
Course
Fog Computing for
Smart Services

Development guide for
Smart Contracts

DESIGN PATTERNS
 Identified design patterns in Smart Contracts1

o Check the pattern “ORACLE (DATA PROVIDER) PATTERN”:
Problem: An application scenario requires knowledge contained outside the blockchain, but
Ethereum contracts cannot directly acquire information from the outside world. On the contrary,
they rely on the outside world pushing information into the network.
Solution: Request external data through an oracle service that is connected to the outside world and
acts as a data carrier.

o The Oracle pattern will be replaced later on during the course with a Smart Oracle approach, for
example:
 Centralized Smart Oracle: Provable (ex Oraclize), http://www.oraclize.it/
 Decentralized Smart Oracle: ChainLink, https://chain.link/

 Secure and reusable Smart Contracts: https://openzeppelin.com/ (check Products -> Contracts)
 ConsenSys best practices: https://consensys.github.io/smart-contract-best-practices/
 Comprehensive guide: https://yos.io/2019/11/10/smart-contract-development-best-practices/
 Handy DApp design patterns: https://medium.com/@i6mi6/solidty-smart-contracts-design-patterns-

ecfa3b1e9784

 ETH Gas station:

ESSENTIALS

o Mainnet: https://ethgasstation.info/
o Rinkeby: https://www.rinkeby.io/#stats
o Ropsten: https://ropsten-stats.parity.io/
o Kovan: N/A from the official Web page: https://kovan-testnet.github.io/website/

 Ethereum explorers:
o Mainnet: https://ethplorer.io/ https://etherscan.io/
o Rinkeby: https://rinkeby.etherscan.io/
o Ropsten: https://ropsten.etherscan.io/
o Kovan: https://kovan.etherscan.io/

 Web tools:
o Remix IDE: https://remix.ethereum.org/
o Oyente: https://oyente.melonport.com/
o Truffle Suit: https://www.trufflesuite.com/
o Metamask: https://metamask.io/

 How to compile solidity Smart Contracts on preferred OS?
o Use Maven dependency https://mvnrepository.com/artifact/org.ethereum/solcJ-all

1. Setup a Maven Project in a local IDE (e.g. Intellij Idea).
2. Use the solcJ-all dependency for a preferred version.

1 M. Wöhrer and U. Zdun, "Design Patterns for Smart Contracts in the Ethereum Ecosystem," 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), Halifax, NS, Canada, 2018, pp. 1513-1520.
doi: 10.1109/Cybermatics_2018.2018.00255, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726782&isnumber=8726472

http://www.oraclize.it/
https://chain.link/
https://openzeppelin.com/
https://consensys.github.io/smart-contract-best-practices/
https://yos.io/2019/11/10/smart-contract-development-best-practices/
https://medium.com/%40i6mi6/solidty-smart-contracts-design-patterns-ecfa3b1e9784
https://medium.com/%40i6mi6/solidty-smart-contracts-design-patterns-ecfa3b1e9784
https://medium.com/%40i6mi6/solidty-smart-contracts-design-patterns-ecfa3b1e9784
https://ethgasstation.info/
https://www.rinkeby.io/#stats
https://ropsten-stats.parity.io/
https://authorities.kovan.network/
https://kovan-testnet.github.io/website/
https://ethplorer.io/
https://etherscan.io/
https://rinkeby.etherscan.io/
https://ropsten.etherscan.io/
https://kovan.etherscan.io/
https://remix.ethereum.org/
https://oyente.melonport.com/
https://www.trufflesuite.com/
https://metamask.io/
https://mvnrepository.com/artifact/org.ethereum/solcJ-all
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp&arnumber=8726782&isnumber=8726472

Course
Fog Computing for
Smart Services

Development guide for
Smart Contracts

3. In the external libraries you can find fully working compilers for Linux, Max and Windows as
presented on the figure bellow.

4. You are able to compile it locally, for example in MS Windows:

solc.exe --bin <mySmartContract.sol> --abi --optimize -o <path for the BIN and ABI output> --
overwrite

 Ways to connect to the Ethereum node?
o Run your own node, guides:

1. https://dev.to/eric_khun/a-beginner-guide-to-setup-an-ethereum-full-node-4d9
2. https://medium.com/quiknode/run-your-own-ethereum-node-5c3061925e6a
3. By running a full node you are able to use filters and events:

https://web3j.readthedocs.io/en/latest/filters_and_events.html
o Use a faucet such as Infura has limitation with events (link). Notify me if this limitation is solved.
o Run the node in Docker Container, for example: https://hub.docker.com/r/ethereumex/geth-node

EXAMPLES
Message.sol is basic smart contract that allows storing data on the blockchian. The user can trigger a function to
store a message on the blockchain, which can be available on the blockchain for further verification whenever
neccessary. Moreover, the user can always get the latest message that has been stored on the blockchain. The
smart contract also allows to be destroyed by its user.

HappyMath.sol is a smart contract that allows the owner of the smart contract to perform simple mathematical
calculation. The smart contract implements a modifier that checks whether the current address is allowed to
execute the calculation.

Businessman.sol is a smart contract that facilitates P2P transactions between two entities (i.e. the person
executing the transactions and the owner of the smart contract). The smart contract implements a modifier that
checks whether the current address has sufficient resources. The smart contract provides three different practices
for performing transactions, by using: send, transfer, call.

address.transfer() address.send() address.call()
throws on failure returns false on failure returns false on failure
forwards 2,300 gas stipend (not
adjustable), safe against
reentrancy

forwards 2,300 gas stipend (not
adjustable), safe against
reentrancy

forwards all available gas
(adjustable), not safe against
reentrancy

should be used in most cases as it's
the safest way to send ether

should be used in rare cases when
you want to handle failure in the
contract

should be used when you need to
control how much gas to forward
when sending ether or to call a
function of another contract

All smart contracts can be found on the Učilnica Web page. Feel free to adopt, fix and enhance the presented smart
contracts.

Authors: Assist. Sandi Gec, sandi.gec@fri.uni-lj.si; Assist. Petar Kochovski, petar.kochovski@fri.uni-lj.si

https://dev.to/eric_khun/a-beginner-guide-to-setup-an-ethereum-full-node-4d9
https://medium.com/quiknode/run-your-own-ethereum-node-5c3061925e6a
https://web3j.readthedocs.io/en/latest/filters_and_events.html
https://web3j.readthedocs.io/en/latest/filters_and_events.html
https://infura.io/
https://ethereum.stackexchange.com/questions/16174/retrieving-logs-using-filter-is-not-working
https://hub.docker.com/r/ethereumex/geth-node
mailto:sandi.gec@fri.uni-lj.si

	DESIGN PATTERNS
	ESSENTIALS
	EXAMPLES

