), where ρ

is the number of runs? We hope our theoretical work highlights that TimSort is actually a very good

sorting algorithm. Even if all its fine-tuned heuristics are removed, the dynamics of its merges, induced

by a small number of local rules, results in a very efficient global behavior, particularly well suited for

almost sorted inputs.

Besides, we want to stress the need for a thorough algorithm analysis, in order to prevent errors and

misunderstandings. As obvious as it may sound, the three consecutive mistakes on the stack height in

Java illustrate perfectly how the best ideas can be spoiled by the lack of a proper complexity analysis.

Finally, following [4], we would like to emphasize that there seems to be no reason not to use the

recent version of TimSort, which is efficient in practice, formally certified and whose optimal complexity

is easy to understand.
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A Appendix

A.1 Proofs

We provide below complete proofs of the results mentioned in Section 5.

In what follows, we will often refer to so-called stable stacks: we say that a stack S = (R1, . . . , Rh) is

stable if r1 + r2 < r3 and r1 < r2, i.e. if the next operation that will be performed by TimSort is a push

operation (Case #1).

A.1.1 Proving Proposition 23

Aiming to prove Proposition 23, and keeping in mind that studying stable stacks may be easier than

studying all stacks, a first step is to introduce the following quantities.

◮ Definition 28. Let n be a positive integer. We denote by αn (resp., βn), the smallest real number m

such that, in every stack (resp., stable stack) S = (R1, . . . , Rh) obtained during an execution of TimSort,

and for every integer i ∈ {1, . . . , h} such that ri = n, we have r2 + . . . + ri−1 6 m × ri; if no such real

number exists, we simply set αn = +∞ (resp., βn = +∞).

By construction, αn > βn for all n > 1. The following lemma proves that αn 6 βn.

◮ Lemma 29. At any time during the main loop of TimSort, if the stack is (R1, . . . , Rh), then we have

(a) ri < ri+1 for all i ∈ {3, 4, . . . , h − 1} and (b) r2 + . . . + ri−1 6 βnri for all n > 1 and i 6 h such that

ri = n.

Proof. Assume that (a) and (b) do not always hold, and consider the first moment where some of them

do not hold. When the main loop starts, both (a) and (b) are true. Hence, from a stack S = (R1, . . . , Rh),

on which (a) and (b) hold, we carried either a push step (Case #1) or a merging step (Cases #2 to #4),

thereby obtaining the new stack S = (R1, . . . , Rh). We consider separately these two cases:

After a push step, we have h = h + 1 , r1 + r2 < r3 (otherwise, we would have performed a merging

step instead of a push step) and ri = ri−1 for all i > 2. It follows that r3 = r2 < r1 + r2 < r3 = r4,

and that ri = ri−1 < ri = ri+1 for all i > 4. This proves that S satisfies (a).

In addition, the value of r1 has no impact on whether S satisfies (b). Hence, we may assume without

loss of generality that r1 < min{r2, r3 − r2} (up to doubling the size of every run ever pushed onto

the stack so far and setting r1 = 1), thereby making S stable. This proves that S satisfies (b).

After a merging step, we have h = h − 1, r2 6 r2 + r3 and ri = ri+1 for all i > 3. Hence, ri = ri+1 <

ri+2 = ri+1 for all i > 3, and S satisfies (a). Furthermore, we have 0 6 βr2
r2, and r2 + r3 + . . . + ri 6

r2 + r3 + . . . + ri+1 6 βnri+2 = βnri+1 whenever i > 1 and ri+1 = ri+2 = n. This proves that S also

satisfies (b).

Hence, in both cases, (a) and (b) also hold in S, which contradicts our assumption and completes the

proof. ◭

◮ Corollary 30. For all integers n > 1, we have αn = βn.

It remains to prove that αn 6 α∞ for all n > 1, where α∞ = 2 +
√

7. This is the object of the next

results.

What makes Java’s TimSort much harder to study than Python’s TimSort is the fact that, during

the execution of Java’s TimSort algorithm, we may have stacks S = (R1, . . . , Rh) on which the invari-

ant (1) : ri > ri−1 + ri−2 fails for many integers i > 3, possibly consecutive. In Section 5, such integers

were called obstruction indices of the stack S. Hence, we focus on sequences of consecutive obstruction

indices.

◮ Lemma 31. Let S = (R1, . . . , Rh) be a stable stack obtained during the main loop of Java’s TimSort.

Assume that i − k, i + 1 − k, . . . , i are consecutive obstruction indices of S, and that αn 6 α∞ for all

n 6 ri − 1. Then,

ri−k−2 6
α∞ + 1 − k

α∞ + 2
ri−1.
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Proof. Let T be the number of merge or push operations performed between the start of the main loop

and the creation of the stack S. For all k ∈ {0, . . . , T } and all j > 1, we denote by Sk the stack after k

operations have been performed. We also denote by Pj,k the jth bottom-most run of the stack Sk, and

by pj,k the size of Pj,k; we set Pj,k = ∅ and pj,k = 0 if Sk has fewer than j runs. Finally, for all j 6 h, we

set tj = min{k > 0 | ∀ℓ ∈ {k, . . . , T }, pj,ℓ = pj,T }.

First, observe that tj < tj+2 for all j 6 h − 2, because a run can be pushed or merged only in top

or 2nd-to-top position. Second, if tj > tj+1 for some j 6 h − 1, then the runs Pj,tj
, Pj+1,tj

are the two

top runs of Stj
. Since none of the runs P1, . . . , Pj+1 is modified afterwards, it follows, if j > 2, that

pj+1 + pj = pj+1,tj
+ pj,tj

< pj−1,tj
= pj−1, and therefore that h + 2 − j is not an obstruction index.

Conversely, let m0 = h + 3 − i. We just proved that tm0−2 < tm0
and also that tm0−1 < tm0

< . . . <

tm0+k. Besides, for all m ∈ {m0, . . . , m0 + k}, we prove that the tm
th operation was a merge operation

of type #2. Indeed, if not, then the run Pm,tm
would be the topmost run of Stm

; since the runs Pm−1

and Pm−2 were not modified after that, we would have pm + pm−1 < pm−2, contradicting the fact that

h + 3 − m is an obstruction index. In particular, it follows that pm+1,tm
= pm+2,tm−1 > pm,tm−1 and that

pm = pm,tm
6 pm−1,tm

− pm+1,tm
= pm−1 − pm+1,tm

.

Moreover, for m = m0, observe that pm = pm,tm
= pm,tm−1 + pm+1,tm−1. Applying Lemma 29 on

the stacks ST and Stm−1, we know that pm,tm−1 6 pm 6 pm−2 − 1 = ri − 1 and that pp+1,tm−1 6

apm,tm−1
pm,tm−1 6 α∞pm,tm−1, which proves that pm 6 (α∞ + 1)pm,tm−1 6 (α∞ + 1)pm+1,tm

, i.e.,

pm0
6 (α∞ + 1)pm0+1,tm0

. Henceforth, we set κ = pm0+1,tm0
.

In addition, for all m ∈ {m0 + 1, . . . , m0 + k}, observe that the sequence (pm+1,k)tm6k6T is non-

decreasing. Indeed, when tm 6 k, and therefore ti 6 k for all i 6 m, the run pm+1,k can only be

modified by being merged with another run, thereby increasing in size. This proves that pm+2,tm+1
>

pm+1,tm+1−1 > pm+1,tm
. Hence, an immediate induction shows that pm+1,tm

> pm0+1,tm0
= κ for all

m ∈ {m0, . . . , m0 + k}, and it follows that pm 6 pm−1 − κ.

Overall, this implies that ri−k−2 = pm0+k 6 pm0
− kκ. Note that pm0

6 min{(α∞ + 1)κ, pm0−1 −
pm0+1,tm0

} = min{(α∞ + 1)κ, pm0−1 − κ}. It follows that

ri−k−2 6 min{(α∞ + 1)κ, pm0−1 − κ} − kκ 6 min{(α∞ + 1 − k)κ, ri−1 − (k + 1)κ},

whence (α∞ + 2)ri−k−2 6 (k + 1)(α∞ + 1 − k)κ + (α∞ + 1 − k)(ri−1 − (k + 1)κ) = (α∞ + 1 − k)ri−1. ◭

Lemma 31 paves the way towards a proof by induction that αn 6 α∞. Indeed, a first, immediate

consequence of Lemma 31, is that, provided that αn 6 α∞ for all n 6 ri − 1, then the top-most part

(R1, . . . , Ri) may not contain more than α∞ + 2 (and therefore no more than 6) consecutive obstruction

indices. This suggests that the sequence r1, . . . , ri should grow “fast enough”, which might then be used

to prove that αri
6 α∞. We present below this inductive proof, which relies on the following objects.

◮ Definition 32. We call expansion function the function f : [0, 1] → R>0 defined by

f : x →







(1 + α∞)x if 0 6 x 6 1/2

x + α∞(1 − x) if 1/2 6 x 6 α∞/(2α∞ − 1)

α∞x if α∞/(2α∞ − 1) 6 x 6 1.

In the following, we denote by θ the real number α∞/(2α∞ − 1). Let us first prove two technical

results about the expansion function.

◮ Lemma 33. We have α∞x 6 f(x) for all x ∈ [0, 1], f(x) 6 f(1/2) for all x ∈ [0, θ], f(x) 6 f(1) for

all x ∈ [0, 1], x + α∞(1 − x) 6 f(x) for all x ∈ [1/2, 1] and x + α∞(1 − x) 6 f(1/2) for all x ∈ [1/2, 1].

Proof. Since f is piecewise linear, it is enough to check the above inequalities when x is equal to 0, 1/2,

θ or 1, which is immediate. ◭

◮ Lemma 34. For all real numbers x, y ∈ [0, 1] such that x(y + 1) 6 1, we have x(1 + f(y)) 6

min{f(1/2), f(x)}.
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Proof. We treat three cases separately, relying in each case on Lemma 33:

if 0 6 x 6 1/2, then x(1 + f(y)) 6 x(1 + f(1)) = (1 + α∞)x = f(x) 6 f(1/2);

if 1/2 < x 6 1 and f(1/2) < f(y), then θ 6 y 6 1, hence x(1 + f(y)) = x + α∞xy 6 x + α∞(1 − x) 6

min{f(x), f(1/2)};

if 0 6 f(y) 6 f(1/2), and since α∞ > 1, we have x(1 + f(y)) 6 x(1 + f(1/2)) = x(3 + α∞)/2 6

x(1 + α∞) 6 f(x); if, furthermore, y 6 1/2, then

x(1 + f(y)) 6 (1 + (1 + α∞)y)/(1 + y) = (1 + α∞) − α∞/(1 + y)

6 (1 + α∞) − 2α∞/3 = (3 + α∞)/3,

and if 1/2 6 y, then x(1+f(y)) 6 (1+f(1/2))/(1+y) 6 2(1+f(1/2))/3 = (3+α∞)/3; since α∞ > 3,

it follows that x(1 + f(y)) 6 (3 + α∞)/3 6 (1 + α∞)/2 = f(1/2) in both cases.

◭

Using Lemma 31 and the above results about the expansion function, we finally get the following

result, of which Proposition 23 is an immediate consequence.

◮ Lemma 35. Let S = (R1, . . . , Rh) be a stable stack obtained during the main loop of Java’s TimSort.

For all integers i > 2, we have r1 + r2 + . . . + ri−1 6 rif(ri−1/ri), where f is the expansion function. In

particular, we have αn = βn 6 α∞ for all integers n > 1.

Proof. Lemma 33 proves that 2x 6 α∞x 6 yf(x/y) whenever 0 < x 6 y, and therefore the statement of

Lemma 35 is immediate when i 6 3. Hence, we prove Lemma 35 for i > 4, and proceed by induction on

ri = n, thereby assuming that αn−1 exists.

Let x = ri−1/ri and y = ri−2/ri−1. By Lemma 29, and since the stack S is stable, we know

that ri−2 < ri−1 < ri, and therefore that x < 1 and y < 1. If i is not an obstruction index, then

we have ri−2 + ri−1 6 ri, i.e., x(1 + y) 6 1 and, using Lemma 34, it follows that r1 + . . . + ri−1 =

(r1 + . . . + ri−2) + ri−1 6 f(y)ri−1 + ri−1 = x(1 + f(y))ri 6 f(x)ri.

On the contrary, if i is an obstruction index, let k be the smallest positive integer such that i − k

is not an obstruction index. Since the stack S is stable, we have r1 + r2 < r3, which means that 3 is

not an obstruction index, and therefore i − k > 3. Let u = ri−k−1/ri−k and v = ri−k−2/ri−k−1. By

construction, we have ri−k−2 + ri−k−1 6 ri−k, i.e., u(1 + v) 6 1. Using Lemma 31, and since ri−k−1 < ri

and αri−1 6 f(1) = α∞ by induction hypothesis, we have

r1 + . . . + ri−1 = (r1 + . . . + ri−k−2) + ri−k−1 + . . . + ri−1 6 ri−k−1f(v) + ri−k−1 + . . . + ri−1

6 ri−ku(1 + f(v)) + ri−k + . . . + ri−1 6 ri−kf(1/2) + ri−k + . . . + ri−1

6
1

α∞ + 2



(α∞ + 3 − k)f(1/2) +

k∑

j=1

(α∞ + 3 − j)



 ri−1

6
1

2(α∞ + 2)

(
α2

∞
+ (4 + k)α∞ − k2 + 4k + 3

)
ri−1.

The function g : t → α2
∞

+ (4 + t)α∞ − t2 + 4t + 3 takes its maximal value, on the real line, at

t = (α∞ + 4)/2 ∈ (4, 5). Consequently, for all integers k, and since α∞ 6 5, we have

g(k) 6 max{g(4), g(5)} = α2
∞

+ max{8α∞ + 3, 9α∞ − 2} = α2
∞

+ 8α∞ + 3.

Then, observe that 2(α∞ + 2)α∞ = 30 + 12
√

7 = α2
∞

+ 8α∞ + 3. It follows that

r1 + . . . + ri−1 6
α2

∞
+ 8α∞ + 3

2(α∞ + 2)
ri−1 = α∞xri 6 f(x)ri.

Hence, regardless of whether i is an obstruction index or not, we have r1 + . . . + ri−1 6 f(x)ri 6

f(1)ri = α∞ri, which completes the proof. ◭
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A.1.2 Proving the first part of Theorem 27

We prove below the inequality of Theorem 27; proving that that the constant ∆ used in Theorem 27 is

optimal will be the done in the next section.

In order to carry out this proof, we need to consider some integers of considerable interest. Let

S = (R1, . . . , Rh) be a stable stack of runs. We say that an integer i > 1 is a growth index if i + 2 is not

an obstruction index, and that i is a strong growth index if i is a growth index and if, in addition, i + 1

is an obstruction index. Note that h an h − 1 are necessarily growth indices, since h + 1 and h + 2 are

too large to be obstruction indices.

Our aim is now to prove inequalities of the form ri+j > ∆jri, where 3 6 i 6 i + j 6 h. However, such

inequalities do not hold in general, hence we restrict the scope of the integers i and i + j, which is the

subject of the two following results.

◮ Lemma 36. Let i and j be positive integers such that i + 2 6 j 6 h. If no obstruction index k exists

such that i + 2 6 k 6 j, then 2∆j−i−2ri 6 rj .

Proof. For all n > 0, let Fn denote the nth Fibonacci number, defined by F0 = 0, F1 = 1 and Fn+2 =

Fn + Fn+1 or, alternatively, by Fn = (φn − (−φ)−n)/
√

5, where φ = (1 +
√

5)/2 is the Golden ratio.

Observe now that

Fj−i+1ri 6 Fj−i−1ri + Fj−iri+1 6 Fj−i−2ri+1 + Fj−i−1ri+2 6 . . . 6 F0rj−1 + F1rj = rj .

Moreover, for all n > 3, we have Fn = 2Fn/F3 = 2φn−3(1 − (−1)nφ−2n)/(1 − φ−6) > 2φn−3. Since

∆ < φ, it follows that 2∆j−i−2ri 6 Fj−i+1ri 6 rj . ◭

◮ Lemma 37. Let i and j be positive integers such that 1 6 i 6 j 6 h. If i is a growth index and j is a

strong growth index, then ∆j−iri 6 rj .

Proof. Without loss of generality, let us assume that i < j and that there is no strong growth index k

such that i < k < j. Indeed, if such an index k exists, then a simple induction completes the proof of

Lemma 37.

Let ℓ be the largest integer such that ℓ 6 j and ℓ is not an obstruction index. Lemmas 31 and 35

prove that (α∞ + 2)rℓ 6 (α∞ + 2 + ℓ − j)rj and that (α∞ + 2)rℓ−1 6 (α∞ + 1 + ℓ − j)rj . The latter

inequality proves that j − ℓ 6 ⌊α∞ + 1⌋ = 5.

By construction, we have i + 2 6 ℓ, and no integer k such that i + 2 6 k 6 ℓ is an obstruction index.

Hence, Lemma 36 proves that 2(α∞ + 2)∆ℓ−i−2ri 6 (α∞ + 2)rℓ 6 (α∞ + 2 + ℓ − j)rj . Moreover, simple

numerical computations, for j − ℓ ∈ {0, . . . , 5}, prove that ∆j−ℓ+2 6 2(α∞ + 2)/(α∞ + 2 + ℓ − j), with

equality when j − ℓ = 3. It follows that ∆j−iri = ∆j−ℓ+2∆ℓ−i−2ri 6 rj . ◭

Finally, the inequality of Theorem 27 is an immediate consequence of the following result.

◮ Lemma 38. Let S = (R1, . . . , Rh) be a stack obtained during the main loop of Java’s TimSort. We

have rh > ∆h−3.

Proof. Let us first assume that S is stable. Then, r1 > 1, and 1 is a growth index. If there is no

obstruction index, then Lemma 36 proves that rh > 2∆h−3r1 > ∆h−2.

Otherwise, let ℓ be the largest obstruction index. Then, ℓ−1 is a strong growth index, and Lemma 37

proves that rℓ−1 > ∆ℓ−2r1 > ∆ℓ−2. If ℓ = h, then rh > rℓ−1 > ∆h−2, and if ℓ 6 h − 1, then Lemma 36

also proves that rh > 2∆h−ℓ−1rℓ−1 > ∆h−ℓ∆ℓ−2 = ∆h−2.

Finally, if S is not stable, the result is immediate for h 6 3, hence we assume that h > 4. The stack

S was obtained by pushing a run onto a stable stack S′ of size at least h − 1, then merging runs from

S′ into the runs R1 and R2. It follows that Rh was already the largest run of S′, and therefore that

Rh > ∆h−3. ◭
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A.1.3 Proving the second part of Theorem 27

We finally focus on proving that the constant ∆ of Theorem 27 is optimal. The most important step

towards this result consists in proving that α∞ = limn→∞ αn, with the real numbers αn introduced in

Definition 28 and α∞ = 2 +
√

7. Since it is already proved, in Lemma 35, that αn 6 α∞ for all n > 1, it

remains to prove that α∞ 6 lim infn→∞ αn. We obtain this inequality by constructing explicitly, for k

large enough, a stable sequence of runs (R1, . . . , Rh) such that rh = k and r2 + . . . + rh−1 ≈ α∞k. Hence,

we focus on constructing sequences of runs.

In addition, let us consider the stacks of runs created by the main loop of Java’s TimSort on

a sequence of runs P1, . . . , Pn. We say below that the sequence P1, . . . , Pk produces a stack of runs

S = (R1, . . . , Rh) if the stack S is obtained after each of the runs P1, . . . , Pn has been pushed; observe

that the sequence P1, . . . , Pn produces exactly one stable stack. We also say that a stack of runs is

producible if it is produced by some sequence of runs.

Finally, in what follows, we are only concerned with run sizes. Hence, we abusively identify runs

with their sizes. For instance, in Figure 6, the sequence (109, 83, 25, 16, 8, 7, 26, 2, 27) produces the stacks

(27, 2, 26, 56, 83, 109) and (27, 28, 56, 83, 109); only the latter stack is stable.

We review now several results that will provide us with convenient and powerful ways of constructing

producible stacks.

◮ Lemma 39. Let S = (r1, . . . , rh) be a stable stack produced by a sequence of runs p1, . . . , pn. Assume

that n is minimal among all sequences that produce S. Then, when producing S, no merging step #3 or

#4 was performed.

Moreover, for all k 6 n − 1, after the run pk+1 has been pushed onto the stack, the elements coming

from pk will never belong to the topmost run of the stack.

Proof. We begin by proving the first statement of Lemma 39 by induction on n, which is immediate for

n = 1. Hence, we assume that n > 2, and we further assume, for the sake of contradiction, that some

merging step #3 or #4 took place. Let S′ = (r′

1, . . . , r′

ℓ) be the stable stack produced by the sequence

p1, . . . , pn−1. By construction, this sequence is as short as possible, and therefore no merging step #3

or #4 was used so far. Hence, consider the last merging step #3 or #4, which necessarily appears after

pn was pushed onto the stack. Just after this step has occurred, we have a stack S′′ = (r′′

1 , . . . , r′′

m),

with r′

i = r′′

j whenever j > 2 and i + m = j + ℓ, and the run r′′

1 was obtained by merging the runs

pn, r′

1, . . . , r′

ℓ+1−m.

Let p1, . . . , pk be the runs that had been pushed onto the stack when the run r′′

2 = r′

m+2−ℓ was created.

This creation was the result of either a push step or a merging step #2. In both cases, and until S′ is

created, no merging step #3 or #4 ever involves any element placed within or below r′′

2 . Then, in the

case of a push step, we have pk = r′′

2 , and therefore the sequence P#1 = (p1, . . . , pk, r′′

1 ) also produces the

stack S′. In the case of a merging step #2, it is the sequence P#2 = (p1, . . . , pk−1, r′′′) that also produces

the stack S′′, where r′′′ is obtained by merging the runs pk, . . . , pn.

In both cases, since the sequences P#1 and P#2 produce S′′, they also produce S. It follows that

k +1 > n (in the first case) or k > n (in the second case). Moreover, the run r′′

2 was not modified between

pushing the run pn and before obtaining the stack S′′, hence k 6 n − 1. This proves that k = n − 1 and

that the run r′′

2 was obtained through a push step, i.e. pn−1 = r′′

2 . But then, the run r′′

1 may contain

elements of pn only, hence is not the result of a merging step #3 or #4: this disproves our assumption

and proves the first statement of Lemma 39.

Finally, observe that push steps and merging steps #2 never allow a run in 2nd-to-top position or

below to go to the top position. This completes the proof of Lemma 39. ◭

◮ Lemma 40. Let S = (r1, . . . , rh) be a stable stack produced by a sequence of runs p1, . . . , pn. Assume

that n is minimal among all sequences that produce S. There exist integers i0, . . . , ih such that 0 = ih <

ih−1 < . . . < i0 = n and such that, for every integer k 6 h, (a) the runs pik+1, . . . , pik−1
were merged

into the run rk, and (b) ik−1 = ik + 1 if and only if k + 2 is not an obstruction index.
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Proof. The existence (and uniqueness) of integers i0, . . . , ih satisfying (a) is straightforward, hence we

focus on proving (b). That property is immediate if h = 1, hence we assume that 2 6 h 6 n. Checking

that the sequence rh, rh−1, pih−2+1, pih−2+2, . . . , pn produces the stack S is immediate, and therefore

ih−1 = 1 and ih−2 = 2, i.e., rh = p1 and rh−1 = p2.

Consider now some integer k 6 h − 2, and let S′ be the stable stack produced by p1, . . . , pik+1. From

that point on, the run pik−1+1 will never be the topmost run, and the runs pj with j 6 ik−1, which

can never be merged together with the run pik−1+1, will never be modified again. This proves that

S′ = (pik−1+1, rk+1, . . . , rh).

Then, assume that ik−1 = ik + 1, and therefore that pik−1+1 = rk. Since S′ is stable, we know

that rk + rk+1 < rk+2, which means that k + 2 is not an obstruction index. Conversely, if k + 2 is

not an obstruction index, both sequences p1, . . . , pik+1+1 and p1, . . . , pik−1
, rk, pik+1+1 produce the stack

(pik+1+1, rk, . . . , rh) and, since n is minimal, ik−1 = ik + 1. ◭

◮ Lemma 41. Let S = (r1, . . . , rh) be a producible stable stack of height h > 3. There exists an integer

κ ∈ {1, 4} and a producible stable stack S′ = (r′

1, . . . , r′

ℓ) such that ℓ > 2, rh = r′

ℓ, rh−1 = r′

ℓ−1 and

r1 + . . . + rh−2 = r′

1 + . . . + r′

ℓ−2 + κ.

Proof. First, Lemma 41 is immediate if h = 3, since the sequence of runs (r3, r2, r1 − 1) produces the

stack (r1 − 1, r2, r3). Hence, we assume that h > 4. Let p1, . . . , pn be a sequence of runs, with n minimal,

that produces S. We prove Lemma 41 by induction on n.

If the last step carried when producing S was pushing the run Pn onto the stack, then the sequence

p1, . . . , pn−1, pn − 1 produces the stack r1 − 1, r2, . . . , rh, and we are done in this case. Hence, assume

that the last step carried was a merging step #2.

Let S′ = (q1, . . . , qm) be the stable stack produced by the sequence p1, . . . , pn−1, and let i be the

largest integer such that qi < pn. After pushing pn, the runs q1, . . . , qi are merged into one single run r2,

and we also have pn = r1 and qi+j = r2+j for all j > 1. Incidentally, this proves that m = h + i − 2 and,

since h > 4, that i 6 m − 2. We also have i > 2, otherwise, if i = 1, we would have had a merging step

#3 instead.

If r1 = pn > qi+2, then the sequence p1, . . . , pn−1, pn−1 also produces the stack (r1−1, r2, . . . , rh), and

we are done in this case. Hence, we further assume that r1 = pn = qi +1. Since qi−1 +qi 6 r2 < r3 = qi+1,

we know that i + 1 is not an obstruction index of S. Let a 6 n − 1 be a positive integer such that

p1 + . . . + pa = qi + qi+1 + . . . + qm. Lemma 40 states that pa+1 = qi−1, and therefore that the sequence

of runs p1, . . . , pa+1 produces the stack (qi−1, . . . , qm).

If i = 2 and if q1 > 3, then (q1 − 1) + q2 > q2 + 2 > r1, and therefore the sequence of runs

p1, . . . , pa, q1 − 1, r1 produces the stable stack (r1, r2 − 1, r3, . . . , rh). However, if i = 2 and q1 6 2, then

the sequence of runs p1, . . . , pa, r1 − 2 produces the stable stack (r1 − 2, r2 − 2, . . . , rh). Hence, in both

cases, we are done, by choosing respectively κ = 1 and κ = 4.

Les us now assume that i > 3. Observe that n > a + i > 3 since, after the stack (qi−1, . . . , qm) has

been created, it remains to create runs q1, . . . , qi−2 and finally, r1, which requires pushing at least i − 1

runs in addition to the a + 1 runs already pushed. Therefore, we must have q1 + . . . + qi−1 > qi, unless

what the sequence p1, . . . , pa, q1 + . . . + qi−1, pn would have produced the stack S, despite being of length

a + 2 < n. In particular, since q1 + q2 < q3, it follows that i > 4. Consequently, we have q1 > 1, q2 > 2,

q3 > 4, and therefore q1 + . . . + qi−1 > 7, i.e. r2 > q2 + 7 = r1 + 6.

Finally, by induction hypothesis, there exists a sequence p′

1, . . . , p′

u, with u minimal, that produced

the stack (q′

1, . . . , q′

v) such that q′

v = qi, q′

v−1 = qi−1 and q1 + . . . + qi−2 = q′

1 + . . . + q′

v−2 + κ for some

κ ∈ {1, 4}. Lemma 40 also states that p′

1 = qi and that p′

2 = qi−1. It is then easy to check that the

sequence of runs p1, . . . , pb+1, p′

3, . . . , p′

u produces the stable stack (q′

1, . . . , q′

v−2, qi−1, qi, . . . , qm). Since

q′

j < qi−1 < qi < r1 < r3 = qi+1 for all j 6 v − 2, pushing the run pn = r1 onto that stack and

letting merging steps #2 occur then gives the stack (r1, r2 − κ, r3, . . . , rh), which completes the proof

since r1 6 r2 − 6 < r2 − κ. ◭

In what follows, we will only consider stacks that are producible and stable. Hence, from this point

on, we omit mentioning that they systematically must be producible and stable, and we will say that

“the stack S exists” in order to say that “the stack S is producible and stable”.
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◮ Lemma 42. Let S = (r1, . . . , rh) and S′ = (r′

1, . . . , r′

ℓ) be two stacks. Then (a) for all i 6 h, there exists

a stack (r1, . . . , ri), and (b) if rh−1 = r′

1 and rh = r′

2, then there exists a stack (r1, . . . , rh, r′

3, . . . , r′

ℓ).

Proof. Let p1, . . . , pm and p′

1, . . . , p′

n be two sequences that respectively produce S and S′. Let us

further assume that m is minimal. First, consider some integer i 6 h, and let a be the integer such that

p1 + . . . + pa = ri+1 + . . . + rh. It comes at once that the sequence pa+1, . . . , pm produces the stack

(r1, . . . , ri). Second, since m is minimal, Lemma 40 proves that p1 = rh = r′

2 and that p2 = rh−1 = r′

1

and, once again, the sequence p′

1, . . . , p′

n, p3, . . . , p3 produces the stack (r1, . . . , rh, r′

3, . . . , r′

ℓ), which is

also stable. ◭

◮ Lemma 43. For all positive integers k and ℓ such that k 6 ℓαℓ, there exists a stack (r1, . . . , rh) such

that rh = ℓ, k − 3 6 r1 + . . . + rh−1 6 k, and r1 + . . . + rh−1 = k if k = ℓαℓ.

Proof. First, if ℓ = 1, then αℓ = 0, and therefore Lemma 43 is vacuously true. Hence, we assume

that ℓ > 2. Let Ω be the set of integers k for which some sequence of runs p1, . . . , pm produces a stack

S = (r1, . . . , rh) such that r1 + . . .+rh−1 = k and rh = ℓ. First, if k 6 ℓ−1, the sequence ℓ, k produces the

stack (ℓ, k), thereby proving that {1, 2, . . . , ℓ − 1} ∈ Ω. Second, it follows from Lemma 42 that ℓαℓ ∈ Ω.

Finally, consider some integer k ∈ Ω such that k > ℓ, and let p1, . . . , pm be a sequence of runs that

produces a stack (r1, . . . , rh) such that r1 + . . . + rh−1 = k and rh = ℓ. Since k > ℓ = rh > rh−1, we know

that h > 3. Hence, due to Lemma 41, either k − 1 or k − 4 (or both) belongs to Ω. This completes the

proof of Lemma 43. ◭

◮ Lemma 44. For all positive integers k and ℓ such that k 6 ℓ, we have αℓ > (1−k/ℓ)αk and αℓ > kαk/ℓ.

Proof. Let n = ⌊ℓ/k⌋. Using Lemma 43, there exists a sequence of runs p1, . . . , pm that produces a

stack (r1, . . . , rh) such that rh = k and r1 + . . . + rh−1 = kαk. By choosing m minimal, Lemma 40

further proves that p1 = rh = k. Consequently, the sequence of runs np1, . . . , npm−1, ℓ produces the stack

(nr1, . . . , nrh−1, ℓ), and therefore we have ℓαℓ > n(r1 + . . . + rh−1) = nkαk > max{1, ℓ/k − 1}kαk =

ℓ max{k/ℓ, 1 − k/ℓ}αk. ◭

A first intermediate step towards proving that limn→∞ αn = α∞ is the following result, which is a

consequence of the above Lemmas.

◮ Proposition 45. Let α = sup{αn | n ∈ N
∗}. We have 1 + α∞/2 < α 6 α∞, and αn → α when

n → +∞.

Proof. Let α = sup{αn | n ∈ N
∗}. Lemma 35 proves that α 6 α∞. Then, let ε be a positive real number,

and let k be a positive integer such that αk > α − ε. Lemma 44 proves that lim inf αn > αk > α − ε, and

therefore lim inf αn > α. This proves that αn → α when n → +∞.

Finally, it is tedious yet easy to verify that the sequence 360, 356, 3, 2, 4, 6, 10, 2, 1, 22, 4, 2, 1, 5, 1,

8, 4, 2, 1, 73, 4, 2, 5, 7, 2, 16, 3, 2, 4, 6, 21, 4, 2, 22, 4, 2, 1, 5, 8, 3, 2, 79, 3, 2, 4, 6, 2, 10, 6, 3, 2, 33, 4,

2, 5, 7, 1, 13, 4, 2, 1, 5, 1, 80, 4, 2, 5, 7, 1, 95, 3, 2, 4, 6, 10, 20, 4, 2, 5, 7, 3, 2, 26, 6, 3, 1, 31, 3, 2, 4, 6,

2, 1, 12, 4, 2, 5 produces the stack (5, 6, 12, 18, 31, 36, 68, 95, 99, 195, 276, 356, 360). Moreover, since

(20
√

7)2 = 2800 < 2809 = 532, it follows that 80 + 20
√

7 < 133, i.e., that 1 + α∞/2 = 2 +
√

7/2 < 133/40.

This proves that

α > α360 >
5 + 6 + 12 + 18 + 31 + 36 + 68 + 95 + 99 + 195 + 276 + 356

360
=

133

40
> 1 + α∞/2.

◭

◮ Lemma 46. There exists a positive integer N such that, for all integers n > N and k = ⌊(n−6)/(α+2)⌋,

the stack (k + 1, k+, αk, n − 4, n) exists.

Proof. Proposition 45 proves that there exists a positive real number ν > 1+α∞/2 and a positive integer

L > 256 such that αℓ > ν for all ℓ > L. Then, we set N = ⌈(α + 2)L⌉ + 6. Consider now some integer

n > N , and let k = ⌊(n − 6)/(α + 2)⌋. By construction, we have k > L, and therefore αk > ν.
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Let p1, . . . , pm be a sequence of runs that produces a stack (r1, . . . , rh) such that rh = k and r1 + . . . +

rh−1 = kαk. Lemma 35 proves that αk 6 f(rh−1/k), where f is the expansion function of Definition 32.

Since αk > ν > 1 + α∞/2 = f(1/2), it follows that k > rh−1 > θk. Assuming that m is minimal,

Lemma 40 proves that p1 = rh = k and that p2 = rh−1.

Now, let k′ = ⌊k/2⌋ + 1, and let ℓ be the largest integer such that 2ℓ+4 6 k′. Since k > L > 256, we

know that k′ > 128, and therefore that ℓ > 3. Observe also that, since θ = α∞/(2α∞ − 1) > 11/20 and

k′ > 20, we have rm−1 > θk > ⌊k/2⌋+k/20 > k′. We build a stack of runs p2, k, n−4, n by distinguishing

several cases, according to the value of k′/2ℓ.

If 16 × 2ℓ 6 k′ 6 24 × 2ℓ + 1, let x be the smallest integer such that x > 2 and k′ < 2(9 × 2ℓ + x + 1).

Since k′ 6 24 × 2ℓ + 1, we know that x 6 3 × 2ℓ, and that x = 2 if k 6 18 × 2ℓ + 1. Therefore,

the sequence of runs (n, n − 4, 3, 2, 4, 6, 10, 3 × 8, 3 × 16, . . . , 3 × 2ℓ, 3 × 2ℓ + x) produces the stack

(3×2ℓ+x, 3×2ℓ+1+1, n−4, n). Moreover, observe that (3×2ℓ+1+1)+(9×2ℓ+x+1) = 15×2ℓ+4 < k′

if 16 × 2ℓ 6 k′ 6 18 × 2ℓ + 1, and that (3 × 2ℓ+1 + 1) + (9 × 2ℓ + x + 1) 6 18 × 2ℓ + 1 < k′

if 18 × 2ℓ + 2 6 k′. Since, in both cases, we also have k′ < 2(9 × 2ℓ + x + 1), it follows that

3 × 2ℓ+1 + 1 < k′ − (9 × 2ℓ + x + 1) < 9 × 2ℓ + x + 1.

Consequently, pushing an additional run of size k′ − (9 × 2ℓ + x + 1) produces the stack k′ − (9 × 2ℓ +

x + 1), 9 × 2ℓ + x + 1, n − 4, n. Finally, the inequalities 2k′ > k, k − k′ > k/2 − 1 > k′ − 2 > 18 × 2ℓ

and x 6 3 × 2ℓ prove that

9 × 2ℓ + x + 1 6 12 × 2ℓ + 1 < 16 × 2ℓ − 2 6 k − k′ < k′.

Recalling that k > p2 > k′, it follows that pushing additional runs of sizes k − k′ and p2 produces the

stack (p2, k, n − 4, n).

If 24 × 2ℓ + 2 6 k′ < 32 × 2ℓ, let x be the smallest integer such that x > 2 and k′ < 2(12 ×
2ℓ + x + 1). Since k′ < 32 × 2ℓ, we know that x + 1 6 2ℓ+2. Therefore, the sequence of runs

n, n − 4, 3, 2, 4, 8, 16, 32, . . . , 2ℓ+2, 2ℓ+2 + x produces the stack (2ℓ+2 + x, 2ℓ+3 + 1, n − 4, n). Moreover,

the inequalities

(2ℓ+3 + 1) + (3 × 2ℓ+2 + x + 1) 6 6 × 2ℓ+2 + 1 < k′ < 2(3 × 2ℓ+2 + x + 1)

prove that 2ℓ+3 + 1 < k′ − (3 × 2ℓ+2 + x + 1) < 3 × 2ℓ+2 + x + 1.

Consequently, pushing an additional run of size k′−(3×2ℓ+2+x+1) produces the stack (k′−(3×2ℓ+2+

x+ 1), 3 × 2ℓ+2 + x+ 1, n − 4, n). Finally, the inequalities 2k′ > k, k − k′ > k/2 − 1 > k′ − 2 > 6 × 2ℓ+2

and x + 1 6 2ℓ+2 prove that

3 × 2ℓ+2 + x + 1 6 4 × 2ℓ+2 < 6 × 2ℓ+2
6 k − k′ < k′.

Recalling once again that k > p2 > k′, it follows that pushing additional runs of sizes k − k′ and p2

produces the stack (p2, k, n − 4, n) in this case too.

Finally, after having obtained the stack (p2, k, n−4, n), let us add the sequence of runs p3, . . . , pm, k+1.

Since k(1 + αk) + (k + 1) 6 k(α + 2) + 1 6 n − 6 + 1 < n − 4, adding these runs produces the stack

(k + 1, k + kαk, n − 4, n), which completes the proof. ◭

◮ Lemma 47. For all integers n > N and k = ⌊(n − 6)/(α + 2)⌋ there exists a stack (k + 3, k(αk − 1) −
7 − x − y, kαk − 3 − x, k(1 + αk), n − 4, n) for some integers x, y ∈ {0, 1, 2, 3}.

Proof. Consider some integer n > N , and let k = ⌊(n−6)/(α∞ +2)⌋. By Lemma 46, there exists a stack

(k + 1, k + kαk, n − 4, n).

Lemma 44 proves then that kαk > (k + 1)αk+1. Therefore, Lemma 43 proves that there exists a stack

(r1, . . . , rh) such that rh = k + 1 and r1 + . . . + rh−1 = k(αk − 1) − 4 − x for some integer x ∈ {0, 1, 2, 3}.

By construction, we have r1 < r2 < . . . < rh, hence rh−1 + rh < 2(k + 1) < k(1 + αk). Consequently,

there also exists a stack (r1, r2, . . . , rh−1, k + 1, k(1 + αk), n − 4, n). Then, k + 2 + r1 + . . . + rh 6

k + 2 + k(αk − 1) − 4 + k + 1 = k(1 + αk) − 1 < k(1 + αk), and therefore pushing an additional run of

size k + 2 produces a stack (k + 2, kαk − 3 − x, k(1 + αk), n − 4, n).
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Once again, there exists a stack (r′

1, . . . , r′

h′) such that r′

h′ = k + 2 and r′

1 + . . . + r′

h′−1 = k(αk −
2) − 9 − x − y for some integer y ∈ {0, 1, 2, 3}. By construction, we have r′

1 < r′

2 < . . . < r′

h′ , hence

r′

h′−1 + r′

h′ < 2(k + 2) < kαk − 3 − x, and therefore there exists a stack (r′

1, r′

2, . . . , r′

h′−1, k + 2, kαk −
3 − x, k(1 + αk), n − 4, n). Then, k + 3 + r′

1 + . . . + r′

h′ 6 k + 3 + k(αk − 2) − 9 − x − y + k + 2 =

kαk − 4 − x − y < kαk − 3 − x, and therefore pushing an additional run of size k + 3 produces a stack

(k + 3, k(αk − 1) − 7 − x − y, kαk − 3 − x, k(1 + αk), n − 4, n). ◭

We introduce now a variant of the real numbers αn and βn, adapted to our construction.

◮ Definition 48. Let n be a positive integer. We denote by γn the smallest real number m such that, in

every stack S = (r1, . . . , rh) such that h > 2, rh = n and rh−1 = n − 4, we have r1 + . . . + rh−1 6 m × n.

If no such real number exists, we simply set γn = +∞.

◮ Lemma 49. Let γ = lim inf γn. We have γ > (αγ + 9α − γ + 3)/(2α + 4).

Proof. Let ε be a positive real number, and let Nε > N be an integer such that αℓ > α−ε and γℓ > γ −ε

for all ℓ > ⌊(N −6)/(α∞ +2)⌋. Since α > 3, and up to increasing the value of Nε, we may further assume

that ℓ(αℓ − 3) > 30 for every such integers ℓ.

Then, consider some integer n > Nε, and let k = ⌊(n − 6)/(α + 2)⌋. By Lemma 47, there exists a

stack (k + 3, k(αk − 1) − 7 − x − y, kαk − 3 − x, k(1 + αk), n − 4, n) for some integers x, y ∈ {0, 1, 2, 3}.

Let also k′ = ⌊(k(αk − 1) − 7 − x − y)/2⌋. Since k(αk − 3) > 30, it follows that 2(k′ − 4) > k(αk − 1) −
7 − x − y − 2 − 8 > k(αk − 1) − 23 > 2k + 7 > 2(k + 3). Similarly, and since αk 6 α∞ < 5, we have

k′ 6 k(αk − 1)/2 < 2k < 2(k + 3). Consequently, pushing additional runs of sizes k′ − (k + 3) and k′ − 4

produces the stack (k′ − 4, k′, k(αk − 1) − 7 − x − y, kαk − 3 − x, k(1 + αk), n − 4, n).

Finally, by definition of γn, there exists a sequence of runs p1, . . . , pm that produces a stack (r1, . . . , rh)

such that p1 = rh = k′, p2 = rh−1 = k′ −4 and r1 + . . .+rh−1 = k′γk′ . Hence, pushing the runs p3, . . . , pm

produces the stack (r1, . . . , rh−1, k′, k(αk − 1) − 7 − x − y, kαk − 3 − x, k(1 + αk), n − 4, n).

Then, recall that that γ 6 α, that 3 < α 6 α∞ < 5 and that 0 6 x, y 6 3. It follows that

k > (n − 6)/(α + 2) − 1 > n/(α + 2) − 3 and that k′ > (k(αk − 1) − 7 − x − y)/2 − 1 > k(αk − 1)/2 − 8.

This proves that

nγn > r1 + . . . + rh−1 + k′ + k(αk − 1) − 7 − x − y + kαk − 3 − x + k(1 + αk) + n − 4

> k′γk′ + k′ + k(αk − 1) − 13 + kαk − 6 + k(1 + αk) + n − 4

> k′(1 + γ − ε) + 3kαk + n − 23

> (k(αk − 1)/2 − 8)(1 + γ − ε) + 3kαk + n − 23

> k(3αk + (1 + γ − ε)(αk − 1)/2) + n − 23 − 8 × 6

nγn > (n/(α + 2) − 3)(3α − 3ε + (1 + γ − ε)(α − ε − 1)/2) + n − 71

>
(
6α − 6ε + (1 + γ − ε)(α − ε − 1) + 2α + 4

)
n/(2α + 4)−

3(3α + (1 + γ)(α − 1)/2) − 71

>
(
αγ + 9α − γ + 3 − (α + γ − ε)ε

)
n/(2α + 4) − 152.

Hence, by choosing n arbitrarily large, then ε arbitrarily small, Lemma 49 follows. ◭

From Lemma 49, we derive the asymptotic evaluation of the sequence (αn), as announced at the

beginning of Section A.1.3.

◮ Proposition 50. We have α = α∞ = 2 +
√

7.

Proof. Lemma 49 states that γ > (αγ + 9α − γ + 3)/(2α + 4) or, equivalently, that γ > (9α + 3)/(α + 5).

Since α > γ, it follows that α > (9α + 3)/(α + 5), i.e., that α > 2 +
√

7 or that α 6 2 −
√

7 < 0. The

latter case is obviously impossible, hence α = α∞ = 2 +
√

7. ◭
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Finally, we may prove that the constant ∆ of Theorem 27 is optimal, as a consequence of the following

result.

◮ Lemma 51. For all real numbers Λ > ∆, there exists a positive real number KΛ such that, for all

h > 1, there is a stack (r1, . . . , rh) for which rh 6 KΛΛh.

Proof. Let ε be an arbitrarily small real number such that 0 < ε < Λ/∆−1, and let Nε be a large enough

integer such that αℓ > α∞ − ε and for all ℓ > ⌊(N − 6)/(α∞ + 2)⌋. Then, consider some integer n0 > Nε,

and let k = ⌊(n − 6)/(α∞ + 2)⌋. As shown in the proof of Lemma 49, there are integers x, y ∈ {0, 1, 2, 3},

and n1 = ⌊(k(αk − 1) − 7 − x − y)/2⌋, such that there exists a stack (n1 − 4, n1, k(αk − 1) − 7 − x −
y, kαk − 3 − x, k(1 + αk), n0 − 4, n0). Since α∞ 6 5, we have then

∆5n1 > ∆5(k(α∞ − 1 − ε)/2 − 8) > ∆5 ((α∞ − 1 − ε)/(2α∞ + 4)n0 − 16)

> (α∞ − 1 − ε)/(α∞ − 1)n0 − 16∆5.

It follows that n0 6 ∆5(n1 + 16)(α∞ − 1)/(α∞ − 1 − ε) 6 ∆5(1 + ε)2n1 6 Λ5n1.

Then, we repeat this construction, but replacing n0 by n1, thereby constructing a new integer n2, then

replacing n0 by n2, and so on, until we construct an integer nℓ such that nℓ < Nε. Doing so, we built a

stack (nℓ − 4, nℓ, . . . , n0 − 4, n0) of size 5ℓ + 2, and we also have Λ5ℓNε > Λ5ℓnℓ > Λ5(ℓ−1)nℓ−1 > . . . > n0.

Choosing KΛ = Nε completes the proof. ◭

Proof of Theorem 27. We focus here on proving the second part of Theorem 27. Consider a real constant

∆′ > ∆, and let Λ = (∆ + ∆′)/2. If h is large enough, then hKΛΛh 6 (∆′)h−4. Then, let (r1, . . . , rh)

be a stack such that rh 6 KΛΛh, and let n be some integer such that (∆′)h−4 6 n < (∆′)h−3, if any.

Considering the stack (r1, . . . , rh + m), where m = n − (r1 + r2 + . . . + rh), we deduce that hmax > h >

3 + log∆′(n). Therefore, if n is large enough, we complete the proof by choosing h = ⌊log∆′(n)⌋ + 3. ◭
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