
Handbook of BigDataBench (Version 3.1)—A
Big Data Benchmark Suite

Chunjie Luo1, Wanling Gao1, Zhen Jia1, Rui Han1, Jingwei Li1, Xinlong Lin1,
Lei Wang1, Yuqing Zhu1, and Jianfeng Zhan1

1Institute of Computing Technology, Chinese Academy of Sciences, China

{ luochunjie, gaowanling, jiazhen, hanrui, lijingwei, linxinlong, wanglei 2011,
zhuyuqing, zhanjianfeng}@ict.ac.cn

Abstract. This document presents the handbook of BigDataBench (Ver-
sion 3.1). BigDataBench is an open-source big data benchmark suite,
publicly available from http://prof.ict.ac.cn/BigDataBench. After
identifying diverse data models and representative big data workloads,
BigDataBench proposes several benchmarks specifications to model five
important application domains, including search engine, social networks,
e-commerce, multimedia data analytics and bioinformatics. BigDataBench
(partially) implements the same benchmarks specifications using vari-
ety of competitive techniques. The current version BigDataBench 3.1
includes 14 real data sets and the corresponding scalable big data gen-
eration tools, and 33 big data workloads. To allow flexible setting and
replaying of mixed workloads, BigDataBench provides the multi-tenancy
version; To save the benchmarking cost, BigDataBench reduces the full
workloads to a subset according to workload characteristics from a spe-
cific perspective. It also provides both MARSSx86 and Simics simulator
versions for architecture communities.

Keywords: Big Data, Benchmarks, Scale-out workloads, Search En-
gine, Social Network, E-commerce, Multimedia Data Analytics, Bioinfor-
matics, MapReduce, Spark, MPI, Multi-tenancy, Subsetting, Simulator

1 Introduction

As a multi-discipline research and engineering effort, i.e., system, architecture,
and data management, from both industry and academia, BigDataBench is an
open-source big data benchmark suite, publicly available from http://prof.

ict.ac.cn/BigDataBench. In nature, BigDataBench is a benchmark suite for
scale-out workloads, different from SPEC CPU (sequential workloads) [17], and
PARSEC (multithreaded workloads) [24]. Currently, it simulates five typical and
important big data applications: search engine, social network, e-commerce, mul-
timedia data analytics, and bioinformatics. In specifying representative big data
workloads, BigDataBench focuses on units of computation that are frequently
appearing in OLTP, Cloud OLTP, OLAP, interactive and offline analytics in

2 Chunjie Luo and etc.

each application domain. Meanwhile, it takes variety of data models into consid-
eration, which are extracted from real-world data sets, including unstructured,
semi-structured, and structured data. BigDataBench also provides an end-to-
end application benchmarking framework [91] to allow the creation of flexible
benchmarking scenarios by abstracting data operations and workload patterns,
which can be extended to other application domains, e.g., the water consumption
application domain in [9].

For the same big data benchmark specifications, different implementations
are provided. For example, we and other developers implemented the offline
analytics workloads using MapReduce, MPI, Spark, DataMPI, interactive an-
alytics and OLAP workloads using Shark, Impala, and Hive. In addition to
real-world data sets, BigDataBench also provides several parallel big data gen-
eration tools—BDGS—to generate scalable big data, e.g., a PB scale, from small
or medium-scale real-world data while preserving their original characteristics.
The current BigDataBench version is 3.1. In total, it involves 14 real-world data
sets, and 33 big data workloads.

To model and reproduce the multi-applications or multi-user scenarios on
Cloud or datacenters, we provide a multi-tenancy version of BigDataBench,
which allows flexible setting and replaying of mixed workloads according to the
real workload traces—Facebook, Google and SoGou traces. For system and archi-
tecture researches, i. e., architecture, OS, networking and storage, the number
of benchmarks will be multiplied according to different implementations, and
hence become massive. To reduce the research or benchmarking cost, we select
a small number of representative benchmarks, which we call the BigDataBench
subset, from a large amount of BigDataBench workloads according to workload
characteristics from a specific perspective. For example, for architecture commu-
nities, as simulation-based research is very time-consuming, we select a handful
number of benchmarks from BigDataBench according to comprehensive micro-
architectural characteristics, and provide both MARSSx86 [12] and Simics [15]
simulator versions of BigDataBench.

2 Summary of BigDataBench 3.1

BigDataBench is in fast expansion and evolution. Currently, we propose serval
benchmark specifications to model five typical application domains, and they are
available in Section 4. This section summarizes the implemented workloads, their
data sets, and scalable data generation tools. The current version BigDataBench
3.1 includes 14 real-world data sets and 33 big data workloads. Table 1 summa-
rizes the real-world data sets and scalable data generation tools included in
BigDataBench 3.1, covering the whole spectrum of data types, including struc-
tured, semi-structured, and unstructured data, and different data sources, such
as text, graph, image, audio, video and table data.

Table 2 presents BigDataBench from perspectives of application domains,
operations/ algorithms, data set, software stacks and application types. For some
end users, they may just pay attention to specified types of big data applications.

Handbook of BigDataBench 3.1 3

For example, they want to perform an apples-to- apples comparison of software
stacks for Offline Analytics. They only need to choose benchmarks with Offline
Analytics. On the other hand, if the users want to measure or compare big data
systems and architecture, we suggest they cover all benchmarks.

Table 1. The summary of data sets and data generation tools.

No. data sets data set description1 scalable data set

1 Wikipedia Entries [18] 4,300,000 English articles (unstructured
text)

Text Generator of BDGS

2 Amazon Movie Reviews [8] 7,911,684 reviews (semi-structured text) Text Generator of BDGS

3 Google Web Graph [11] 875713 nodes, 5105039 edges (unstruc-
tured graph)

Graph Generator of BDGS

4 Facebook Social Network
[10]

4039 nodes, 88234 edges (unstructured
graph)

Graph Generator of BDGS

5 E-commerce Transaction
Data

Table 1: 4 columns, 38658 rows. Table 2: 6
columns, 242735 rows (structured table)

Table Generator of BDGS

6 ProfSearch Person Re-
sumés

278956 resumés (semi-structured table) Table Generator of BDGS

7 ImageNet [32] ILSVRC2014 DET image dataset (un-
structured image)

ongoing development

8 English broadcasting audio
files [1]

Sampled at 16 kHz, 16-bit linear sampling
(unstructured audio)

ongoing development

9 DVD Input Streams [2] 110 input streams, resolution:704*480
(unstructured video)

ongoing development

10 Image scene [3] 39 image scene description files (unstruc-
tured text)

ongoing development

11 Genome sequence data [4] cfa data format (unstructured text) 4 volumes of data sets

12 Assembly of the human
genome[5]

fa data format (unstructured text) 4 volumes of data sets

13 SoGou Data [16] the corpus and search query data from So-
Gou Labs (unstructured text)

ongoing development

14 MNIST [13] handwritten digits database which has
60,000 training examples and 10,000 test
examples (unstructured image)

ongoing development

1The further detail of data schema is available from Section 5

4 Chunjie Luo and etc.

Table 2. The summary of the implemented workloads in BigDataBench 3.1.

Domains Operations or
Algorithm

Types Data Set Software Stacks ID1

Grep Offline Analytics Wikipedia Entries MPI, Spark, Hadoop W1-1
WordCount Offline Analytics Wikipedia Entries MPI, Spark, Hadoop W1-2

Search Index Offline Analytics Wikipedia Entries MPI, Spark, Hadoop W1-4
Engine PageRank Offline Analytics Google Web Graph MPI, Spark, Hadoop W1-5

Nutch Server Online Service SoGou Data Nutch W1-6
Sort Offline Analytics Wikipedia Entries MPI, Spark, Hadoop W1-7
Read Cloud OLTP ProfSearch Resumes HBase, Mysql W1-11-

1
Write Cloud OLTP ProfSearch Resumes HBase, Mysql W1-11-

2
Scan Cloud OLTP ProfSearch Resumes HBase, Mysql W1-11-

3

Social CC Offline Analytics Facebook Social Net-
work

MPI, Spark, Hadoop W2-8-1

Network Kmeans Offline Analytics Facebook Social Net-
work

MPI, Spark, Hadoop W2-8-2

BFS Offline Analytics Self Generating by
the program

MPI W2-9

Select Query Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-1

Aggregation
Query

Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-2

Join Query Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-3

CF Offline Analytics Amazon Movie Re-
view

hadoop, Spark, MPI W3-4

E-commerce Bayes Offline Analytics Amazon Movie Re-
view

hadoop, Spark, MPI W3-5

Project Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-1

Filter Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-2

Cross Product Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-3

OrderBy Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-4

Union Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-5

Difference Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-6

Aggregation Interactive Analytics E-commerce Transac-
tion Data

Hive, Shark, Impala W3-6-7

BasicMPEG Offline Analytics stream data Libc W4-1
SIFT Offline Analytics ImageNet MPI W4-2-1
DBN Offline Analytics MNIST MPI W4-2-2

Multimedia Speech Recog-
nition

Offline Analytics audio files MPI W4-3

Ray Tracing Offline Analytics scene description files MPI W4-4
Image Seg-
mentation

Offline Analytics ImageNet MPI W4-5

Face Detec-
tion

Offline Analytics ImageNet MPI W4-6

Bio- SAND Offline Analytics Genome sequence
data

Work Queue W5-1

informatics BLAST Offline Analytics Assembly of the hu-
man genome

MPI W5-2

1The workload ID of BigDataBench 3.1 corresponds with the workload ID in the
BigDataBench specification which can be found at Section 4

Handbook of BigDataBench 3.1 5

2.1 What are the differences of BigDataBench from other
benchmark suites?

As shown on the Table 3, among the ten desired properties, the BigDataBench
is more sophisticated than other state of art big data benchmarks.

Table 3. The summary of different Big Data Benchmarks.

Specifi-
cation

Appli-
cation

domains

Workload
types

Work-
loads

Scalable
data sets

abstracting
from real

data

Multiple
impleme-
ntations

Multi-
tenancy

Sub-
sets

Simulator
version

BigData
Bench

Y five four1 thirty-
three2

eight3 Y Y Y Y

BigBench Y one three ten three N N N N

CloudSuite N N/A two eight three N N N Y

HiBench N N/A two ten three N N N N

CALDA Y N/A one five N/A Y N N N

YCSB Y N/A one six N/A Y N N N

LinkBench Y N/A one ten one Y N N N

AMP
Benchmarks

Y N/A one four N/A Y N N N

1The four workload types are Offline Analytics, Cloud OLTP, Interactive Analytics
and Online Service

2There are 42 workloads in the specification. We have implemented 33 workloads
3There are 8 real data sets can be scalable, other 6 ones are ongoing development

2.2 BigDataBench Evolution

As shown in Fig. 1, the evolution of BigDataBench has gone through four major
stages:

At the first version, we released three benchmarks, BigDataBench 1.0 (6
workloads from Search engine), DCBench 1.0 (11 workloads from data analytics),
and CloudRank 1.0 (mixed data analytics workloads).

At the second version, we combined the previous three benchmarks and re-
leased BigDataBench 2.0, through investigating the top three important appli-
cation domains from internet services in terms of the number of page views and
daily visitors. BigDataBench 2.0 is a big data benchmark suite from internet
services. It includes 6 real-world data sets, and 19 big data workloads with dif-
ferent implementations, covering six application scenarios: micro benchmarks,
Cloud OLTP, relational query, search engine, social networks, and e-commerce.
Moreover, BigDataBench 2.0 provides several big data generation tools–BDGS–
to generate scalable big data, e.g, PB scale, from small-scale real-world data
while preserving their original characteristics.

6 Chunjie Luo and etc.

In BigDataBench 3.0, we made a multidisciplinary effort to the third version–
BigDataBench 3.0, which includes 6 real-world, 2 synthetic data sets, and 32
big data workloads, covering micro and application benchmarks from typical
application domains, e. g., search engine, social networks, and e-commerce. As
to generating representative and variety of big data workloads, BigDataBench
3.0 focuses on units of computation that frequently appear in Cloud OLTP,
OLAP, interactive and offline analytics.

Now, we release the fourth version, BigDataBench 3.1. It includes 5 appli-
cation domains, not only the three most important application domains from
internet services, but also emerging and important domains (Multimedia ana-
lytics and Bioinformatics), altogether 14 data sets and 33 workloads. The Multi
tenancy version for Cloud computing communities and simulator version for
architecture communities are also released.

BigDataBench 3.1

BigDataBench 3.0

CloudRank 1.0 DCBench 1.0 BigDataBench 1.0

BigDataBench 2.0

2013.12

2013.7

Search engine

6 workloads

11 data analytics

workloads

Mixed data analytics

workloads

Typical Internet service domains

An architectural perspective

19 workloads & data generation tools

2014.4

Multidisciplinary effort

32 workloads: diverse implementations

5 application domains: 14 data sets and 33 workloads

Same specifications: diverse implementations

Multi-tenancy version

BigDataBench subset and simulator version
2014.12

Fig. 1. BigDataBench Evolution

2.3 What is new in BigDataBench 3.1

We updated the Benchmarking methodology and added two new application do-
mains: Multimedia and Bioinformatics. Now, there are five typical application
domains: Search Engine, Social Network, E-commerce, Multimedia and Bioin-
formatics in BigDataBench 3.1. With the new methodology, we proposed the
Benchmark specification for each application domain, and defined data sets and
workloads in the application domains. Based on the specification, we imple-
mented the BigDataBench 3.1. Now it includes 14 real-world data sets, and 33

Handbook of BigDataBench 3.1 7

big data workloads. The Multi tenancy version for Cloud computing communi-
ties and simulator version for architecture communities are also released.

3 Big Data Benchmarking Methodology

Figure 2 summarizes the benchmarking methodology in BigDataBench. Overall,
it involves five steps: investigating and choosing important application domains;
identifying typical workloads and data sets; proposing big data benchmarks spec-
ifications; providing diverse implementations using competitive techniques; mix-
ing different workloads to assemble multi-tenancy workloads or subsetting big
data benchmarks.

Reduce

benchmarking cost

Application

Domain 1

Application

Domain N

Application

Domain …

Data models of different

types & semantics

Data operations &

workload patterns

Benchmark

specification(1)

Benchmark

specification…..

Benchmark

specification(N)

Real world data

sets

Data generation

tools

Workloads

with diverse

implementations

Multi tenancy

version

BigDataBench

subset

Mix with different

percentages

Fig. 2. BigDataBench benchmarking methodology.

At the first step, we investigated typical applications domains. First of all, we
investigated the dominant application domains of internet services—an impor-
tant class of big data applications according to widely acceptable metrics—the
number of page views and daily visitors. According to the analysis in [7], the top
three application domains are search engines, social networks, and e-commerce,
taking up 80% page views of all the internet services in total. Meanwhile, mul-
timedia data analytics and bioinformatics are two emerging but important big
data application domains. So we selected out those five important applications
domains: search engine, social network, e-commerce, multimedia data analytics
and bioinformatics. At the second step, we analyzed typical workloads and data
sets in each domain from two perspectives: diverse data models of different types,
i.e., structured, semi-structured, and unstructured, and different semantics, e.g.,
text, graph, multimedia data; identifing frequent-appearing data operations and
workload patterns. After that, we proposed big data benchmarks specifications
for each domain. At the fourth step, we implemented the same specifications us-
ing competitive techniques. For example, for offline analytics workloads, we im-
plemented the workloads using MapReduce, MPI, Spark, DataMPI. Meanwhile,
we choosed real-world data sets, and then provides parallel big data generation
tools to generate scalable big data while preserving their original characteristics.

8 Chunjie Luo and etc.

Finally, we provided the multi-tenancy version and the BigDatabench subset
for different purposes. We provide the multi-tenancy version of BigDataBench,
which allows flexible setting and replaying of mixed workloads with different per-
centages. To reduce the research or benchmarking cost, we select a small number
of representative benchmarks, which we call the BigDataBench subset, from a
large amount of BigDataBench workloads according to workload characteristics
from a specific perspective.

4 BigDataBench specification

There are five application domains in BigDataBench, namely search engine, so-
cial network, e-commence, multimedia, and bioinformatics. In this section, we
will describe the details of each domain by which the implementation of Big-
DataBench is guided. When describing the workloads, we use natural language
in English.

4.1 Search Engine

Web search engine is used to search information from HTML markup of the
web pages which are crawled by spider. As shown in Figure 3, there are two
scenarios, general search and vertical search, in BigDataBench. While general
search indexes all the web pages of the Internet and returns thousands of links
for a query, vertical search indexes content specialized by topic, and delivers
more relevant results to the user. To achieve this, vertical search needs to filter
the pages with special topic and extract semantic information.

Figure 4 shows the details of the search engine in BigDataBench. The data
which search engine mainly process are web pages. There are three additional
data : meta table, index, and search log. The meta table contains the attributes
of pages which are derived from the original web pages. The details of meta table
are shown in Table 4.

In BigDataBench, web pages are generated by data generator instead of being
downloaded from Internet. After obtaining a web page, search engine analyzes
each page to obtain the text contents and the structure of the web graph. The
text contents are then indexed by the search engine, while the web graph is used
to compute the importance of each page. When users send queries to a search
engine, the engine examines its index and provides listing pages which are sorted
according to the importance of pages and the relevance between queries and the
pages. It is not easy for users to give effective queries to search engine. Users
need to be familiar with specific terminology in a knowledge domain or try
different queries until they are satisfied with the results. To solve the problem,
web search engines often recommend search queries [39, 89, 51] to users according
to the historical search records. Additionally, a web search engine often returns
thousands of pages, which makes it difficult for users to browse or to identify
relevant information. Clustering or Classifying methods can automatically group
the results into a list of meaningful categories, so that users can filter the results

Handbook of BigDataBench 3.1 9

to a special category they are interested in. This is achieved by Vivisimo, Carrot2
etc. Moreover, vertical search engine, which focuses on a specific segment of
online content, are included in BigDataBench. To achieve vertical search, the
pages with special topic are selected out, and then semantic information are
extracted. The semantic information can then be accessed directly by the users.

users Internetweb server data analytics

general Search

vertical Search

information

filter

semantic

extract

Fig. 3. Abstraction of search engine in BigDataBench.

Table 4. The meta table.

attribute description

content the text content of the page without html tags.

URL the URL of the page.

out link the out links of the page.

score the result of page rank

category the topic category of the page.

key word the key words of the page.

Workloads:

W1-1: Parsing. Extract the text contents and out links from the raw web
pages. Parsing is the first thing to do after downloading the raw web pages in
search engine. This can be done by using regex expression to search some pattern
of html tags. This can also be seen as the string search which is widely used in
text search engine.

W1-2: Statistic. Count the word frequency to extract the key word which
represents the features of the page.

W1-3: Classification. Classify text contents into different categories.

10 Chunjie Luo and etc.

score

query logquery log

webweb
parsing

statistic

classification

PageRank

indexing

query

sorting

recommendation

content url out_link

key_word category

meta table

semantic

information

semantic

information

filter,

semantic extract

data access

Fig. 4. Process of search engine.

W1-4: Indexing. The process of creating the mapping of term to document
id lists.

W1-5: PageRank. Compute the importance of the page according to the web
link graph using PageRank. The web graph is built by the out links of each page.

W1-6: Search query. The online web search server.
W1-7: Sorting. Sort the results according to the page ranks and the relevance

between queries and documents.
W1-8: Recommendation. Recommend related search queries to users by min-

ing the search log.
W1-9: Filter. Identify pages with specific topic which can be used for vertical

search.
W1-10: Semantic extract. Extract semantic information.
W1-11: Data access. Read, write, and scan the semantic information.

4.2 Social Network

Social media allows people to create, share or exchange information, ideas in
virtual communities and networks (consumer generated media). We use the

Handbook of BigDataBench 3.1 11

the application of microblogging in our social network domain. Users register by
providing some basic information. The users then can follow other users or be
followed by other users. In this way, they form lots of communities in virtual.
And users can post their tweets to share their information in their communities.
The owner of the platform analyzes the large network and content of tweets to
supply better services, for example, finding communities, recommending friends,
classifying the sentiment of a tweet, finding the hot topic, active users and the
leaders of opinion. The diagram of social network is shown in Figure 5.

In the social network domain of BigDataBench, there are three tables, the
user table, the relation table and the tweet table. The dependence of these tables
can be seen in Figure 6. And the details are shown in Table 5, 6 and 7.

ssocial meeeiiiddaasocial meida

user table relation table tweet table

register
follow

post

data analytics

Fig. 5. Abstraction of social network in BigDataBench.

Table 5. The user table.

attribute description

user id the id of the user

sex the sex of the user

age the age of the user

education the situation of education

tag the terms showing characteristics of the user

workloads
W2-1: Hot review topic. Select the top N tweets by the number of review
W2-2: Hot transmit topic. Select the tweets which are transmitted more than

N times.

12 Chunjie Luo and etc.

user_id sex age

user_id follow_user_id content user_id review_number transmit_numbertweet_id time

education tag

user

relation tweet

Fig. 6. Tables used in social network scene.

Table 6. The relation table.

attribute description

user id the id of the user

follow user id the user id who is followed

W2-3: Active user. Select the top N person who post the largest number of
tweets.

W2-4: Leader of opinion. Select top ones whose number of review and trans-
mit are both large than N.

W2-5: Topic classify. Classify the tweets to certain categories according to
the topic.

W2-6: Sentiment classify. Classify the tweets to negative or positive according
to the sentiment.

W2-7: Friend recommendation. Recommend friend to person according the
relational graph.

W2-8: Community detection . Detecting clusters or communities in large
social networks.

Table 7. The tweet table.

attribute description

tweet id the id of the tweet

content the content of the tweet

user id the id of user who own the tweet

review number the number of review

transmit number the number of transmitting

time the publish time of the tweet

Handbook of BigDataBench 3.1 13

W2-9: Breadth first search. Sort persons according to the distance between
two people.

4.3 E-commence

In the E-commence domain in BigDataBench, as shown in 7, buyers order for
goods and review them. A order refers to a action of buying. In a order, there
may be lots of items, and each item is related to specific goods. As in Figure 8,
for example, one order may include one pen and two books. In the E-commence,
there are many statistic workloads to provide business intelligence. And the
review analysis and recommendation are also the typical application of the E-
commence. The details of the data are described in Table 8 and Table 9.

order table item table

order review

data analytics

buyers

Fig. 7. Abstraction of E-commence in BigDataBench.

Fig. 8. The order and item example.

Workloads The workloads are similar as queries used in [67] but are specified
in the E-commence environment. Moreover, two workloads, namely recommen-
dation and sensitive classification, are added since they are very popular in the
E-commence.

14 Chunjie Luo and etc.

order_id buyer_id time

order_id goods_id goods_number priceitem_id amount score review

order

item

Fig. 9. Tables used in E-commence scene.

Table 8. The order table.

attribute description

order id the id of the order

buyer id the id of person who own the order

time the time of the order occurred

W3-1: Select query. Find the items of which the sales amount is over 100 in
a single order.

W3-2: Aggregation query. Count the sales number of each goods.
W3-3: Join query. Count the number of each goods that each buyer purchased

between certain period of time.
W3-4: Recommendation. Predict the preferences of the buyer and recommend

goods to them .
W3-5: Sensitive classification. Identify positive or negative review.
W3-6: Basic data operation. Units of operation of the data.

4.4 Multimedia

In the multimedia domain, we simulate an intelligent video surveillance scenario.

Table 9. The item table.

attribute description

item id the id of the item

order id the id of order which the item belongs to

goods id the id of goods

goods number the number of goods

price the price of goods

amount the total assumption of the item

score the score the buyer gave

review the text commence the buyer gave

Handbook of BigDataBench 3.1 15

Fig. 10 summarises the brief process of a video surveillance system. The
overall framework is shown as Fig. 10(a). First, the gathered video data from
front end cameras are delivered to MPEG encoder, and generating MPEG video
streams. Then the video streams are packaged for transmission. When the com-
puter receives the video streams, it first decodes the streams using MPEG de-
coder. Next, a series of analysis can be conducted to dig information. Fig. 10(b)
presents the process of intelligent video analysis. Three kinds of analysis can
be done to monitor potential anomalies. The first one is to analyze the voice
data so as to detect the sensitive words; The second one is three-dimensional
reconstruction to get the contour of the monitoring scenario. The third one is to
analyze the video frame data and dig the information we concerned about.

Video Data MPEG Encoder

Front end cameras

MPEG Decoder Intelligent Video Analysis

Monitoring data analysis

(a) Overall Framework

Frame Data

Extraction
Feature ExtractionVideo Data

Voice Data

Extraction
Speech Recognition

Image

Segmentation
Face Detection

Three-dimensional

Reconstruction
Tracing

MPEG Decoder

(b) Intelligent Video Analysis.

Fig. 10. Brief process of video surveillance.

Data Model:

Fig. 11 describes the data model of multimedia domain, which is one of the
major components. The three cornerstone aspects of multimedia data types are
video, audio, and image. The audio data and image data in our domain are
derived from the video monitoring data. Video data is an illusion of movement
by playing a sequence of frames in quick succession, which are in fact a series
of still images. An analog image can be transformed into a digital image af-
ter sampling and quantization, which consists of pixels. Audio data also needs

16 Chunjie Luo and etc.

Video Data

Image Data

Audio Data

Fig. 11. Data Model of Multimedia.

analog-to-digital conversion.

Workloads:

W4-1: MPEG Decoder. We include a workload undoing the encoding to re-
trieve original video data. For example, MPEG-2 is a standard for video com-
pression and associated audio data compression.

W4-2: Feature extraction. Workloads for this purpose is mainly extracting the
characteristics of video frames and representing original redundant data using
features vector.

W4-3: Speech Recognition. This workload targets at content identification of
associated audio data, and translating speech into text.

W4-4: Ray Tracing. We include a workload for simulating 3-Dimensional
Scene, such as panoramic monitoring using many cameras, which can simulate
real scenarios and make for deeper analysis.

W4-5: Image Segmentation. This workload is used to divide the video frames
to several regions which can simplify their representation and make them easier
to analyze.

W4-6: Face Detection. We include a workload for detecting faces in the video
frames.

4.5 Bioinformatics

In the bioinformatics domain, we simulate a genome detection scenario, which
is a promising domain of disease prevention and treatment. High-throughput
biological technologies generate an exponentially growing amount of big data.
The total amount of DNA sequenced of human, animals and plants exceeds
2000 trillion bases. Analyzing and processing these big genome data quickly and
accurately is of great significance, for the genome of the organism contains all
genetic information about their growth and development.

Handbook of BigDataBench 3.1 17

Fig. 12 describes the brief process of genome detection. We temporarily omit
some details, such as specimen collection, DNA extraction and sequence format
conversion. There are two important processes of genome detection, gene se-
quencing and sequence alignment. Gene sequencing is to determine the order of
four bases in a strand of DNA. Sequence assembly and mapping are two basic
methods of the next-generation sequencing technology.

Genome Sequence

Data

Sequence Assembly

Sequence

Alignment

Sequence Mapping

Detection Result

Fig. 12. Brief process of genome detection.

Workloads:

W5-1: Sequence assembly. In this process, We include a workload to align
and merge multiple fragments into the original DNA sequence. Generally, a DNA
sequence is broken into millions of fragments, and sequence assembly technology
is used to recombine these fragments according to contigs.

W5-2: Sequence alignment. This is used to identify the similarity of multiple
DNA sequences, and expose the relationship considering of function, structure
and evolution. Sequence alignment includes pair-wise comparison and multiple
alignments from the perspective of sequence numbers, and partial/global com-
parison from the perspective of regions.

5 Benchmark implementation

Based on the specification, we implemented the BigDataBench 3.1 workloads.
The implementation of the specification is incomplete in current version, and we
will use unified data to complete the implementation of the respective workloads
of the five domain in BigDataBench.

5.1 Search Engine

As shown in Figure 13, we use the data sets of Wikipedia Entries and Google
Web Graph as the input data of the analytics workloads in general search, and
use Personal Resumes as the data of vertical search. To generate search queries

18 Chunjie Luo and etc.

users

web server

data analytics

general Search

vertical Search

semantic

extract

Internet

information

filter

Fig. 13. Real data sets used in BigDataBench.

and provide search services, we use Sogou Data as the original data. The details
of these data sets are described as following:

Wikipedia Entries[18]. The Wikipedia data set is unstructured text, with
4,300,000 English articles. The content of Wikipedia articles included: Arts, Bi-
ography, Geography, History, Mathematics, Science, Society and Technology.

Google Web Graph [11]. This data set is unstructured, containing 875713
nodes representing web pages and 5105039 edges representing the links between
web pages. This data set is released by Google as a part of Google Programming
Contest.

Personal Resumes. This data is from a vertical search engine for scientists
developed by ourselves. The data set is semi-structured, consisting of 278956
resumes automatically extracted from 20,000,000 web pages of university and
research institutions. The resume data have fields of name, email, telephone,
address, date of birth, home place, institute, title, research interest, education
experience, work experience, and publications.

Sogou Data [16]. This data set is unstructured, including corpus and search
query data from Sogou Lab, based on the corpus we gotten the index and segment
data which the total data size is 4.98GB.

According to the specification of search engine and data sets, we implement
the W1-1, W1-2, W1-4, W1-5, W1-6, W1-7 and W1-11 workloads on various
software stack. The details of the implementation of the workloads are shown in
Table 10.

Handbook of BigDataBench 3.1 19

Table 10. The summary of search engine workloads.

ID Implementation Description Data set Software stack

W1-1 Grep String searching used to
parser web pages

Wikipedia data MPI, Spark,
Hadoop

W1-2 WordCount Counting the word fre-
quency to do statistic

Wikipedia Data MPI, Spark,
Hadoop

W1-4 Index Indexing web pages for
searching

Wikipedia data MPI, Spark,
Hadoop

W1-5 PageRank Computing the importance
of the page

Google Web
Graph

MPI, Spark,
Hadoop

W1-6 Nutch Server Providing online search
services

Sogou Data Nutch

W1-7 Sort Ordering the data Wikipedia data MPI, Spark,
Hadoop

W1-9-1 Read Read operation of data ac-
cess

Personal Resumes HBase, Mysql

W1-9-2 Write Write operators of data ac-
cess

Personal Resumes HBase, Mysql

W1-9-3 Scan Scan operators of data ac-
cess

Personal Resumes HBase, Mysql

5.2 Social Network

Currently, we only implement the W2-8 and W2-9 workloads and we will com-
plete the implementation soon. We use Facebook Social Network as the input
data of workload of W2-8 which is implemented using two different algorithms.
And we also use the implementation of breadth first search in Graph500 [63] as
the W2-9 workload. Facebook Social Network [10] contains 4039 nodes, which
represent users, and 88234 edges, which represent friendship between users. The
details of the implementation of the workloads are shown in Table 11.

Table 11. The summary of social network workloads.

ID Implementation Description Data set Software stack

W2-8-1 CC Community detection us-
ing Connect Component
algorithm

Facebook Social
Network

MPI, Spark,
Hadoop

W2-8-2 Kmeans Community detection us-
ing Kmeans algorithm

Facebook Social
Network

MPI, Spark,
Hadoop

W2-9 BFS Breadth first search synthetic graph MPI

20 Chunjie Luo and etc.

5.3 E-commence

We implement all the workloads according to the specification of E-commence.
As shown on the Table 12, we use E-commerce Transaction data. However, there
are no reviews in this data. As a result, we use the Amazon Movie Reviews data
as the attribute of score and review in the item table to implement the workloads
of W3-4 and W3-5. The E-commence Transaction and Amazon Movie Reviews
are described as following:

E-commence Transaction. This data set is from an E-commerce web site,
which we keep anonymous by request. This data set is structured, consisting of
two tables: ORDER and order ITEM. The detail is shown in table 12.

Table 12. Schema of E-commence transaction data

ORDER ITEM

ORDER ID INT ITEM ID INT
BUYER ID INT ORDER ID INT

CREATE ID DATE DATE GOODS ID INT
GOODS NUMBER NUMBER(10,2)

GOODS PRICE NUMBER(10,2)
GOODS AMOUNT NUMBER(14,6)

Amazon Movie Reviews[8] This data set is semi-structured, consisting of
7,911,684 reviews on 889,176 movies by 253,059 users. The data span from Aug
1997 to Oct 2012. Fig 14 shows the data format. The raw format is text, and
consists of productID, userID, profileName, helpfulness, score, time, summary
and text.

The details of the implementation of the workloads are shown in Table 13.

Handbook of BigDataBench 3.1 21

Fig. 14. Excerpt of movie review data set

Table 13. The summary of E-commence workloads.

ID Implementation Description Data set Software stack

W3-1 Select query Find the items of which the
sales amount is over 100 in
a single order

E-commence
Transaction

Hive, Shark, Im-
pala

W3-2 Aggregation
query

Count the sales number of
each goods

E-commence
Transaction

Hive, Shark, Im-
pala

W3-3 Join query Count the number of each
goods that each buyer pur-
chased between certain pe-
riod of time

E-commence
Transaction

Hive, Shark, Im-
pala

W3-4 CF Recommendation using
Collaborative Filtering
algorithm

Amazon Movie
Reviews

Hadoop, Spark,
MPI

W3-5 Native Bayes Sensitive classification us-
ing Native Bayes algorithm

Amazon Movie
Reviews

Hadoop, Spark,
MPI

W3-6-1 Project Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

W3-6-2 Filter Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

W3-6-3 Cross Product Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

W3-6-4 OrderBy Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

W3-6-5 Union Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

W3-6-6 Difference Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

W3-6-7 Aggregation Basic operator E-commerce
Transaction

Hive, Shark, Im-
pala

22 Chunjie Luo and etc.

5.4 Multimedia

The data processing flow is shown in Fig. 15. The received video streams are
decoded to get original video data. Then one branch is to analyze a sequence of
video frames which in fact are a series of static images. The second branch is to
extract and analyze corresponding audio data. The third branch is to reconstruct
three-dimensional scene.

Video Stream Original Video Data

Audio Data

Video Frame Data

Scene Data

Fig. 15. Data processing flow of video surveillance.

Since we don’t own the real surveillance videos, we use similar patterns of
data for present. For BasicMPEG, we choose the DVD Input Streams data. For
the branch of analyzing video frames, we choose ImageNet [32], which is influ-
ential and comprehensive, as the video frame data for Feature extraction, Image
Segmentation and Face Detection. The corresponding audio data needs large
vocabulary and relatively standard pronunciation to conform to the real scene,
in that case, we choose English broadcasting audio data for Speech Recognition.
Three-dimensional reconstruction needs scene description files, so we choose the
Image scene data for Ray Tracing. Surveillance videos for traffic involve in car
license number recognition, then we choose MNIST for DBN. These data sets
are described as following:

ImageNet[32].This data set is unstructured, organized according to the
WordNet hierarchy, with 21841 non-empty synsets, including categories of plant,
formation, natural object, sport, artifact, fun guns, person, animal, and Misc,
adding up to 14197122 images.

English broadcasting audio files[1] . This audio data set is unstructured,
containing about 8000 audio files from VOA, BBC, CNN, CRI and NPR.

DVD Input Streams[2]. This data set is unstructured, consisting of 110 in-
put streams, with the resolution of 704*480. The contents of the streams include
cactus and comb, flowers, mobile and calendar, table tennis, et al.

Image scene[3]. This data set is semi-structured, with 39 files describing
objects from geometry, texture, viewpoint, lighting and shading information.

Handbook of BigDataBench 3.1 23

MNIST. This data set is a database of handwritten digits, available from
this page, has a training set of 60,000 examples, and a test set of 10,000 examples.

The scalable data sets tools are ongoing development.
According with the specification of Multimedia and data sets, we implement

the W4-1 to W4-6 workloads. Details of Multimedia workloads are shown on the
Table 14.

Table 14. The summary of Multimedia workloads.

ID Implementation Description Data Set Software
Stack

W4-1 BasicMPEG [52] MPEG2 decode/encode DVD Input Streams Libc

W4-2-1 SIFT [58] Detect and describe local features in
input images

ImageNet MPI

W4-2-2 DBN [58] Implementation of Deep Belief Net-
works

MNIST MPI

W4-3 Speech Recognition [6] Translate spoken words into text English broadcasting
audio files

MPI

W4-4 Ray Tracing [77] Generating an 3D image by tracing
light

Image scene MPI

W4-5 Image Segmentation
[37]

Partitioning an image into multiple
segments

ImageNet MPI

W4-6 Face Detection [78] Detecting face in an image ImageNet MPI

5.5 Bioinformatics

Genome Sequence

Data

Assembled Genome

Data

Fig. 16. Data processing flow of genome detection.

In the Bioinformatics specification, the data flow is shown in Fig. 16. The
original data set is genome sequence data, so we choose genome sequence data
consisting of anopheles gambiae genome data and Ventner Homo sapiens genome
data for Sequence assembly. For Sequence alignment, we choose assembly of the
human genome data as the original data since these data are assembled. These
data sets are described as following:

Genome sequence data[4]. This data set is unstructured, consisting of 4
genome data, with the size ranging from 20MB to 7GB, and the number of reads
ranging from 101617 to 31257852.

24 Chunjie Luo and etc.

Assembly of the human genome[5]. This data set is unstructured, includ-
ing 4 assembly sequences, with the data format of fasta, and the size ranging
from 100MB to 13GB.

According with the specification of Bioinformatics and data sets, we imple-
ment the W5-1 and W5-2 workloads. As shown on the Table 15.

Table 15. The summary of Bioinformatics workloads.

ID Implementation Description Data Set Software
Stack

W5-1 SAND Sequence assembly implementations
which merge genome fragments to get
the original genome sequence

Genome
sequence data

Work
Queue

W5-2 BLAST Sequence alignment implementations
which identify the similarity between tar-
get sequence with sequence in database

Assembly of
the human
genome data

MPI

5.6 BDGS: Big Data Generation Tools

We have described the implementation of the workloads based on the real data
sets. To achieve the purpose of large scale benchmarking, we should scale up
these data sets. Big Data Generation tools (BDGS) is designed for scaling up
the real data sets in BigDataBench. The current version of BDGS can scale up
three types of data: Text, Graph and Table. The details of Generators of Text,
Graph and Table are as follows.

Text Generator We implement our text generator with latent dirichlet allo-
cation (LDA) [26] model. LDA models each document as a mixture of latent
topics and a topic model is characterized by a distribution of words. The docu-
ment generation process in LDA has three steps:

1. choose N ∼ poisson(ξ) as the length of documents.
2. choose θ ∼ Dirichlet(α) as the topic proportions of document.
3. for each of N words wn:

(a) choose a topic zn ∼ Multinomial(θ)
(b) choose a word wn from p(wn|, zn, β), a multinomial probability condi-
tioned on the topic zn

Figure 17 shows the process of generating text data. It first preprocesses a
real data set to obtain a word dictionary. It then trains the parameters of a
LDA model from this data set. The parameters α and β are estimated using a
variational EM algorithm, and the implementation of this algorithm is in lda-c.
Finally, we use the LDA process mentioned above to generate documents.

The Wikipedia Entries and Amazon Movie Reviews data can be ex-
tended by Text Generator.

Handbook of BigDataBench 3.1 25

Wikipedia entries

Amazon Movie

Reviews

LDA model

Volume

Controller

Velocity

Controller
Format

Conversion

Workloads

Micro Benchmark:

Sort, Grep, WC;

Naïve bayes

Fig. 17. The process of Text Generator in BDGS

Graph Generator We use the kronecker graph model[47, 48] in our graph
generator. The kronecker graph model is designed to create self-similar graphs.
It begins with an initial graph, represented by adjacency matrix N. It then
progressively produces larger graphs by kronecher multiplication. Specifically,
we use the algorithms in [48] to estimate initial N as the parameter for the
raw real graph data and use the library in Stanford Network Analysis Platform
(SNAP, http://snap.stanford.edu/) to implement our generator. Figure 18 shows
the process of our Graph Generator.

Modles

Workloads

Micro Benchmark:

Page Rank;

Connetcted components;

Collaborative filter;

Sentiment classification

Google Web Graph

Facebook Social

Network Graph

Amazon User-Item

Graph

Volume

Controller

Velocity

Controller
Format

Conversion

Fig. 18. The process of Graph Generator

The Google Web Graph and Facebook Social Network data can be
extended by Graph Generator.

Table Generator To scale up the E-commence transection table data, we use
the PDGF [72], which is also used in BigBench and TPC-DS. PDGF uses XML
configuration files for data description and distribution, thereby sampling the
generation of different distributions of specified data sets. Hence we can easily
use PDGF to generate synthetic table data by configuring the data schema
and data distribution to adapt to real data. The E-commerce Transaction,
ProfSearch Person Resumés can be extended by Table Generator.

26 Chunjie Luo and etc.

6 BigDataBench Subsetting

6.1 Motivation

For system and architecture researches, i. e., architecture, OS, networking and
storage, the number of benchmarks will be multiplied by different implemen-
tations, and hence becoming massive. For example, BigDataBench 3.1 provides
about 77 workloads (with different implementations). Given the fact that it is
expensive to run all the benchmarks, especially for architectural researches those
usually evaluate new designs using simulators, downsizing the full range of the
BigDataBench 3.1 benchmark suite to a subset of necessary (non-substitutable)
workloads is essential to guarantee cost-effective benchmarking and simulations.

6.2 Methodology

1. Identify a comprehensive set of workload characteristics from a specific per-
spective, which affects the performance of workloads.

2. Eliminate the correlation data in those metrics and map the high dimension
metrics to a low dimension.

3. Use the clustering method to classify the original workloads into several
categories and choose representative workloads from each category.

The methodology details of subsetting (downsizing) workloads are summa-
rized in [40].

6.3 Architecture subset

Microarchitectural Metric Selection We select a broad set of metrics of
different types that cover all major characteristics. We particularly focus on
factors that may affect data movement or calculation. For example, a cache miss
may delay data movement, and a branch misprediction flushes the pipeline.

Table 16 summarizes them, and we categorize them below.
Instruction Mix. The instruction mix can reflect a workload’s logic and

affect performance. Here we consider both the instruction type and the execution
mode (i.e., user mode running in ring three and kernel mode running in ring
zero).

Cache Behavior. The processor in our experiments has private L1 and L2
caches per core, and all cores share an L3. The L1 cache is shared for instruc-
tions and data. The L2 and L3 are unified. We track the cache misses per kilo
instructions and cache hits per kilo instructions except L1 data cache, note that
for the L1D miss penalties may be hidden by out-of-order cores.

Translation Look-aside Buffer (TLB) Behavior. Modern processors
have multi levels of TLB (most of them are two-level). The first level has separate
instruction and data TLBs. The second level is shared. We collect statistics at
both levels.

Handbook of BigDataBench 3.1 27

Branch Execution. We consider the miss prediction ratio and the ratio of
branch instructions executed to those retired. These reflect how many branch
instructions are predicted wrong and how many are flushed.

Pipeline Behavior. Stalls can happen in any part of the pipeline, but su-
perscalar out-of-order processors prevent us from precisely breaking down the
execution time [46, 36]. Retirement-centric analysis also has difficulty accounting
for how the CPU cycles are used because the pipeline continues executing in-
structions even when retirement is blocked [49]. Here we focus on counting cycles
stalled due to resource conflicts, e.g., reorder buffer full stalls that prevent new
instructions from entering the pipeline.

Offcore Requests and Snoop Responses. Offcore requests tell us about
individual core requests to the LLC (Last Level Cache). Requests can be classi-
fied into data requests, code requests, data write-back requests, and request for
ownership (RFO) requests. Snoop responses give us information on the workings
of the cache coherence protocol.

Parallelism. We consider Instruction Level Parallelism (ILP) and Memory
Level Parallelism (MLP). ILP reflects how many instructions can be executed in
one cycle (i.e., the IPC), and MLP reflects how many outstanding cache requests
are being processed concurrently.

Operation Intensity. The ratio of computation to memory accesses re-
flects a workload’s computation pattern. For instance, most big data workloads
have a low ratio of floating point operations to memory accesses, whereas HPC
workloads generally have high floating point operations to memory accesses ra-
tios [81].

Removing Correlated Data The BigDataBench 3.1 includes 77 workloads.
Given the 77 workloads and 45 metrics for each workload, it is difficult to an-
alyze all the metrics to draw meaningful conclusions. Note, however, that some
metrics may be correlated. For instance, long latency cache misses may cause
pipeline stalls. Correlated data can skew similarity analysis — many correlated
metrics will overemphasize a particular property’s importance. So we eliminate
correlated data before analysis. Principle Component Analysis (PCA) [45] is a
common method for removing such correlated data [69, 34, 35, 25]. We first nor-
malize metric values to a Gaussian distribution with mean equal to zero and
standard deviation equal to one (to isolate the effects of the varying ranges of
each dimension). Then we use Kaiser’s Criterion to choose the number of prin-
ciple components (PCs). That is, only the top few PCs, which have eigenvalues
greater than or equal to one, are kept. With Kaiser’s Criterion, the resulting data
is ensured to be uncorrelated while capturing most of the original information.
Finally we choose nine PCs, which retain 89.3% variance.

Clustering We use K-Means clustering on the nine principle components ob-
tained from the PCA algorithm to group workloads into similarly behaving appli-
cation clusters and then we choose a representative workload from each cluster.
In order to cluster all the workloads into reasonable classes, we use the Bayesian

28 Chunjie Luo and etc.

Table 16. Microarchitecture Level Metrics.

Category No. Metric Name Description

Instruction 1 LOAD load operations’ percentage
Mix 2 STORE store operations’ percentage

3 BRANCH branch operations’ percentage
4 INTEGER integer operations’ percentage
5 FP X87 floating point operations’ percentage
6 SSE FP SSE floating point operations’ percentage
7 KERNEL MODE the ratio of instruction running on kernel mode
8 USER MODE the ratio of instruction running on user mode
9 UOPS TO INS the ratio of micro operation to instruction

Cache Behavior 10 L1I MISS L1 instruction cache misses per K instructions
11 L1I HIT L1 instruction cache hits per K instructions
12 L2 MISS L2 cache misses per K instructions
13 L2 HIT L2 cache hits per K instructions
14 L3 MISS L3 cache misses per K instructions
15 L3 HIT L3 cache hits per K instructions
16 LOAD HIT LFB loads miss the L1D and hit line fill buffer per K instruc-

tions
17 LOAD HIT L2 loads hit L2 cache per K instructions
18 LOAD HIT SIBE loads hit sibling core’s L2 cache per K instructions
19 LOAD HIT L3 loads hit unshared lines in L3 cache per K instructions
20 LOAD LLC MISS loads miss the L3 cache per K instructions

TLB Behavior 21 ITLB MISS misses in all levels of the instruction TLB per K instruc-
tions

22 ITLB CYCLE the ratio of instruction TLB miss page walk cycles to
total cycles

23 DTLB MISS misses in all levels of the data TLB per K instructions
24 DTLB CYCLE data TLB miss page walk cycles to total cycles
25 DATA HIT STLB DTLB first level misses that hit in the second level TLB

per K instructions

Branch 26 BR MISS branch miss prediction ratio
Execution 27 BR EXE TO RE the ratio of executed branch instruction to retired

branch execution

Pipeline Behavior 28 FETCH STALL the ratio of instruction fetch stalled cycle to total cycles
29 ILD STALL the ratio of Instruction Length Decoder stalled cycle to

total cycles
30 DECODER STALL the ratio of Decoder stalled cycles to total cycles
31 RAT STALL the ratio of Register Allocation Table stalled cycles to

total cycles
32 RESOURCE STALL the ratio of resource related stalled to total cycles, which

including load store buffer full stalls, Reservation Sta-
tion full stalls, ReOrder buffer full stalls and etc

33 UOPS EXE CYCLE the ratio of micro operation executed cycle to total cy-
cles

34 UOPS STALL the ratio of no micro operation executed cycle to total
cycles

Offcore 35 OFFCORE DATA percentage of offcore data request
Request 36 OFFCORE CODE percentage of offcore code request

37 OFFCORE RFO percentage of offcore Request For Ownership
38 OFFCORE WB percentage of data write back to uncore

Snoop Response 39 SNOOP HIT HIT snoop responses per K instructions
40 SNOOP HITE HIT Exclusive snoop responses per K instructions
41 SNOOP HITM HIT Modified snoop responses per K instructions

Parallelism 42 ILP Instruction Level Parallelism
43 MLP Memory Level Parallelism

Operation Intensity 44 INT TO MEM integer computation to memory access ratio
45 FP TO MEM floating point computation to memory access ratio

Handbook of BigDataBench 3.1 29

Information Criterion (BIC) to choose the proper K value. The BIC is a measure
of the “goodness of fit” of a clustering for a data set. The larger the BIC scores,
the higher the probability that the clustering is a good fit to the data. Here we
determine the K value that yields the highest BIC score.

We use the formulation from Pelleg et al. [68] shown in Equation 1 to calculate
the BIC.

BIC(D,K) = l(D|K)− pj
2
log(R) (1)

Where D is the original data set to be clustered. In this Section, D is 77× 9
matrix which indicates 77 workloads and each workload is represented by 9 PCs
(Principle Components). l(D|K) is the likelihood. R is the number of workloads
to be clustered. pj is the sum of K − 1 class probabilities, which is K + dK. d
is the dimension of each workloads, which is K + dK, which is 9 for we choose
9 PCs. To compute l(D|K), we use Equation 2.

l(D|K) =
∑

K
i=1(−Ri

2
log(2π)− Ri · d

2
log(σ2)− Ri −K

2
+RilogRi −RilogR)

(2)
Where Ri is the number of points in the ith cluster, and σ2 is the average

variance of the Euclidean distance from each point to its cluster center, which
is calculate by Equation 3.

σ2 =
1

R−K
∑
i

(xi − µ(i))2 (3)

Here xi is the data point assigned to cluster i, and µ(i) represents the center
coordinates of cluster i.

We ultimately cluster the 77 workloads (all big data workloads in BigDataBench
3.0) into 17 groups, which are listed in Table 17 .

Representative Workloads Selection There are two methods to choose the
representative workload from each cluster. The first is to choose the workload
that is as close as possible to the center of the cluster it belongs to. The second
one is to select an extreme workload situated at the “boundary” of each cluster.

Combined with hierarchical clustering result, we select the workload situated
at the “boundary” of each cluster as the architecture subset of BigDataBench 3.1.
The rationale behind the approach would be that the behavior of the workloads
in the middle of a cluster can be extracted from the behavior of the boundary,
for example through interpolation. So the representative workloads are listed in
Table 18. And the number of workloads that each selected workload represents
is given in the third column.

In the case that researchers need the workloads which are chosen by the first
method, i.e. choosing the workload that is as close as possible to the center of
the cluster, we also list them in Table 19.

30 Chunjie Luo and etc.

7 BigDataBench Simulator Version

We use MARSSx86 [12] and Simics [15] for our BigDataBench simulator version.
This section gives a brief introduction on these two computer architecture sim-
ulators and our simulator version benchmark suite. We hope that readers can
have a preliminary understanding of simulator and our BigDataBench simulator
version.

7.1 Motivation

A full-system simulator is an architecture simulator that simulates an electronic
system at such a level of detail that complete software stacks from real systems
can run on the simulator without any modification. A full system simulator
effectively provides virtual hardware that is independent of the nature of the
host computer. The full-system model typically has to include processor cores,
peripheral devices, memories, interconnection buses, and network connections.
Architecture simulators, which aim at allowing accurate timings of the processor,
are very useful in the following ways:

– Obtaining detailed performance characteristics: A single execution of simu-
lators can generate a large set of performance data, which can be analyzed
offline.

– Evaluating different hardware designs without building expensive physical
hardware systems.

– Debugging on simulator to detect the potential errors instead of on real
hardware, which requires re-booting and re-running the code to reproduce
the problems.

We provide the BigDataBench simulator version to facilitate the big data re-
searches in the above aspects. Simulation is a time consuming activity. It is
prohibitively expensive to run all big data application in BigDataBench-v3.1. So
we just deploy the architecture subset application mentioned in Section 6.3, i.e.
the application in Table 18, on those two simulators and release the image as
BigDataBench simulator version.

7.2 MARSSx86 Version

MARSSx86 is an open source, fast, full system simulation tool built on Qemu
to support cycle-accurate simulation of superscalar homogeneous and hetero-
geneous multicore x86 processors [12]. MARSSx86 includes detailed models of
coherent caches, interconnections, chipsets, memory and IO devices. MARSSx86
can simulate the execution of all software components in the system, including
unmodified binaries of applications, operating systems and libraries.

Handbook of BigDataBench 3.1 31

BigDataBench MARSSx86 version overview The MARSSx86 has the fol-
lowing characteristics:

– Good performance and accuracy: average simulated commit rate of 200K+
instructions/second.

– Qemu based full system emulation environment with models for chipset and
peripheral devices.

– Detailed models for Coherent Caches and On-Chip interconnections.

MARSSx86 user Guide
System Requirements
MARSS runs a Linux platform with the following minimum requirements:

– x86 64 CPU cores with a minimum 2GHz clock and 2GB RAM (4GB RAM
is preferred).

– C/C++ compiler, gcc or icc; SCons compilation tool minimum version 1.2.
– SDL Development Libraries (required for QEMU).

Deploying MARSS and Running Big Data Applications
Once meeting the above pre-requirements, compiling MARSS is simple. What
users need to do is as follows:

1. Download the appropriate MARSS installation package from the web site.
2. Extract the installation package as follows:

tar xf marss-0.4.tar.gz

3. Enter the temporary installation directory, and run the command as follows:

$ cd marss-0.4
$ scons -Q

4. By default it will compile the MARSS for single simulated core. To simulate
more than one core, for SMP or CMP configuration, users should add an op-
tion ‘c=NUM CORES’ to compile MARSS as shown below. This command
will compile the MARSS to simulate 8 cores:

32 Chunjie Luo and etc.

$ scons -Q c=8

5. We provide four qemu-disk-images and two qemu-network-config-scripts:
- marss-1.img (the qemu-disk-image of master node to run Impala based

workloads)
- marss-2.img (the qemu-disk-image of slaver node to run Impala based

workloads)
- marss-3.img (the qemu-disk-image of master node to run Hadoop and

Spark based workloads)
- marss-4.img (the qemu-disk-image of slaver node to run Hadoop and

Spark based workloads)
- qemu-ifup (qemu-network-config-script for master node)
- qemu-ifup2 (qemu-network-config-script for slaver node, you should run

this script before qemu-ifup)
To run Impala workloads of BigDataBench, you should use following com-
mands to run MARSS:

master: $ qemu/qemu-system-x86 64 -m 8192 -hda [path-to-marss-
1.img] -monitor stdio -net nic,macaddr=52:54:00:12:34:55 -net
tap,ifname=tap1,script=[path-to-qemu-ifup2]

slaver: $ qemu/qemu-system-x86 64 -m 8192 -hda [path-to-marss-2.img]
-monitor stdio -net nic -net tap,ifname=tap0,script=[path-to-qemu-ifup]

To run hadoop, hive, spark, shark workloads of BigDataBench, you should
use following commands to run MARSS:

master: $ qemu/qemu-system-x86 64 -m 8192 -hda [path-to-marss-
3.img] -monitor stdio -net nic,macaddr=52:54:00:12:34:55 -net
tap,ifname=tap1,script=[path-to-qemu-ifup2]

slaver: $ qemu/qemu-system-x86 64 -m 8192 -hda [path-to-marss-4.img]
-monitor stdio -net nic -net tap,ifname=tap0,script=[path-to-qemu-ifup]

Handbook of BigDataBench 3.1 33

6. You can use all of the regular Qemu commands. Once the VM is booted,
the host’s command line has become the VM console and you can start the
benchmark application, issue following commands in that console:

(qemu) simconfig -run -stopinsns 100m -stats [stats-filename] -machine
MACHINE NAME

You can find the MACHINE NAME and hardware configuration in the
marss-0.4/config path. The MACHINE NAME should be “shared l2” or
“private l2” if you follow the commands above.

The above paragraphs shows how to run Impala based workloads. Users can use
different queries by modifying the runMicroBenchmark.sh. For other workloads
users can boot the MARSS and use the commands in Section 9.

7.3 Simics

Simics is a full-system simulator used to run unchanged production binaries of
the target hardware at high-performance speeds. It can simulate systems such
as Alpha, x86-64, IA-64, ARM, MIPS (32- and 64-bit), MSP430, PowerPC (32-
and 64-bit), POWER, SPARC-V8 and V9, and x86 CPUs.

BigDataBench Simics version overview We use SPARC as the instruction
set architecture in our Simics version simulator benchmark suite, and deploy
Solaris operation systems, for the reason that the X86 architecture are not well
supported by some simulators based on Simics. For instance the Flexus [14],
which is a family of component-based C++ computer architecture simulators
that build on Simics Micro-Architecture Interface, do not support our-of-order
mode for X86 architecture.

Simics user Guide Simics is recommended to install in the /opt/virtutech
directory by using the following commands.

1. Download the appropriate Simics installation package from the website, such
as simics-pkg-00-3.0.0-linux.tar.

2. Extract the installation package, the command is as follows:

tar xf simics-pkg-00-3.0.0-linux.tar

34 Chunjie Luo and etc.

3. Enter the temporary installation directory and run the install script using
the command as follows:

cd simics-3.0-install
sh install-simics.sh

4. The Simics requires a decryption key, which has been unpacked before. de-
code key has been cached in $HOME/.simics-tfkeys.

5. When the installation script finished, Simics has been installed in the /opt/virtutech/simics-
<version>.

6. When the Simics is successfully installed, temporary installation directory
can be deleted.

The detailed commands of how to run big data workloads in Simics can be found
in Section 9.

8 Multi-tenancy of BigDataBench

8.1 Background of Multi-tenancy

What is Multi-tenancy Datacenters? Data center reflects the thinking that
the network is the computer, which makes the amount of computing resource,
storage resources and software resources linked together, then forming a huge
shared virtual IT resources pool to provide services via the Internet. Data center
focuses on the high concurrency, the diversity of application performance, low
power, automation, high efficiency.

Within this context, a multi-tenant datacenter can be explained from three
perspectives:

– Resource pooling and broad network access. Infrastructure resources such as
VM, storage, and networking are pooled and shared among multiple cloud
consumers.

– On-demand and elastic resource provision. Cloud consumers can get any
quantity of resources at any time according to their demand

– Metered resources. Resources are charged in a Pay-as-you-go manner like
electricity and water.

Existing problems Existing big data benchmarks typically focus on latency/throughput
for a single run of workload performed in a dedicated set of machines. The bench-
marking process is too synthetic that it does not match the typically operating
conditions of real systems, where mixes of different percentages of tenants and
workloads share the same computing infrastructure. For such an issue, benchmark
suite that support real-world scenarios serving tenants with different amounts
of users and heterogeneous workloads is urgently needed.

How to characterize datacenter tenants? Datacenter tenants can be charac-
terized from three aspects:

Handbook of BigDataBench 3.1 35

– The number of tenants (scalability of benchmark): Does the system scale well
with the number of tenants? How many tenants are able run in parallel?

– The priorities of tenants (Fairness of benchmark): How fair is the system,
i.e., are the available resources equally available to all tenants? If tenants
have different priorities ?

– Time line: how the number and priorities of tenants change over time?

How to characterize big data workloads? Big data workloads can be charac-
terized from three aspects:

– Data characteristics, including data types and sources, and input/output
data volumes, distributions.

– Computation semantics, including source codes (implementation logics of
workloads) and the big data software stacks running the workloads.

– Job arrival patterns, including requests’ arrival rate and sequences.

8.2 Definition of Multi-tenancy version

Multi-tenancy version of BigDataBench is a benchmark suite aiming to support
the scenarios of multiple tenants running heterogeneous applications in cloud
datacenters. Examples are latency-critical online services (e.g. web search en-
gine) and latency-insensitive offline batch applications. The basic idea of Multi-
tenancy version is to understand the behavior of realistic big data workloads
(involves both service and batch application workloads) and their users. The
specification of Multi-tenancy version is shown in Figure 19, this workload suite
has been designed and implemented based on workload traces from real-world
applications, allowing the flexible setting and replaying of these workloads ac-
cording to users’ varying requirements. At present, Multi-tenancy version con-
sists of two types of representative workloads: Nutch search engine and Hadoop
MapReduce workloads, which correspond to three real-world workload traces:
Sougou, Facebook trace, and Google trace, respectively.

Fig. 19. Overview of Multi-tenancy version of BigDataBench.

Main Features. Multi-tenancy version is currently integrated with Hadoop
and Nutch Search Engine. We believe DC cluster operators can use Multi-

36 Chunjie Luo and etc.

tenancy version to accomplish other previously challenging tasks, including but
not limited to resource provisioning and planning in multiple dimensions; con-
figurations tuning for diverse job types within a workload; anticipating workload
consolidation behavior and quantify workload superposition in multiple dimen-
sions.

The multi-tenancy version has the following five features:

– Repository of workload traces and real life Search-engine workloads from
production systems.

– Applying robust machine learning algorithm to match the Workload char-
acteristics information from both real workloads and workload traces, thus
exacting basis for workload replaying.

– Workload synthesis tools to generate representative test workloads by pars-
ing workload replaying basis.

– Convenient multi-tenancy workload replay tools to execute both time-critical
and analytical workloads with low performance overhead.

– scenarios of both mixed workloads in public clouds and data analytical work-
loads in private clouds.

Handbook of BigDataBench 3.1 37

9 BigDataBench 3.1 user manual

9.1 BigDataBench 3.1

Table 20. The summary of the workloads in BigDataBench 3.1

Domains Data Set Generation Tools Workloads Software Stacks ID

Grep MPI, Spark, Hadoop W1-1
WordCount MPI, Spark, Hadoop W1-2

Search Wikipedia Entries Text Generator Index MPI, Spark, Hadoop W1-4
Engine Sort MPI, Spark, Hadoop W1-7

Google Web Graph Graph Generator PageRank MPI, Spark, Hadoop W1-5
SoGou Data N/A Nutch Server Nutch W1-6

Read HBase, Mysql W1-11-
1

ProfSearch Resumes Table Generator Write HBase, Mysql W1-11-
2

Scan HBase, Mysql W1-11-
3

Social Facebook Social Network Graph Generator CC MPI, Spark, Hadoop W2-8-1
Network Kmeans MPI, Spark, Hadoop W2-8-2

Self Generating by the pro-
gram

N/A BFS MPI W2-9

Select Query Hive, Shark, Impala W3-1
Aggregation Query Hive, Shark, Impala W3-2

Join Query Hive, Shark, Impala W3-3
Project Hive, Shark, Impala W3-6-1
Filter Hive, Shark, Impala W3-6-2

E-commerce E-commerce Transaction
Data

Table Generator Cross Product Hive, Shark, Impala W3-6-3

OrderBy Hive, Shark, Impala W3-6-4
Union Hive, Shark, Impala W3-6-5

Difference Hive, Shark, Impala W3-6-6
Aggregation Hive, Shark, Impala W3-6-7

Amazon Movie Review Graph Generator CF Hadoop, Spark, MPI W3-4
Text Generator Bayes Hadoop, Spark, MPI W3-5

Stream data N/a BasicMPEG MPI W4-1
SIFT MPI W4-2-1

ImageNet N/A Image Segmentation MPI W4-5
Multimedia Face Detection MPI W4-6

Audio files N/A Speech Recognition MPI W4-3
Scene description files N/A Ray Tracing MPI W4-4
MNIST N/A DBN MPI W4-2-2

Bio- Genome sequence data N/A SAND MPI W5-1
informatics Assembly of the human

genome
N/A BLAST MPI W5-2

38 Chunjie Luo and etc.

As shown in Table 20, we investigate five application domains including Search
Engine, Social Network, E-commerce ,Multimedia and Bioinformatics, and then
select representative applications/workloads from these domains. We also pro-
vide 14 real data sets, which can also be found in the table 1, for those appli-
cations. Based on the observation that the scale of real data sets may not meet
the benchmarking demands of Big Data scale, we provide some data generation
tools to scale out the read data.

In the table, we fill the name of corresponding data generation tool for the
real data set if it can be scaled out. Users can find how to scale out the data set
and run the applications in the remaining part of this section.

9.2 Big Data Generation Tools

In BigDataBench 3.1,we introduce Big Data generation tools, a comprehensive
suite developed to generate synthetic big data while preserving their 4V proper-
ties. Specifically, our BDGS can generate data using a sequence of three steps.
First, BDGS selects application-specific and representative real-world data sets.
Second, it constructs data generation models and derives their parameters and
configurations from the data sets. Finally, given a big data system to be tested,
BDGS generates synthetic data sets that can be used as inputs of application-
specific workloads. In the release edition, BDGS consist of three parts: Text
generator, Graph generator, and Table generator. We now introduce how to use
these tools to generate data.

Text Generator We provide a data generation tool which can generate data
with user specified data scale. In BigDataBench 3.1 we analyze the wiki data
sets to generate model, and our text data generate tool can produce the big data
based on the model.
Generate the data command

sh gen text data.sh <model name ><file number ><fife lines ><line words
><output dir >

Parameters
<model name >: the name of model used to generate new data
<file number >: the number of files to generate
<fife lines >: number of lines in each file
<line words >: number of words in each line

For example

sh gen text data.sh lda wiki1w 10 100 1000 gen data/

Handbook of BigDataBench 3.1 39

This command will generate 10 files, in which each contains 100 lines, and
each line contains 1000 words by using model wiki1w.
Note: The tool needs to install GSL-GNU Scientific Library. Before you run the
program, Please make sure that GSL is ready.

Your also can choose parallel,

mkdir /mnt/raid/BigDataGeneratorSuite in every node

Configure NON password login and the host: parallel ex/conf hosts
To Run

cd parallel ex
sh deploy ex.sh
sh run textGen .sh

Graph Generator Here we use Kronecker to generate data that are both
mathematically tractable and have all the structural properties from the real
data set (http://snap.stanford.edu/snap/index.html). In BigDataBench 3.1, we
analyze the Google, Facebook and Amazon data sets to generate model. Our
graph data generation tool can produce the big data based on the model.
Generate the data command (fill the name of corresponding data generation
tool)

sh gen kronecker graph

Parameters
-o:Output graph file name (default:’graph.txt’)
-m:Matrix (in Maltab notation) (default:’0.9 0.5; 0.5 0.1’)
-i:Iterations of Kronecker product (default:5)
-s:Random seed (0 - time seed) (default:0)
For example

sh gen kronecker graph -o:../data-outfile/amazon gen.txt -m:”0.7196 0.6313;
0.4833 0.3601” -i:23

Note:If you want to recompilation, you should do this

40 Chunjie Luo and etc.

cd BigDataGeneratorSuite/Graph datagen/snap-core
make
mv Snap.o ../
cd ../ and make

Table Generator We use Parallel Data Generation Framework (PDGF) to
generate table data. PDGF is the generic data generator for database bench-
marking. PDGF is designed to take advantage of today’s multi-core processors
and large clusters of computers to generate large amounts of synthetic bench-
mark data quickly. PDGF uses a fully computational approach and it is a pure
Java implementation which makes it very portable.
You can use your own configuration file to generate table data.

1. Prepare the configuration files
The configuration files are written in XML and are by default stored in the con-
fig folder. PDGF-V2 is configured with two XML files: the schema configuration
and the generation configuration. The schema configuration (demo-schema.xml)
defines the structure of the data and the generation rules, while the generation
configuration (demo-generation.xml) defines the output and the post-processing
of the generated data.
For the demo, we will generate the files demo-schema.xml and demo-generation.xml,
which are also contained in the provided .gz file. Initially, we will generate two
tables: OS ORDER and OS ORDER ITEM.

demo-schema.xml

demo-generation.xml

2. Generate data
After creating both demo-schema.xml and demo-generation.xml, the first data
generation run can be performed. Therefore it is necessary to open a shell, change
into the PDGF Environment directory.
Basic command-line usage WITH Scale Factor:

cd Table datagen/e-com
java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-

generation.xml -c -s -sf 2000

You can also choose the parallel version, it runs like this

Handbook of BigDataBench 3.1 41

mkdir /mnt/raid/BigDataGeneratorSuite in every node

Configure Non password login and the host: parallel ex/conf hosts
To Run

cd parallel ex
sh deploy ex.sh
sh run personalResumeGen.sh

9.3 Big Data Workloads

After generating the big data, we integrate a series of workloads to process the
data in our big data benchmarks. In this part, we will introduce how to run the
Benchmark for each workload. It typically consists of two steps. The first step
is to generate the big data and the second step is to run the applications using
the generated data.

SearchEngine In Search Engine domain, we have used data sets including
:Wikipedia Entries, Google Web Graph, ProfSearch Resumes and SoGou Data.
The Wikipedia Entries are used by WordCount, Sort, Grep, Index workloads.
The Google Web Graph is used by PageRank workload. ProfSearch Resumes
are used by Cloud OLTP (Write,Read,Scan).The SoGou Data is used by Nutch
Server.
Hadoop-version (sort, grep, wordcount)
To prepare and generate data

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/MicroBenchmarks/
3. sh genData MicroBenchmarks.sh

To run

sh run MicroBenchmarks.sh

When you choose to run sort you should do this
Put the sort-transfer file in your Hadoop HOME(the sort-transfer you can find
in BigDataBench V3.1.tar.gz)and run like this

42 Chunjie Luo and etc.

1. sh genData MicroBenchmarks.s
2. sh sort-transfer.sh
3. sh run MicroBenchmarks.sh

Spark-version (sort, grep, wordcount)
To prepare and generate data

1. tar xzf BigDataBench Sprak V3.1.tar.gz
2. cd BigDataBench V3.1 Spark Shark/MicroBenchmarks/
3. sh genData MicroBenchmarks.sh

To run

sh run MicroBenchmarks.sh

Mpi-version (sort, grep, wordcount)
Sort
To prepare and generate data

1. tar xzf BigDataBench MPI V3.1.tar.gz
2. cd BigDataBench V3.1 MPI/MicroBenchmarks/MPI Sort/
3. sh genData sort.sh

Makefile
Here we provide two versions, you can choose to make it by yourself. To do that
you must translate like this
make
To run

mpirun -n process number ./mpi sort <hdfs Path ><hdfs port ><input file
><output file >

For example

Handbook of BigDataBench 3.1 43

mpirun -n 24 ./mpi sort 172.18.11.107 9000 /home/mpi /data

Grep
To prepare and generate data

1. tar xzf BigDataBench MPI V3.1tar.gz
2. cd BigDataBench MPI V3.1tar.gz /MicroBenchmarks/MPI Grep/
3. sh genData grep.sh

Then there will be a data-grep file in the current directory, you can find your
data in it. If you use multiple machines you must put the data on each mpi-
machines, and put them in the same path.
Makefile
Here we provide two versions,you can choose make it by yourself, if you do that
you must translate like this
make
To run

mpirun -n process number ./mpi grep <input file ><pattern >

Wordcount
To prepare and generate data

1. tar xzf BigDataBench MPI V3.1.tar.gz
2. cd BigDataBench MPI V3.1.tar.gz /MicroBenchmarks/MPI WordCount/
3. sh genData wordcount.sh

Then there will be a data-wordcount file in the current directory, you can
find your data in it. If you use not one machine you must put the data on each
mpi-machines, and put them in the same path.
Makefile
Here we provide two versions,you can choose make it by yourself, if you do that
you must translate like this
make
To run

44 Chunjie Luo and etc.

mpirun -n process number ./run wordcount <input file >

PageRank
The PageRank program now we use is obtained from Hibench.
Hadoop-version
To prepare and generate data

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/SearchEngine/PageRank
3. sh genData PageRank.sh

To run

sh run PageRank.sh <# Iterations of GenGragh >

Spark-version
To prepare and generate data

1. tar xzf BigDataBench Sprak V3.1tar.gz
2. cd BigDataBench Sprak V3.0/SearchEngine/ Pagerank
3. sh genData PageRank.sh

To run

sh run PageRank.sh <# Iterations of GenGragh >

Mpi-version
To prepare and generate data

1. tar xzf BigDataBench MPI V3.1.tar.gz
2. cd BigDataBench MPI V3.1/SearchEngine/MPI Pagerank
3. sh genData PageRank.sh

Handbook of BigDataBench 3.1 45

Makefile
Here we provide two versions,you can choose make it by yourself, if you do that
you must translate like this:

1.Install boost and cmake
2. cd/BigDataBench V3.1 MPI/SearchEngine/MPI Pagerank/parallel-bgl-

0.7.0/libs/graph parallel/test
3. make distributed page rank test

To run

mpirun -n process number ./run PageRank <InputGraphfile
><num ofVertex ><num ofEdges ><iterations >

Parameters
<num ofVertex ><num ofEdges >these two parameters you can find in your
gen data
<num ofEdges >: data length as L
<num ofVertex >: 2n̂
<iterations >: n

Index
The Index program we use is obtained from Hibench.
To prepare

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/SearchEngine/Index
3. sh prepare.sh

(when you do prepare.sh, you must put linux.words and words these two files
in /usr/share/dict)
To run

sh run Index.sh

Nutch Server
You can find this workload in BigDataBench V3.1 Hadoop.tar.gz.If you want to

46 Chunjie Luo and etc.

find data and user manual,you can get from http://prof.ict.ac.cn/DCBench/
Write Read Scan
We use YCSB to run database basic operations. We provide three ways: HBase,Cassan
dra and MongoDB to run operations for each operation.

To Prepare
Obtain YCSB
wget https://github.com/downloads/brianfrankcooper/YCSB/ycsb-0.1.4.tar.gz

tar BigDataBench V3.1 Hadoop.tar.gz
cd BigDataBench V3.0 Hadoop Hive/BasicDatastoreOperations/ycsb-0.1.4

We name $YCSB as the path of BigDataBench V3.0 Hadoop Hive/BasicDatastoreOperations/ycsb-
0.1.4 using the following steps.

Write
1. For HBase
Basic command-line usage

cd $YCSB
sh /bin/ycsb load hbase -P workloads/workloadc -p threads=<thread-

numbers >-p columnfamily=¡family¿ -p recordcount=<recordcount-value >-p
hosts=<hostip >-s >lo
ad.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<family >:In Hbase case, we used it to set database column. You should have
database usertable with column family before running this command. Then all
data will be loaded into database usertable with column family
<recorcount-value >:the total records for this benchmark. For example, when
you want to load 10GB data you shout set it to 10000000.
<hostip >:the IP of the hbase’s master node.

2. For Cassandra
Before you run the benchmark, you should create the keyspace and column fam-
ily in the Cassandra.
You can use the following commands to create it:

Handbook of BigDataBench 3.1 47

CREATE KEYSPACE usertable
with placement strategy = ’org.apache.cassandra.locator.SimpleStrategy’
and strategy options = {replication factor:2};
use usertable;
create column family data with comparator=UTF8Type and de-

fault validation class=UTF8Type and key validation class=UTF8Type;

Basic command-line usage

cd $YCSB
sh /bin/ycsb load cassandra-10 -P workloads/workloadc -p threads=<thread-

numbers >-p recordcount=<recorcount-value >-p hosts=<hostips >-s >load.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<recorcount-value >: the total records for this benchmark. For example, when
you want to load 10GB data you shout set it to 10000000.
<hostips >: the IP of cassandra’s nodes. If you have more than one node you
should divide with ”,”.

3. For MongoDB
Basic command-line usage

cd $YCSB
sh /bin/ycsb load mongodb -P workloads/workloadc -p threads=<thread-

numbers >-p recordcount=<recorcount-value >-p mongodb.url=<mongodb.url
>-p mongodb.databas
e=<database >-p mongodb.writeConcern=normal -s >load.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<recorcount-value >: the total records for this benchmark. For example, when
you want to load 10GB data you shout set it to 10000000.
<mongodb.url >: this parameter should point to the mongos of the mongodb.
For example ”mongodb://172.16.48.206:30000”.
<database >: In Mongodb case, we used it to set database column. You should

48 Chunjie Luo and etc.

have database ycsb with collection usertable before running this command. Then
all data will be loaded into database ycsb with collection usertable. To create
the database and the collection, you can use the following commands:
db.runCommand({enablesharding:”ycsb”});
db.runCommand({shardcollection:”ycsb.usertable”,key:{ id:1}});

Read
1. For HBase
Basic command-line usage

cd $YCSB
sh bin/ycsb run hbase -P workloads/workloadc -p threads=<thread-numbers

>-p columnfamily=<family >-p operationcount=<operationcount-value >-p
hosts=<hostip >-s >tran.dat

A few notes about this command:
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<family >: In Hbase case, we use it to set database column. You should have
database usertable with column family before running this command. Then all
data will be loaded into database usertable with column family.
<operationcount-value >: the total operations for this benchmark. For example,
when you want to load 10GB data you should set it to 10000000.
<hostip >: the IP of the hbase’s master node.

2. For Cassandra
Basic command-line usage

cd $YCSB
sh bin/ycsb run cassandra -10 -P workloads/workloadc -p threads=<thread-

numbers >-p operationcount=<operationcount-value >-p hosts=<hostips >-s
>tran.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<operationcount-value >: the total records for this benchmark. For example,
when you want to load 10GB data you should set it to 10000000.
<hostips >: the IP of cassandra’s nodes. If you have more than one node you
should divide with ”,”.

Handbook of BigDataBench 3.1 49

3. For MongoDB
Basic command-line usage

cd $YCSB
sh bin/ycsb run mongodb -P workloads/workloadc -p threads=<thread-

numbers >-p operationcount=<operationcount-value >-p mon-
godb.url=<mongodb.url >-p mongodb.database=<database >-p mon-
godb.writeConcern=normal -p mongodb.maxconnections=<maxconnections
>-s >tran.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<operationcount-value >: the total records for this benchmark. For example,
when you want to load 10GB data you should set it to 10000000.
<mongodb.url >: this parameter should point to the Mongos of the mongodb.
For example ”mongodb://172.16.48.206:30000”.
<database >: In Mongodb case, we used it to set database column. You should
have database ycsb with collection user table before running this command.
Then all data will be loaded into database ycsb with collection user table.
To create the database and the collection, you can use the following commands:
db.runCommand({enablesharding:”ycsb”});
db.runCommand({shardcollection:”ycsb.usertable”,key:{ id:1}});
<maxconnections >:the number of the max connections of mongodb.

Scan
1. For HBase
Basic command-line usage

cd $YCSB
sh bin/ycsb run hbase -P workloads/workloade -p threads=/textless thread-

numbers >-p columnfamily=<family >-p operationcount=<operationcount-
value >-p hosts=<Hostip >-p columnfamily=<family >-s >tran.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<family >: In Hbase case, we used it to set database column. You should have
database usertable with column family before running this command. Then all

50 Chunjie Luo and etc.

data will be loaded into database usertable with column family.
<operationcount-value >: the total operations for this benchmark. For example,
when you want to load 10GB data you shout set it to 10000000.
<hostip >:the IP of the hbase’s master node.

2. For Cassandra
Basic command-line usage

cd $YCSB
sh bin/ycsb run cassandra-10 -P workloads/workloade -p threads=<thread-

numbers >-p operationcount=<operationcount-value >-p hosts=<hostips >-
s>tran.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<operationcount-value >: the total records for this benchmark. For example,
when you want to load 10GB data you should set it to 10000000.
<hostips >: the IP of cassandra’s nodes. If you have more than one node you
should divide with ”,”.

3. For MongoDB
Basic command-line usage

cd $YCSB
sh bin/ycsb run mongodb -P workloads/workloade -p threads=<thread-

numbers >-p operationcount=<operationcount-value >-p mon-
godb.url=<mongodb.url >-p mongodb.database=<database >-p mon-
godb.writeConcern=normal -p mongodb.maxconnections=<maxconnections
>-s >tran.dat

A few notes about this command
<thread-number >: the number of client threads, this is often done to increase
the amount of load offered against the database.
<operationcount-value >: the total records for this benchmark. For example,
when you want to load 10GB data you shout set it to 10000000.
<mongodb.url >: this parameter should point to the mongos of the mongodb.
For example ”mongodb://172.16.48.206:30000”.
<database >: In Mongodb case, we used it to set database column. You should
have database ycsb with collection usertable before running this command. Then
all data will be loaded into database ycsb with collection usertable. To create

Handbook of BigDataBench 3.1 51

the database and the collection, you can use the following commands:
db.runCommand({enablesharding:”ycsb”});
db.runCommand({shardcollection:”ycsb.usertable”,key:{ id:1}});
<maxconnections >:the number of the max connections of mongodb.

SocialNetwork In SocialNetwork domain,we have used data set including
:Facebook Social Net-work.The Facebook Social Net-work is used by CC and
Kmeans workloads. The BFS workload data is generated by itself.
K-means
The K-means program we use is obtained from Mahout.
Hadoop-version
To prepare and generate data

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/SNS/Kmeans
3. sh genData Kmeans.sh

To run

sh run Kmeans.sh

Spark-version
To prepare and generate data

1. tar xzf BigDataBench Sprak V3.1.tar.gz
2. cd BigDataBench V3.1 Spark+Shark/SNS/Kmeans
3. sh genData Kmeans.sh

To run

sh run Kmeans.sh

Mpi-version
Simple-Kmeans

52 Chunjie Luo and etc.

To prepare and generate data

1. tar xzf BigDataBench MPI V3.1.tar.gz
2. cd BigDataBench MPI V3.1/SNS/Simple Kmeans
3. sh Generating Image data/color100.txt 100000 >data

The number 100000 represent output frequency ,and the number of outbound
must be more than the number of data.
Makefile
This we provide two versions,you can choose to make it by yourself, and if you
do that you must translate like this

mpicxx Generating.cpp -o mpi main

To run

mpirun -np 12 ./mpi main -i data -n 10 -o result,then you will get a new
cluster file like result.

Parameters
-i:the data set of clusters
-n:the number of clusters like Kmeans’K
-o:output file
Then there will be a data in the current directory. If you use not one machine
you must put the dataset on each
mpi-machines, most of all you must put them in the same path.
Connected Components
The Connected Components program we used is obtained from PEGASUS.
Hadoop-version
To Prepare and generate data

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/SNS/Connected Components
3. sh genData connectedComponents.sh

To run

Handbook of BigDataBench 3.1 53

sh run connectedComponents.sh

Spark-version
To prepare and generate data:

1. tar xzf BigDataBench Sprak V3.1.tar.gz
2. cd BigDataBench V3.1 Spark+Shark/SNS/Connected Components/
3. sh genData connectedComponents.sh

To run

sh run connectComponents.sh

Mpi-version
To prepare and generate data

1. tar xzf BigDataBench MPI V3.1.tar.gz
2. cd BigDataBench MPI V3.1/SNS/MPI Connect
3. sh genData connectedComponents.sh

Makefile
This we provide two versions,you can choose to make it by yourself ,if you do
that you must translate like this

1.Install boost and cmake
2. cd/BigDataBench V3.1 MPI/SNS/Connected Components/parallel-bgl-

0.7.0/ libs/graph parallel/test
3. make distributed ramt cc

To run

54 Chunjie Luo and etc.

mpirun -n process number ./run connectedComponents <InputGraphfile
><num ofVertex ><num ofEdges >

Parameters
<num ofVertex ><num ofEdges >:these two parameters you can find in your
gen data <num ofEdges >: data length as L
<num ofVertex >: 2n̂
BFS (Breath first search)
To prepare

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/MicroBenchmarks/BFS/graph500

To run

mpirun -np PROCESS NUM graph500/mpi/graph500 mpi simple VER-
TEX SIZE

Parameters
PROCESS NUM: number of process;
VERTEX SIZE: number of vertex, the total number of vertex is 2V̂ERTEX SIZE
For example
Set the number of total running process to be 4, the vertex number to be 22̂0,
the command is:

mpirun -np 4 graph500/mpi/graph500 mpi simple 20

E-commerce In E-commerce domain, we have used data set including :E-com
merce Transaction Data and Amazon Movie Review. The Amazon Movie Review
is used by CF and Bayes workloads. The E-commerce Transaction Data is used
by Aggregation Query, Cross Product,Difference,Filter,OrderBy,Project,Union,Select
Query,Aggregation Query and Join Query workloads.
Collaborative Filtering Recommendation
Collaborative filtering recommendation is one of the most widely used algorithm
in E-commerce analysis. It aims to solve the prediction problem where the task

Handbook of BigDataBench 3.1 55

is to estimate the preference of a user towards an item which he/she has not
yet seen. We use the RecommenderJob in Mahout(http://mahout.apache.org/)
as our Recommendation workload, which is a completely distributed item-based
recommender. It expects ID1, ID2, value (optional) as inputs, and outputs ID1s
with associated recommended ID2s and their scores. As you know, the data set
is a kind of graph data.
Before you run the RecommenderJob, you must have HADOOP and MAHOUT
prepared. You can use Kronecker (see 4.2.1) to generate graph data for Recom-
menderJob.
To prepare and generate data

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/E-commerce
3. sh genData recommendator.sh

To run

sh run recommendator.sh

Naive Bayes
Naive Bayes is an algorithm that can be used to classify objects into usually
binary categories. It is one of the most common learning algorithms in Classifi-
cation. Despite its simplicity and rather naive assumptions it has proven to work
surprisingly well in practice.
We use the naivebayes in Mahout(http://mahout.apache.org/) as our Bayes
workload, which is a completely distributed classifier.
When you choose to run Bayes, we should use mahout-0.6.So we provide the
mahout-0.6 in E-commerce. You must install and export the environment. You
can do like this

1. cd BigDataBench V3.1/E-commerce
2. tar -zxvf mahout-distribution-0.6.tar.gz
3. export BigDataBench V3.1/E-commerce/mahout-distribution-0.6

and then you can run it
Hadoop-version
To prepare and generate data

56 Chunjie Luo and etc.

1. tar xzf BigDataBench V3.1 Hadoop.tar.gz
2. cd BigDataBench V3.1 Hadoop Hive/E-commerce
3. sh genData naivebayes.sh

To run

sh run naivebayes.sh

Spark-version
To prepare and generate data

1. tar xzf BigDataBench Sprak V3.1.tar.gz
2. cd BigDataBench V3.1 Spark+Shark/E-commerce
3. sh genData naivebayes.sh

To run

sh run naivebayes.sh

Mpi-version
To prepare and generate data

1. tar xzf BigDataBench MPI V3.1.tar.gz
2. cd BigDataBench MPI V3.1/E-commerce/MPI naivebayes
3. sh genData naivebayes.sh

The naivebayes is special ,you should generate data in every machine.
Makefile
This we provide two version, you can choose to make it by yourself ,if you do
that you must translate like this

Handbook of BigDataBench 3.1 57

mpic++ -std=c++11 -o MPI NB MPI NB.cpp

And you also can use run sort we have already translated directly, the trans-
lated file is run naivebayes
To run

mpirun -n process number ./run naivebayes -i <inputfile >-o <save file >

Aggregation Query,Cross Product,Difference,Filter,OrderBy,Project,Union
Hive Version
To prepare and generate data

1. cd/’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORD
ER.txt

2. java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-
generation.xml -c -s -sf $number

Then you can find data in output file
Create tables and load data into tables

1. cd $HIVE HOME/bin
2. sh hive
create database bigdatabench;
use bigdatabench;
create table bigdatabench dw order(order id int,buyer id int,create date

string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’—’ STORED

AS TEXTFILE;
create table bigdatabench dw item(item id int,order id int,goods id

int,goods number double,goods price double,goods amount double)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’—’ STORED

AS TEXTFILE;
load data local inpath
’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORDER.txt’

overwrite into table bigdatabench dw order;
load data local inpath ’$BigDataBench HOME /BigDataGenerator-

Suite/Table datagen/output/OS ORDER ITEM.txt’ overwrite into table big-
databench dw item;

58 Chunjie Luo and etc.

create table item temp as select ORDER ID from bigdatabench dw item;

To run

1. cd Interactive MicroBenchmark
2. sh run-MicroBenchmark.sh

(For ease of use, we recommend that you use a local mysql server to store
metadata)
Shark Version
To prepare and generate data

1. cd / ’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORD
ER.txt

2. java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-
generation.xml -c -s -sf $number

Then you can find data in output file
Upload the text files in $BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/
to HDFS and make sure these files in different pathes.
Create tables and load data into tables

1. tar zxvf MicroBenchmark.tar
2. cd Interactive MicroBenchmark
3. shark
create external table bigdatabench dw item(item id int,order id int,goods id

int,goods number double,goods price double,goods amount double) ROW FOR-
MAT DELIMITED FIELDS TERMINATED BY ’—’ STORED AS TEXTFILE
LOCATION ’path to OS ODER ITEM.txt’;

create external table bigdatabench dw order(order id int,buyer id
int,create date string) ROW FORMAT DELIMITED FIELDS TERMINATED
BY ’—’ STORED AS TEXTFILE LOCATION ’path to OS ORDER.txt’;

create table item temp as select ORDER ID from bigdatabench dw item;

To run

Handbook of BigDataBench 3.1 59

cd Interactive MicroBenchmark
edit free m.sh to make sure it runs correctly.
sh runMicroBenchmark.sh

Impala Version
To prepare and generate data

1. cd / ’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORD
ER.txt

2. java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-
generation.xml -c -s -sf $number

Then you can find data in output file
$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/ to HDFS
and make sure these files in different pathes Create tables

1. $HIVE HOME/bin
2. sh hive
create external table bigdatabench dw item(item id int,order id int,goods id

int,goods number double,goods price double,goods amount double) ROW FOR-
MAT DELIMITED FIELDS TERMINATED BY ’—’ STORED AS TEXTFILE
LOCATION ’path to OS ODER ITEM.txt’;

create external table bigdatabench dw order(order id int,buyer id
int,create date string) ROW FORMAT DELIMITED FIELDS TERMINATED
BY ’—’ STORED AS TEXTFILE LOCATION ’path to OS ORDER.txt’;

create table item temp as select ORDER ID from bigdatabench dw item;

To run

1. tar zxvf MicroBenchmark.tar.gz
2. cd MicroBenchmark
edit free m.sh and impala-restart.sh to make sure them run correctly.
3. sh runMicroBenchmark.sh

Select Query,Aggregation Query,Join Query
Hive Version

60 Chunjie Luo and etc.

To prepare and generate data

1. cd/’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORD
ER.txt

2. java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-
generation.xml -c -s -sf $number

Then you can find data in output file
Create tables

1. cd $HIVE HOME/bin
2. sh hive
create database bigdatabench;
use bigdatabench;
create table bigdatabench dw order(order id int,buyer id int,create date

string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’—’ STORED

AS TEXTFILE;
create table bigdatabench dw item(item id int,order id int,goods id

int,goods number double,goods price double,goods amount double)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’—’ STORED

AS TEXTFILE;
load data local inpath ’ /home/output/OS ORDER.txt’overwrite into table

bigdatabench dw order;
load data local inpath
’$BigDataBench V3.0 Hadoop Hive/BigDataGeneratorSuite/Table datagen/e-

com output/OS ORDER ITEM.txt’ overwrite into table bigdatabench dw item;
create table item temp as select ORDER ID from bigdatabench dw item;

To run

1. cd Interactive Query
2. sh run-AnalyticsWorkload.sh

Shark Version
To prepare and generate data

Handbook of BigDataBench 3.1 61

1. cd /’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORD
ER.txt

2. java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-
generation.xml -c -s -sf $number

Then you can find data in output file
Upload the text files in $BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/
to HDFS and make sure these files in different pathes.
Create tables

1. tar zxvf InteractiveQuery.tar.gz
2. cd InteractiveQuery
3. shark

create external table bigdatabench dw item(item id int,order id int,goods id
int,goods number double,goods price double,goods amount double) ROW FOR-
MAT DELIMITED FIELDS TERMINATED BY ’—’ STORED AS TEXTFILE
LOCATION ’path to OS ODER ITEM.txt’;

create external table bigdatabench dw order(order id int,buyer id
int,create date string) ROW FORMAT DELIMITED FIELDS TERMINATED
BY ’—’ STORED AS TEXTFILE LOCATION ’path to OS ORDER.txt’;

create table item temp as select ORDER ID from bigdatabench dw item;

To run

1. cd InteractiveQuery
edit free m.sh to make sure it runs correctly.
2. sh runQuery.sh

Impala Version
To prepare and generate data

1. cd/’$BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/OS ORD
ER.txt

2. java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-
generation.xml -c -s -sf $number

Then you can find data in output file
Upload the text files in $BigDataBench HOME/BigDataGeneratorSuite/Table datagen/output/

62 Chunjie Luo and etc.

to HDFS and make sure these files in different pathes.
Create tables

$HIVE HOME/bin/hive
create external table bigdatabench dw item(item id int,order id int,goods id

int,goods number double,goods price double,goods amount double) ROW FOR-
MAT DELIMITED FIELDS TERMINATED BY ’—’ STORED AS TEXTFILE
LOCATION ’path to OS ODER ITEM.txt’;

create external table bigdatabench dw order(order id int,buyer id
int,create date string) ROW FORMAT DELIMITED FIELDS TERMINATED
BY ’—’ STORED AS TEXTFILE LOCATION ’path to OS ORDER.txt’;

create table item temp as select ORDER ID from bigdatabench dw item;

To run

1. cd InteractiveQuery
edit free m.sh and impala-restart.sh to make sure them run correctly.
2. sh runQuery.sh

Multimedia In Multimedia domain,we have used data set including :Stream
data,ImageNet,Audio files,Scene description files and MNIST.The Stream data is
used by BasicMPEG workload.The ImageNet is used by SIFT,ImageSegmentation
and FaceDetection workloads.The Audio files are used by SpeechRecognition
workload.The Scene description files is used by Ray Tracing workload.The MNIST
is used DBN workloads.
MPEG-2 decode/encode
This workload is adaptations of MPEG-2 encoder/decoder <5 >, which converts
video frames into a compressed bit-stream. At present, this workload is a serial
version.
To prepare

1. tar -zxf Multimedia.tar.gz
2. cd Multimedia/
3. sh getPath <data dir ><save file >(using data MPEG.tar.gz)

For example

Handbook of BigDataBench 3.1 63

sh getPath /MPEGdec input /Multimedia/micro/MPEG/execs
MPEGdec input

Then you will find ”MPEGdec input.path” in /Multimedia/micro/MPEG/execs
To makefile
We have provided the executable file in the directory, if you want to recompile
yourself,the steps are
Makefile MPGenc

1. cd Multimedia/micro/MPEG/MPGenc
2. make (you will the mpeg2enc in execs directory)

To run

1. cd /Multimedia/Micro/MPEG/execs
2. sh batch <input path file ><output path file >

SIFT
This workload is an adaptation of David Lowe’s source code <6 >, which detects
and describes local features in input images. We modified it to a data parallel
version using MPI.
To prepare

1. tar -zxf Multimedia.tar.gz
2. cd Multimedia/
3. sh getPath <data dir ><save file >

For example

sh getPath $ImageNet 1G/Multimedia

Then you will find ”ImageNet 1G.path” in /Multimedia
Makefile
We have provided the executable file in the directory,if you want to recompile
yourself, the steps are

64 Chunjie Luo and etc.

1. cd /Multimedia/Micro/opensift-mpi
2. make

This command will create an executable file ”iftfeat mpi”under directory bin
To run

1.cd Multimedia/Micro/opensift-mpi/bin
2. mpirun -n process number -f node file ./siftfeat mpi input file

Face Detection
This workload is an adaptation of flandmark source code <7 >, which detects a
face in input images. We modify it to a data parallel version using MPI.
To prepare

1. tar -zxf Multimedia.tar.gz
2. cd Multimedia/
3. sh getPath <data dir ><save file >(using data ImageNet *G.tar.gz)

For example

sh getPath $ImageNet 1G/Multimedia/Multimedia

Then you will find ”ImageNet 1G.path” in/Multimedia
Makefile

1. cd /Multimedia/App/faceDetec-mpi
2. cmake .
3. make

Then you will find ”flandmark mpi”in file ”faceDetec-mpi/cpp”
To run

Handbook of BigDataBench 3.1 65

1. cd/Multimedia/App/faceDetec-mpi/cpp
2. mpirun -n process number -f node file ./flandmark mpi <input file >

Image Segmentation
This workload is an adaptation of Pedro Felipe Felzenszwalb’s source code <8
>, which segments the input images. We modify it to a data parallel version
using MPI.
To prepare

1. tar -zxf Multimedia.tar.gz
2. cd Multimedia/
3. sh getPath <data dir ><save file >(using data PPM *G.tar.gz)

For example

sh getPath $PPM 1G/Multimedia/Multimedia

Then you will find ”ImageNet 1G.path” in BigDataBench-Media
Makefile

1. cd/Multimedia/App/segment-mpi
2. make

This command will create an executable file segment mpi under directory
segment-mpi/
To run

1. cd/Multimedia/App/segment-mpi
2. mpirun -n process number -f node file ./segment mpi <input file >

For more details about how to run

sh segment mpi -h

66 Chunjie Luo and etc.

Ray Tracing
This workload is derived from john.stone’s source code <9 >, which is a parallel
rendering program.
Other Prerequisite Software Packages
libjpeg : (yum install -y libjpeg-devel or source installations)
To prepare

1. tar -zxf Multimedia.tar.gz
2. cd Multimedia/
3. sh getPath <data dir ><save file >
(using data ImageScene *G.tar.gz

)

For example

sh getPath $ImageScene 1G/Multimedia/Multimedia/ImageScence 1G Then
you will find ”ImageScene 1G.path” in /Multimedia

Makefile

1. cd /Multimedia/App/tachyon/unix
2. make linux-mpi

Then you will find ”linux-mpi” in /Multimedia/App/tachyon/compile
You must write your work IP in ”node”
You should do this:

vim batch

Change the node file path and save
To run

sh batch <input file >process number node

Speech Recognition
This workload is using CMU sphinx toolkit for speech recognition <10 >.We

Handbook of BigDataBench 3.1 67

write a data parallel version using MPI.
To prepare

1. tar -zxf Multimedia.tar.gz
2. cd Multimedia/
3. sh getPath <data dir ><save file >
(using data Audio *G.tar.gz)

For example

sh getPath $Audio 1G/Multimedia/Multimedia/Audio 1G

Then you will find ”Audio 1G.path” in /BigDataBench Media
Makefile

1. cd /Multimedia/App/speech-recg
2. mpic++ -o decode-mpi-cpp decode-mpi.cpp -DMODELDIR=‘̈pkg-config –

variable=modeldir pocketsphinx‘‘̈pkg-config –cflags –libs pocketsphinx sphinxbase‘

To run

mpirun -n process number -f node file ./decode-mpi-cpp <input file ><output
file >

DBN
This project contains the MPI workloads in Deep Learning.
Arch of DBN: one input layer(get the input samples) + one RBM + one RBM
+ ... + one RBM + one output layer(for BP finetune process) = DBN Arch
Train process
Pre-training RBMs
When the input layer get sample datas, stacked RBMs will be trained one by
one.
Finetune training(BP process)
After pre-training, the output layer will be trained and finetunes the whole net-
work. That is to say, the BP process relys on stackedRBMs’ pre-training.
Notice: You can run rbm.out, stackedRBMs.out and dbn.out independently.
But if you want to run bp.out independently, you must run stackedRBMs.out at
first and their number of thread must be the same.

68 Chunjie Luo and etc.

How to makefile and run workloads:
To prepare

1. tar -zxf Multimedia.tar.gz 2. cd Multimedia/DBN/src

To run
DBN
Makefile

mpic++ DBN.cpp deep.o -o DBN

To run:

mpirun -n <process >./DBN

RBM
Makefile

mpic++ RBM.cpp deep.o -o RBM

To run

mpirun -n <process >./RBM

StackedRBMS
Makefile

mpic++ StackedRBMS.cpp deep.o -o StackedRBMS

To run

mpirun -n <process >./StackedRBMS

BP
Makefile

Handbook of BigDataBench 3.1 69

mpic++ BP.cpp deep.o -o BP

To run

mpirun -n <process >./BP

Bioinformatics In Bioinformatics domain,we have used data set including
:Genome sequence data and Assembly of the humangenome.The Genome se-
quence data is used by SAND workload.The Assembly of the humangenome is
used by BLAST workloads.// SAND
You can get it from http://ccl.cse.nd.edu/software/manuals/sand.html
BLAST
You can get it from http://www.mpiblast.org/Docs/Install

9.4 BigDataBench Simulator user manual

Workloads
Workload name

1 Hadoop-WordCount
2 Hadoop-Grep
3 Hadoop-NaiveBayes
4 Cloud-OLTP-Read
5 Hive-Differ
6 Hive-TPC-DS-query3
7 Spark-WordCount
8 Spark-Sort
9 Spark-Grep
10 Spark-Pagerank
11 Spark-Kmeans
12 Shark-Project
13 Shark-Orderby
14 Shark-TPC-DS-query8
15 Shark-TPC-DS-query10
16 Impala-Orderby
17 Impala-SelectQuery

Workloads running Users can use the following commands to drive the Simics
or Marss images. We use Simics as an example, you should replace the com-
mand“./simics -c . . . ” with “qemu/qemu-system-x86 64 . . . ” mentioned above
to use Marss.

70 Chunjie Luo and etc.

Hadoop-version
Experimental environment
Cluster: one master one slaver
Software: We have already provide the following software in our images.
Hadoop version: Hadoop-1.0.2
ZooKeeper version: ZooKeeper-3.4.5
Hbase version: HBase-0.94.5
Java version: Java-1.7.0

Workloads running
Workload Master Slaver
Wordcount cd /master cd /slaver

./simics -c Hadoopwordcount L ./simics -c Hadoopwordcount L
bin/hadoop jar ${HADOOP HOME}/hadoop-
examples-*.jar wordcount /in /out/wordcount

Grep cd /master cd /slaver
./simics -c Hadoopgrep L ./simics -c Hadoopgrep LL
bin/hadoop jar ${HADOOP HOME}/hadoop-
examples-*.jar grep /in /out/grep a*xyz

NaiveBayes cd /master cd /slaver
./simics -c HadoopBayes L * ./simics -c HadoopBayes LL
bin/mahout testclassifier -m /model -d /testdata

Cloud OLTP-Read cd /master cd /slaver
./simics -c YCSBRead L ./simics -c YCSBRead LL
./bin/ycsb run hbase -P workloads/workloadc
-p operationcount=1000 -p hosts=10.10.0.13
-p columnfamily=f1 -threads 2 -
s>hbase tranunlimitedC1G.dat

Hive-version
Experimental environment
Cluster: one master one slaver
Software: We have already provide the following software in our images.
Hadoop version: Hadoop-1.0.2
Hive version: Hive-0.9.0
Java version: Java-1.7.0

Workloads running
Workload Master Slaver
Hive-Differ cd /master cd /slaver

./simics HiveDiffer L ./simics -c HiveDiffer LL

./BigOP-e-commerce-difference.sh
Hive-TPC-DS-query3 cd /master cd /slaver

./simics -c TPCDSquery3 L ./simics -c TPCDSquery3 LL

./query3.sh

Handbook of BigDataBench 3.1 71

Spark-version
Experimental environment
Cluster: one master one slaver
Software: We have already provide the following software in our images.
Hadoop version: Hadoop-1.0.2
Spark version: Spark-0.8.0
Scala version: Scala-2.9.3
Java version: Java-1.7.0

Workloads running
Workload Master Slaver
Spark-WordCount cd /master cd /slaver

./simics -c SparkWordcount L ./simics -c SparkWordcount LL

./run-bigdatabench
cn.ac.ict.bigdatabench.WordCount
spark://10.10.0.13:7077 /in
/tmp/wordcount

Spark-Grep cd /master cd /slaver
./simics -c Sparkgrep L ./simics -c Sparkgrep LL
./run-bigdatabench
cn.ac.ict.bigdatabench.Grep
spark://10.10.0.13:7077 /in lda wiki1w
/tmp/grep

Spark-Sort cd /master cd /slaver
./simics -c SparkSort L ./simics -c SparkSort LL
./run-bigdatabench
cn.ac.ict.bigdatabench.Sort
spark://10.10.0.13:7077 /in /tmp/sort

Spark-Pagerank cd /master cd /slaver
./simics -c SparkPagerank L ./simics -c SparkPagerank LL
./run-bigdatabench
cn.ac.ict.bigdatabench.PageRank
spark://10.10.0.13:7077
/Google genGraph 5.txt 5
/tmp/PageRank

Spark-Kmeans cd /master cd /slaver
./simics -c SparkKmeans L ./simics -c SparkKmeans LL
./run-bigdatabench
org.apache.spark.mllib.clustering.KMeans
spark://10.10.0.13:7077 /data 8 4

Shark-version
Experimental environment
Cluster: one master one slaver
Software: We have already provide the following software in our images.
Hadoop version: Hadoop-1.0.2

72 Chunjie Luo and etc.

Spark version: Spark-0.8.0
Scala version: Scala-2.9.3
Shark version: Shark-0.8.0
Hive version: hive-0.9.0-shark-0.8.0-bin
Java version: Java-1.7.0

Workloads running
Workload Master Slaver
Shark-Project cd /master cd /slaver
Shark-Orderby ./simics -c Sharkprojectorder L ./simics -c Sharkprojectorder LL

./runMicroBenchmark.sh
Shark-TPC-DS-query8 cd /master cd /slaver

./simics -c Sharkproquery8 L ./simics -c Sharkquery8 LL
shark -f query8.sql

Shark-TPC-DS-query10 cd /master cd /slaver
./simics -c Sharkproquery10 L ./simics -c Sharkquery10 LL
shark -f query10.sql

9.5 BigDataBench- multitenancy user manual

Environment variable configuration Configure variables at /etc/profile

HADOOP HOME=/opt/hadoop-1.2.1
SEARCH H0ME=/opt/search/search
cp randomwriter conf.xsl workGenKeyValue conf.xsl

$HADOOP HOME/conf

Prepare the input data Compile Mapreduce job WriteToHdfs.java for writing
input data set

mkdir hdfsWrite
javac -classpath $HADOOP HOME/hadoop-$HADOOP VERSION-core.jar

-d hdfsWrite WriteToHdfs..java jar -cvf WriteToHdfs.jar -C hdfsWrite/

Edit $HADOOP HOME/conf/randomwriter conf.xsl using configuration
Parameters

Make sure the ”test.randomwrite.bytes per map” and ”java GenerateRe-
playScript”
files have the same [size of each input partition in bytes] parameter.

Handbook of BigDataBench 3.1 73

Execute the following commands

bin/hadoop jar WriteToHdfs.jar org.apache.hadoop.examples.WriteToHdfs -
conf
conf/randomwriter conf.xsl workGenInput

Generate the replay script for FacebookTrace Use GenerateReplayScriptFB.java
to create a folder that includes the script of executable
Using method

java GenerateReplayScriptFB.java
java GenerateReplayScript

[Workload file]
[Actual number of services generating clusters]
[Number of testing clusters services from user]
[Input division size (byte)]
[Input number of divisions]
[Generated replay scripts catalog]
[Inputted data directory on HDFS file system]
[Workload output mark on HDFS file system]
[Data amount of every reduce task]
[workload standard error output directory]
[Hadoop command]
[Directory of WorkGen.jar]
[Directory of workGenKeyValue conf.xsl] Use case

GenerateReplayScriptFB
FB-2009 samplesKMBySort 24 times 1hr 0.tsv
600
3
67108864
10
scriptsTestFB
workGenInput
workGenOutputTest
67108864
workGenLogs
hadoop
WorkGen.jar
’/usr/lib/hadoop-1.2.1/workGenKeyValue conf.xsl’
Prepare replay scripts for Google workload traces
When use BigDataBench-multitenancy, we need to prepare scripts to workload

74 Chunjie Luo and etc.

replay. Here we use GenerateReplayScriptGoogle.java to generate the replay
scripts
Using method

Java GenerateReplayScriptGoogle.java Java GenerateReplayScriptGoogle
[workload file directory]
[replay scripts catalog]
[shark commad]

Use Case

Java GenerateReplayScriptGoogle
job events part-00000-of-00500 KMnew.csv
scriptTestGoogle
shark

Preparation of using Sogou Workload Trace
Use searchTrans.py to translate sogou data log
Using method

./searchTrans.py trans logFile func1:N:M-func2

logFile: sogou log file
Func1:N:M
func1, func2 are performance functions, N,M are the parameter of the function.
Here we add ”Segmentation” and ”nodo” functions, Segmentation is used to di-
vide log file by parameters N and M.
Use case

./searchTrans.py trans SogouQ.reduced Segmentation:24:60-nodo

Workload replay in BigDataBench- multitenancy
Execute workload replay, just execute mixWorkloadReplay.sh usig command
line.
Using method
cp -r scriptsTestFB $HADOOP HOME
cp -r scriptsTestGoogle $HADOOP HOME

Handbook of BigDataBench 3.1 75

cp -f search/reqs sogou $SEARCH HOME/search-engine/data ./mixWorkload-
Replay.sh argment

If argument is ”f”, only execute the Facebook trace based workload (Hadoop
workloads)

If argument is ”g”, only execute the Google trace based workload (Shark
workloads)

If argument is ”s”, only execute Sougou trace based workload (the Nutch
search workload)

If argument is ”m”, execute the above three workloads in parallel

10 BigDataBench users

This section first lists the BigDataBench publications, and then summarizes the
projects and research papers using or citing BigDataBench. Please note that
we also list the papers using or citing DCBench or CloudRank, since we have
merged these two related projects into BigDataBench as explained in 1.

10.1 BigDataBench publications

If you need a citation for BigDataBench, please cite the following papers related
with your work:

1. BigDataBench: a Big Data Benchmark Suite from Internet Services. Lei
Wang, Jianfeng Zhan, ChunjieLuo, Yuqing Zhu, Qiang Yang, Yongqiang
He, WanlingGao, Zhen Jia, Yingjie Shi, Shujie Zhang, Cheng Zhen, Gang
Lu, Kent Zhan, Xiaona Li, and BizhuQiu. The 20th IEEE International
Symposium On High Performance Computer Architecture (HPCA-2014),
February 15-19, 2014, Orlando, Florida, USA. [81]

2. Characterizing and Subsetting Big Data Workloads. Zhen Jia, Jianfeng Zhan,
Wang Lei, Rui Han, Sally A. McKee, Qiang Yang, Chunjie Luo, and Jingwei
Li. In 2014 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2014. [42]

3. Characterizing data analysis workloads in data centers. Zhen Jia, Lei Wang,
Jianfeng Zhan, Lixin Zhang, Chunjie Luo. 2013 IEEE International Sympo-
sium on Workload Characterization (IISWC 2013) (Best paper award). [41]

4. CloudRank-D: Benchmarking and Ranking Private Cloud Computing Sys-
tem for Data Processing Applications. Chunjie Luo, Jianfeng Zhan, Zhen
Jia, Lei Wang, Gang Lu, Lixin Zhang, Cheng-Zhong Xu, Ninghui Sun. Front.
Comput. Sci., 2012, 6(4): 347-362. [61]

5. BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking.
Zijian Ming, ChunjieLuo, WanlingGao, Rui Han, Qiang Yang, Lei Wang,
and Jianfeng Zhan. Lecture note in computer sciences, extended version for
the fourth workshop on big data benchmarking, 2014. [62]

6. BigOP: generating comprehensive big data workloads as a benchmarking
framework. Yuqing Zhu, Jianfeng Zhan, ChuliangWeng, RaghunathNambiar,

76 Chunjie Luo and etc.

Jingchao Zhang, Xingzhen Chen, and Lei Wang. The 19th International Con-
ference on Database Systems for Advanced Applications (DASFAA 2014),
2014. [91]

7. BigDataBench: a Big Data Benchmark Suite from Web Search Engines.
WanlingGao, Yuqing Zhu, Zhen Jia, ChunjieLuo, Lei Wang, Jianfeng Zhan,
Yongqiang He, Shiming Gong, Xiaona Li, Shujie Zhang, and BizhuQiu. Third
Workshop on Architectures and Systems for Big Data(ASBD 2013) in con-
junction with The 40th International Symposium on Computer Architecture,
May 2013. [38]

8. Characterization of real workloads of web search engines. Xi, H., Zhan, J.,
Jia, Z., Hong, X., Wang, L., Zhang, L., ... Lu, G. (2011, November). In
Workload Characterization (IISWC), 2011 IEEE International Symposium
on (pp. 15-25). IEEE. [83]

10.2 Selective research papers using BigDataBench

Cloud Data Protection Akoush et al. [21] present a system that tracks in-
formation flow using record-level lineage in Hadoop MapReduce which called
MrLazy. They choose the Join workload from the BigDataBench benchmark
suite as the evaluation workloads and the data set is 120GB E-commerce data.

Workload Characterization Jia et al. [42] use Principle Component Analysis
(PCA) to identify the most important characteristics from 45 metrics to charac-
terize 32 big data workloads from BigDataBench. They get seven representative
big data workloads by removing redundant ones. They also find that software
stacks have significant impacts on workload behaviors, even that these impacts
are greater than that of the algorithms employed in user application code.

Jiang et al. [44] use hardware performance counters and a custom-made mem-
ory trace collection device to analyze the behavior of BigDataBench (Spark and
Hadoop workloads), SPEC CPU2006, TPC-C, CloudSuite, and DesktopCloud
workloads. They find that the behavior of the Spark in-memory computing
framework differs from Hadoop or scale-out service applications, DesktopCloud
and traditional high performance workloads. They also find that current Intel
commodity processors are sufficiently efficient for in-memory computing.

Wei et al. [82] perform memory access pattern analysis towards both emerg-
ing big data workloads (with BigDataBench) and traditional parallel workloads.
They choose five BigDataBench workloads and SPLASH-2 as the basic work-
loads, and find that big data workloads exhibit weak temporal and spatial local-
ity compared to traditional workloads.

Pan et al. [66] present a study of I/O characterization of big data workloads.
They choose four BigDataBench workloads as the basic workloads, and find
that task slots, memory size and intermediate data compression impact on I/O
characterization of workloads deeply.

Jia et al. [40] use hardware performance counters to analyze the behavior
of BigDataBench (Spark and Hadoop workloads), SPEC CPU2006, TPC-C,

Handbook of BigDataBench 3.1 77

CloudSuite, and DesktopCloud workloads. They find that CloudSuite do not
have much difference from traditional service workloads. Data analysis work-
loads are different from traditional desktop, service, and HPC workloads. For
BigDataBench, compared with the service, analysis workload own: Large amount
of application level instructions, Good locality and Low branch mis-predict ratio.

Evaluating and Optimizing Big Data Hardware Systems Quan et al. [71]
evaluate State-of-art Big Data System Architectures, which included Brawny-
core processors: Xeon E5310 and Xeon E5645; Wimpy-core processors: Atom
D510 and TileGx36. Through the evaluations of Eight BigDataBench workloads,
they make the conclusions that: there is no one-size-fits-all solution for big data,
and none of the microprocessors consistently wins in terms of both performance
and energy efficiency for all of our Big Data workloads. So each class of workload
realizes better performance and energy efficiency on different architectures.

SSD Cache Management Liu et al. [57] implement PLC-Cache in a real-
world de-duplication system. Their experimental results confirm that PLC-Cache
outperforms the three classical caching algorithms (e.g., FIFO, LRU, and LFU)
in terms of read latency by an average of 23.4%. They replay real-world traces
collected from typical applications the hive-select, which is collected by running
BigDataBench to perform a cloud database test.

Performance diagnosis and Optimization of Big Data Systems Chen
et al. [27] propose an ensemble MIC-based approach to pinpoint the culprits of
performance problems in the big data platform, which called InvarNet-X. They
choose BigDataBench as evaluation workloads.

Evaluating and Optimizing Big Data Systems Energy Efficiency Zhou
et al. [90] propose new metrics: AxPUE to measures the power usage effective-
ness of IT equipment and data center systems. They choose BigDataBench as
benchmarking suite.

Evaluation of Virtualization Systems Ning et al. [65] propose a new network
socket library in virtualization scenario which utilizes shared memory for data
transmission. They choose BigDataBench as evaluation tools.

Evaluating Programming Systems Liang et al. [53] provide a comprehen-
sive performance evaluation of Hadoop, Spark, and DataMPI based on Big-
DataBench.They choose three micro benchmarks (Sort, WordCount and Grep)
and two application benchmarks (K-means and Naive Bayes) as evaluation work-
loads.

78 Chunjie Luo and etc.

Resource management and scheduling Liang et al. [55] propose an ex-
tended map/reduce framework called Predoop. Predoop preempts the reduce
task during its idle time and allocate the released resource to the map tasks
on schedule. They choose the Sort and WordCount workloads from the Big-
DataBench benchmark suite as the evaluation workloads.

10.3 Selective research papers citing BigDataBench

(1) A Micro-benchmark suite for evaluating hadoop RPC on high-performance
networks. X Lu, M Wasi-ur-Rahman, NS Islam Panda, D.K.D - Advancing Big
Data Benchmarks, 2014 - Springer [60]

Abstract: Hadoop Remote Procedure Call (RPC) is increasingly being used
with other data- center middlewares such as MapReduce, HDFS, and HBase in
many data-centers (eg Facebook, Yahoo!) because of its simplicity, productivity,
and high performance. For RPC ...

(2) Performance Benefits of DataMPI: A Case Study with BigDataBench. F
Liang, C Feng, X Lu, Z Xu - Big Data Benchmarks, Performance Optimization,
and Emerging Hardware(BPOE), in conjunction with ASPLOS 2014 [53]

Abstract: Apache Hadoop and Spark are gaining prominence in Big Data
processing and analytics. Both of them are widely deployed on Internet com-
panies. On the other hand, high- performance data analysis requirements are
causing academical and industrial ...

(3) Bijoux: Data generator for evaluating etl process quality. E Nakucçi, V
Theodorou, P Jovanovic- - Proceedings of the 17th International Workshop on
Data Warehousing and OLAP, 2014 - dl.acm.org [64]

Abstract: Obtaining the right set of data for evaluating the fulfillment of
different quality standards in the extract-transform-load (ETL) process design
is rather challenging. First, the real data might be out of reach due to different
privacy constraints, while providing a ...

(4) InvarNet-X: A Comprehensive Invariant Based Approach for Performance
Diagnosis in Big Data Platform. P Chen, Y Qi, D Hou, H Sun - Big Data
Benchmarks, Performance Optimization, and Emerging Hardware(BPOE), 2014
- Springer [27]

Abstract: To provide a high performance and reliable big data platform, this
paper proposes a comprehensive invariant-based performance diagnosis approach
named InvarNet-X. InvarNet-X not only covers performance anomaly detection
but also root cause inference, ...

(5) Performance Characterization of Hadoop and Data MPI Based on Am-
dahl’s Second Law. F Liang, C Feng, X Lu, Z Xu - Networking, Architecture, and
Storage (NAS), 2014 9th IEEE International Conference - ieeexplore.ieee.org [54]

Abstract: Amdahl’s second law has been seen as a useful guideline for de-
signing and evaluating balanced computer systems for decades. This law has
been mainly used for hardware systems and peak capacities. This paper utilizes
Amdahl’s second law from a ...

Handbook of BigDataBench 3.1 79

(6) Understanding the Behavior of In-Memory Computing Workloads. T
Jiang, Q Zhang, R Hou, L Chai, SA Mckee, Z Jia, N Sun- Workload Char-
acterization (IISWC), 2014 - prof.ict.ac.cn [44]

Abstract: The increasing demands of big data applications have led researchers
and practitioners to turn to in-memory computing to speed processing. For in-
stance, the Apache Spark framework stores intermediate results in memory to
deliver good performance on ...

(7) Exploring Opportunities for Non-Volatile Memories in Big Data Applica-
tions. W Wei, D Jiang, J Xiong, M Chen - Big Data Benchmarks, Performance
Optimization, and Emerging Hardware(BPOE), in conjunction with ASPLOS
2014 - prof.ict.ac.cn [82]

Abstract: Large-capacity memory system allows big data applications to load
as much data as possible for in-memory processing, which improves application
performance. However, DRAM faces both scalability and energy challenges due
to its inherent charging ...

(8) WGB: Towards a Universal Graph Benchmark. K Ammar, MT Ozsu -
Advancing Big Data Benchmarks, 2014 - Springer [22]

Abstract: Graph data are of growing importance in many recent applications.
There are many systems proposed in the last decade for graph processing and
analysis. Unfortunately, with the exception of RDF stores, every system uses
different datasets and queries to assess ...

(9) MrLazy: Lazy Runtime Label Propagation for MapReduce. S Akoush, L
Carata, R Sohan, A Hopper - 6th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 14)- - cl.cam.ac.uk [21]

Abstract: Organisations are starting to publish datasets containing poten-
tially sensitive information in the Cloud; hence it is important there is a clear
audit trail to show that involved parties are respecting data sharing laws and
policies. Information Flow Control (IFC) has ...

(10) On Big Data Benchmarking. R Han, X Lu - arXiv preprint arXiv:1402.5194,
2014 - arxiv.org

Abstract: Big data systems address the challenges of capturing, storing, man-
aging, analyzing, and visualizing big data. Within this context, developing bench-
marks to evaluate and compare big data systems has become an active topic for
both research and industry ...

(11) Discussion of BigBench: A Proposed Industry Standard Performance
Benchmark for Big Data. C Baru11, M Bhandarkar10, C Curino, M Danisch, M
Frank, B Gowda, H-A Jacobsen, H Jie, D Kumar and R Nambiar- - msrg.org

Abstract: Enterprises perceive a huge opportunity in mining information that
can be found in big data. New storage systems and processing paradigms are
allowing for ever larger data sets to be collected and analyzed. The high demand
for data analytics and rapid ...

(12) A Benchmark to Evaluate Mobile Video Upload to Cloud Infrastruc-
tures. A Akdogan, H To, SH Kim, C Shahabi - Big Data Benchmarks, Perfor-
mance Optimization, and Emerging Hardware (BPOE), 2014 - Springer [20]

80 Chunjie Luo and etc.

Abstract: The number of mobile devices (eg, smartphones, tablets, wearable
devices) is rapidly growing. In line with this trend, a massive amount of mobile
videos with metadata (eg, geospatial properties), which are captured using the
sensors available on these ...

(13) I/O Characterization of Big Data Workloads in Data Centers. F Pan, Y
Yue, J Xiong, D Hao - Big Data Benchmarks, Performance Optimization, and
Emerging Hardware (BPOE), in conjunction with ASPLOS 2014-prof.ict.ac.cn [66]

Abstract: As the amount of data explodes rapidly, more and more organiza-
tions tend to use data centers to make effective decisions and gain a competitive
edge. Big data applications have gradually dominated the data centers’ work-
loads, and hence it has been ...

(14) A Micro-benchmark Suite for Evaluating Hadoop MapReduce on High-
Performance Networks. D Shankar, X Lu, M Wasi-ur-Rahman, N Islam,- Big
Data Benchmarks, Performance Optimization, and Emerging Hardware (BPOE),
2014 - Springer [75]

Abstract: Hadoop MapReduce is increasingly being used by many data-
centers (eg Facebook, Yahoo!) because of its simplicity, productivity, scalability,
and fault tolerance. For MapReduce applications, achieving low job execution
time is critical. Since a majority of ...

(15) A BigBench Implementation in the Hadoop Ecosystem. B Chowdhury, T
Rabl, P Saadatpanah, J Du, H-A Jacobsen- In Advancing Big Data Benchmarks
- msrg.org [31]

Abstract: BigBench is the first proposal for an end to end big data analytics
benchmark. It features a rich query set with complex, realistic queries. BigBench
was developed based on the decision support benchmark TPC-DS. The first
proof-of-concept implementation was ...

(16) Characterizing Workload of Web Applications on Virtualized Servers. X
Wang, S Huang, S Fu, K Kavi - arXiv preprint arXiv:1402.3549, 2014 - arxiv.org

Abstract: With the ever increasing demands of cloud computing services,
planning and management of cloud resources has become a more and more im-
portant issue which directed affects the resource utilization and SLA and cus-
tomer satisfaction. But before any ...

(17) Benchmarking Replication and Consistency Strategies in Cloud Serving
Databases: HBase and Cassandra. H Wang, J Li, H Zhang, Y Zhou - Big Data
Benchmarks, Performance Optimization, and Emerging Hardware (BPOE), 2014
- Springer [80]

Abstract: Databases serving OLTP operations generated by cloud applica-
tions have been widely researched and deployed nowadays. Such cloud serving
databases like BigTable, HBase, Cassandra, Azure and many others are designed
to handle a large number of ...

(18) PLC-Cache: Endurable SSD Cache for Deduplication-based Primary
Storage. J Liu, Y Chai, X Qin, Y Xiao - Proceeding of MSST(30th Inter-
national Conference on Massive Storage Systems and Technology) -storage-
conference.org [57]

Handbook of BigDataBench 3.1 81

Abstract: Data deduplication techniques improve cost efficiency by dramat-
ically reducing space needs of storage systems. SSD-based data cache has been
adopted to remedy the declining I/O performance induced by deduplication op-
erations in the latency-sensitive ...

(19) Predoop: Preempting Reduce Task for job execution accelerations. Y
Liang, Y Wang, M Fan, C Zhang, Y Zhu - Big Data Benchmarks, Performance
Optimization, and Emerging Hardware(BPOE), in conjunction with VLDB,
2014 - Springer [55]

Abstract: Map/Reduce is a popular parallel processing framework for data
intensive computing. For overlapping the Map task’s execution phase and the Re-
duce task’s intermediate data fetching and merging phase, existing Map/Reduce
schedulers always ...

(20) Cost-aware cooperative resource provisioning for heterogeneous work-
loads in data centers. J Zhan, L Wang, X Li, W Shi, C Weng, W Zhang, X Zang
- Computers, IEEE Transactions on, 2013 - ieeexplore.ieee.org [86]

Abstract: Recent cost analysis shows that the server cost still dominates the
total cost of high-scale data centers or cloud systems. In this paper, we argue
for a new twist on the classical resource provisioning problem: heterogeneous
workloads are a fact of life in ...

(21) Smart CloudBench–Automated Performance Benchmarking of the Cloud.
MB Chhetri, S Chichin, QB Vo, R Kowalczyk- Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference, 2013 - ieeexplore.ieee.org [29]

Abstract: As the rate of cloud computing adoption grows, so does the need
for consumption assistance. Enterprises that are looking to migrate their IT
systems to the cloud, would like to quickly identify providers that offer resources
with the most appropriate pricing and ...

(22) Smart Cloud Broker: Finding your home in the clouds. M Baruwal
Chhetri, S Chichin, Q Bao Vo, R Kowalczyk - Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference - ieeexplore.ieee.org [23]

Abstract: As the rate of cloud computing adoption grows, so does the need
for consumption assistance. Enterprises looking to migrate their IT systems to
the cloud require assistance in identifying providers that offer resources with the
most appropriate pricing and ...

(23) A Survey on Benchmarks for Big Data and Some More Considerations.
X Qin, X Zhou - Intelligent Data Engineering and Automated Learning–IDEAL,
2013 - Springer [70]

Abstract: A big data benchmark suite is needed eagerly by customers, indus-
try and academia recently. A number of prominent works in last several years
are reviewed, their characteristics are introduced and shortcomings are analyzed.
The authors also provide ...

(24) Cloud Benchmarking for Performance. B Varghese, O Akgun, I Miguel,
L Thai, A Barker- - arXiv preprint arXiv: 1411.0912, 2014 - arxiv.org

Abstract: How can applications be deployed on the cloud to achieve maxi-
mum performance? This question has become significant and challenging with

82 Chunjie Luo and etc.

the availability of a wide variety of Virtual Machines (VMs) with different per-
formance capabilities in the cloud. ...

(25) Towards Realistic Benchmarking for Cloud File Systems: Early Experi-
ences. Z Ren, W Shi, J Wan - cs.wayne.edu

Abstract: As the preliminary step for designing a realistic benchmark, we
make an effort to explore the characteristics of data and I/O workload in a
production environment. We collected a two- week I/O workload trace from a
2,500-node production cluster, which is one of the largest ...

(26) Smart CloudMonitor-Providing Visibility into Performance of Black-
Box Clouds. MB Chhetri, S Chichin, QB Vo, R Kowalczyk - Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference - ieeexplore.ieee.org [30]

Abstract: Migration to the cloud offers several benefits including reduced
operational costs, flexibility, scalability, and a greater focus on business goals,
but it also has a flip sidereduced visibility. Organizations only have a blackbox
view of cloud servers and while ...

(27) A Benchmark to Evaluate Mobile Video Upload to Cloud Infrastruc-
tures. A Akdogan, H To, SH Kim, C Shahabi - Big Data Benchmarks, Perfor-
mance Optimization, and Emerging Hardware (BPOE), 2014 - Springer [20]

Abstract: The number of mobile devices (eg, smartphones, tablets, wearable
devices) is rapidly growing. In line with this trend, a massive amount of mobile
videos with metadata (eg, geospatial properties), which are captured using the
sensors available on these ...

(28) Smart CloudBench-Test Drive the Cloud Before You Buy. MB Chhetri,
S Chichin, QB Vo, R Kowalczyk - Service Research and Innovation, 2014 -
Springer [79]

Abstract: In recent years there has been an exponential growth in the num-
ber of vendors offering Infrastructure-as-a-Service (IaaS), with a corresponding
increase in the number of enterprises looking to migrate some, or all of their IT
systems to the cloud. Prospective ...

(29) Characterizing Workload of Web Applications on Virtualized Servers. X
Wang, S Huang, S Fu, K Kavi - arXiv preprint arXiv:1402.3549, 2014 - arxiv.org

Abstract: With the ever increasing demands of cloud computing services,
planning and management of cloud resources has become a more and more im-
portant issue which directed affects the resource utilization and SLA and cus-
tomer satisfaction. But before any ...

(30) AxPUE: Application level metrics for power usage effectiveness in data
centers. R Zhou, Y Shi, C Zhu - Big Data, 2013 IEEE International Conference
on, 2013 - ieeexplore.ieee.org [90]

Abstract: The rapid growth of data volume brings big challenges to the data
center computing, and energy efficiency is one of the most concerned problems.
Researchers from various fields are now proposing solutions to green the data
center operations. Power ...

(31) Performance Analysis of MPI Parallel Programs on Xen Virtual Ma-
chines. J Xu, Y Zhao, K Zhan, H Li, X Han - High Performance Computing
and Communications & 2013 IEEE International Conference on Embedded and

Handbook of BigDataBench 3.1 83

Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th International Conference
on - ieeexplore.ieee.org [85]

Abstract: Recently, HPC in the Cloud has emerged as a new paradigm in the
field of parallel computing. Most of cloud systems deploy virtual machines for
provisioning resources. However, in a virtual machine environment, there is still
no mature method to ...

(32) Performance variations in resource scaling for mapreduce applications
on private and public clouds. F Zhang, M Sakr - Cloud Computing (CLOUD),
2014 IEEE 7th International Conference on - ieeexplore.ieee.org [88]

Abstract: In this paper, we delineate the causes of performance variations
when scaling provisioned virtual resources for a variety of MapReduce applica-
tions. Hadoop MapReduce facilitates the development and execution processes
of large-scale batch applications on ...

(33) Memory system characterization of big data workloads. M Dimitrov, K
Kumar, P Lu, V Viswanathan, T Willhalm- Big Data, 2013 IEEE International
Conference on - ieeexplore.ieee.org [33]

Abstract: Two recent trends that have emerged include (1) Rapid growth in
big data technologies with new types of computing models to handle unstruc-
tured data, such as mapreduce and noSQL (2) A growing focus on the memory
subsystem for performance ...

(34) On the feasibility of collaborative green data center ecosystems. A
Agusta-Torra, F Raspall, D Remondo, D Rincon, G Giuliani- - Ad Hoc Net-
works, 2014 - Elsevier [19]

Abstract: The increasing awareness of the impact of the IT sector on the en-
vironment, together with economic factors, have fueled many research efforts to
reduce the energy expenditure of data centers. Recent work proposes to achieve
additional energy savings ...

(35) Performance Analysis of the Memory Management Unit under Scale-
out Workloads. V Karakostas, OS Unsal, M Nemirovsky, A Cristal, M Swift -
bscmsrc.eu

Abstract: Much attention has been given to the efficient execution of the
scale-out applications that dominate in datacenter computing. However, the
effects of the hardware support in the Memory Management Unit (MMU) in
combination with the distinct ...

(36) The implications from benchmarking three big data systems. J Quan,
Y Shi, M Zhao, W Yang - Big Data, 2013 IEEE International Conference on -
ieeexplore.ieee.org [71]

Abstract: Along with today’s data explosion and application diversification,
a variety of hardware platforms for data centers are emerging and are attracting
interests from both industry and academia. The existing hardware platforms
represent a wide range of ...

(37) Precise, scalable, and online request tracing for multitier services of black
boxes. B Sang, J Zhan, G Lu, H Wang, D Xu, L Wang, Z Zhang, Z Jia - Parallel
and Distributed Systems, IEEE Transactions on, 2012 - ieeexplore.ieee.org [73]

84 Chunjie Luo and etc.

Abstract: As more and more multitier services are developed from commer-
cial off-the-shelf components or heterogeneous middleware without source code
available, both developers and administrators need a request tracing tool to 1)
exactly know how a user request of

(38) High volume throughput computing: Identifying and characterizing through-
put oriented workloads in data centers. J Zhan, L Zhang, N Sun, L Wang, Z Jia,
C Luo - Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International - ieeexplore.ieee.org [87]

Abstract: For the first time, this paper systematically identifies three cate-
gories of throughput oriented workloads in data centers: services, data processing
applications, and interactive real-time applications, whose targets are to increase
the volume of throughput in terms of ...

(39) Cost-aware cooperative resource provisioning for heterogeneous work-
loads in data centers. J Zhan, L Wang, X Li, W Shi, C Weng - Computers,
IEEE Transactions on, 2013 - ieeexplore.ieee.org [86]

Abstract: Recent cost analysis shows that the server cost still dominates the
total cost of high-scale data centers or cloud systems. In this paper, we argue
for a new twist on the classical resource provisioning problem: heterogeneous
workloads are a fact of life in ...

(40) Micro-architectural characterization of desktop cloud workloads. T Jiang,
R Hou, L Zhang, K Zhang, L Chen, M Chen, N Sun - Workload Characterization
(IISWC), 2012 IEEE International Symposium on - ieeexplore.ieee.org [43]

Abstract: Desktop cloud replaces traditional desktop computers with com-
pletely virtualized systems from the cloud. It is becoming one of the fastest
growing segments in the cloud computing market. However, as far as we know,
there is little work done to understand the ...

(41) A characterization of big data benchmarks. W Xiong, Z Yu, Z Bei, J
Zhao, F Zhang, Y Zou, X Bai, Y Li, C Xu - Big Data, 2013 IEEE International
Conference on - ieeexplore.ieee.org [84]

Abstract: recently, big data has been evolved into a buzzword from academia
to industry all over the world. Benchmarks are important tools for evaluating an
IT system. However, benchmarking big data systems is much more challenging
than ever before. First, big data ...

(42) CRANarch: A feasible processor micro-architecture for Cloud Radio
Access Network. F Song, S Tang, W Li, F Miao, H Zhang, D Fan, Z Liu -
Microprocessors and Microsystems, 2014 - Elsevier [76]

Abstract: Cloud Radio Access Network (C-RAN) becomes a promising infras-
tructure, which can improve hardware resource utilization of traditional Radio
Access Network (RAN). For C- RAN, data centers are essential hardware plat-
form, and these data centers are universally ...

(43) An ensemble MIC-based approach for performance diagnosis in big data
platform. P Chen, Y Qi, X Li, L Su - Big Data, 2013 IEEE International Con-
ference on - ieeexplore.ieee.org [28]

Abstract: The era of big data has began. Although applications based on big
data bring considerable benefit to IT industries, governments and social orga-

Handbook of BigDataBench 3.1 85

nizations, they bring more challenges to the management of big data platforms
which are the fundamental ...

(44) Workload characterization of a location-based social network. T Lins,
ACM Pereira, F Benevenuto - Social Network Analysis and Mining, 2014 -
Springer [56]

Abstract: Recently, there has been a large popularization of location-based
social networks, such as Foursquare and Apontador, in which users can share
their current locations, upload tips and make comments about places. Part of
this popularity is due to facility access to the ...

(45) Survey of Recent Research Progress and Issues in Big Data. B Li -
cse.wustl.edu

Abstract: Big data is the term for data sets so large and complicated that it
becomes difficult to process using traditional data management tools or process-
ing applications. This paper reveals most recent progress on big data networking
and big data. We have categorized ...

(46) Virtualization I/O optimization based on shared memory. F Ning, C
Weng, Y Luo - Big Data, 2013 IEEE International Conference on, 2013 - ieeex-
plore.ieee.org [65]

Abstract: With the development and popularization of cloud computing,
more and more services and applications are migrated to cloud for the sake
of low cost, high availability and excellent performance. As the foundation of
cloud computing, virtualization technology ...

(47) PopulAid: In-Memory Test Data Generation. R Teusner, M Perscheid,
M Appeltauer, J Enderlein, T Klingbeil, M Kusber- - michaelperscheid.de

Abstract: During software development, it is often necessary to access real
customer data in order to validate requirements and performance thoroughly.
However, company and legal policies often restrict access to such sensitive infor-
mation. Without real data, developers ...

(48) Trust and Big Data: A Roadmap for Research. J Sanger, C Richtham-
mer, S Hassan, G Pernul - Database and Expert Systems Application (DEXA),
2014 25th International Workshop on - ieeexplore.ieee.org [74]

Abstract: We are currently living in the age of Big Data coming along with
the challenge to grasp the golden opportunities at hand. This mixed blessing
also dominates the relation between Big Data and trust. On the one side, large
amounts of trustrelated data can be ...

(49) PowerTracer: Tracing Requests in Multi-tier Services to Reduce Energy
Inefficiency. G Lu, J Zhan, H Wang, L Yuan, Y Gao, C Weng, Y Qi - Comput-
ers, IEEE Transactions on, vol.PP, no.99, pp.1,1 doi:10.1109/TC.2014.2315625
- ieeexplore.ieee.org [59]

Abstract: As energy has become one of the key operating costs in running a
data center and power waste commonly exists, it is essential to reduce energy in-
efficiency inside data centers. In this paper, we develop an innovative framework,
called PowerTracer, for ...

86 Chunjie Luo and etc.

11 Questions & Answers

This chapter lists several frequently asked questions and the corresponding an-
swers.

Q1: I can’t generate the input data of Sort workload. And the error message
is: Caused by : java.io.FileNotFoundException: ToSeqFile.jar (No such file or
directory)

A1: You should put the sort-transfer file (ToSeqFile.jar) into your $Hadoop Home
directory, and the sort-transfer file can be found at the BigDataBench V3.0 Hadoop Hive
packet.

Q2: When I run Index workload, the prepare.sh cannot run correctly. The
error message is: Error : number of words should be greater than 0

A2: You should make sure that these two folders (linux.words and words)
are placed in the path of /usr/share/dict. And these folders can be found at the
BigDataBench V3.0 Hadoop Hive /SearchEngine/Index directory.

Q3: Can you please elaborate on it, what is the typical ramp up period time
for analytic applications for 1 GB wikipedia data.

A3: The information of the ramp-up period is as follows. If a job can finish
in a short period such as 10 minutes, we just run 2 times for each benchmark.
The first round is ramp-up. We collect performance data at the second round. If
it needs a long time to complete, we just let the first round last several minutes,
so that each node can finish several tasks, and then stop the job. We begin
to collect the performance data at the second round. We do ramp-up just to
warm the cache, in order to reduce the cold miss or some thing like that. For
1 GB wikipedia data, you can follow the above methods, if you like, according
to how long the job continues. Also the runtime is dependent upon the cluster
configurations and the applications you use.

Q4: When I attempt to prepare a sequence file using BigDataBench’s ToSe-
qFile.jar, I get the following errors:

[hdfs@slavenode1 MicroBenchmarks]$ hadoop jar /usr/lib/hadoop-mapreduce/ToSeqFile.jar
ToSeqFile data-MicroBenchmarks/in sort-out

Exception in thread ”main” java.lang.NoClassDefFoundError: ToSeqFile$Map
at ToSeqFile.run(ToSeqFile.java:55)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at ToSeqFile.main(ToSeqFile.java:73)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
Caused by: java.lang.ClassNotFoundException: ToSeqFile$Map

Handbook of BigDataBench 3.1 87

at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
... 8 more

Do you have any sense of how to resolve this problem?

A4: Our Bigdatabench3.0 is based on Hadoop-1.x . As hadoop-1.x.’s API is
different from that of hadoop-2.x, so the data generation tool for sort can not be
used in hadoop-2.x. However hadoop-2.x provides a command to generate input
data for sort, which can also be used for our sort benchmark. So you can do
these as follows:
1.cd $Hadoop/share/hadoop/mapreduce
2.hadoop jar hadoop-mapreduce-examples-2.5.1.jar randomwriter -D test.randomwriter.maps per host=2
-D test.randomwrite.bytes per map=1024 /sort-data Then you can find the sort-
data in HDFS.

Q5: When I run the workload, I come across the following errors:
DEBUG util.NativeCodeLoader - Trying to load the custom-built native-hadoop
library...
INFO util.NativeCodeLoader - Loaded the native-hadoop library

A5: This because Hadoop use some library, called native-hadoop library,
which is compiled in advance. The above error means the pre-build library do
not support you architecture. So you should download the source code of Hadoop
and compile the native-hadoop library manually as follows:
cd $HADOOP HOME
ant compile-native
Copy the corresponding files in $HADOOP HOME/build/native to your own
native directory.

Q6: There is Class Not Found exception when I start Hadoop.

A6: You may use some non X86 ISA, e.g., IBM Power. The Hadoop-1.0.2
use some API that is only supported in Oracle JDK. So the some JDK like IBM
JKD do not support them. So just upgrade the Hadoop version to 1.2.1. It will
work.

Q7:When I ran Spark workloads, it cannot work correctly. Running com-
mand:

./run-bigdatabench cn.ac.ict.bigdatabench.Sort $MASTER /sort-out /tmp/sort

Error message is:

88 Chunjie Luo and etc.

Exception in thread ”main” java.lang.NoClassDefFoundError: scala/reflect/ClassManifest
Or

Exception in thread ”main” java.lang.NullPointerException
at org.apache.spark.SparkContext$.updatedConf(SparkContext.scala:1426)
at org.apache.spark.SparkContext.¡init¿(SparkContext.scala:117)
at cn.ac.ict.bigdatabench.WordCount$.main(WordCount.scala:21)
at cn.ac.ict.bigdatabench.WordCount.main(WordCount.scala)

A7: Please do the following checking:
1) Check the version of Hadoop, and the recommended version is Hadoop-

1.0.2
2) Check the version of Scala and Spark, and the recommended version is
Spark-0.8.0-incubating-bin-hadoop1
Scala-2.9.3
3) Make sure that Hadoop, Spark and Scala packets are deployed correctly.
Our experimental platform: Hadoop-1.0.2
Spark-0.8.0-incubating-bin-hadoop1
Scala-2.9.3

Q8: When I run a Spark based workload, it reports Out Of Memory problem.

A8: The Spark will store some intermediate data into memory and consuming
more memory than the input data. So if the memory allocated for the each task is
not enough, the OOM problem will appear. For most of the problems, users can
solve by tuning the following properties according to your cluster’s configuration.
More information can be found at [50]

References

1. http://www.tingvoa.com.
2. ftp://ftp.tek.com/tv/test/streams/Element/index.html/.
3. http://jedi.ks.uiuc.edu/ johns/raytracer/.
4. http://ccl.cse.nd.edu/software/sand/.
5. http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/.
6. http://cmusphinx.sourceforge.net/.
7. Alexa topsites. http://www.alexa.com/topsites/global;0.
8. Amazon movie reviews. http://snap.stanford.edu/data/web-Amazon.html.
9. Daiad. http://www.daiad.eu/wp-content/uploads/2014/10/D1.2 DAIAD Requirements and Architecture v1.0.pdf.

10. Facebook graph. http://snap.stanford.edu/data/egonets-Facebook.html.
11. Google web graph. http://snap.stanford.edu/data/web-Google.html.
12. Micro-architectural and system simulator for x86-based systems (MARSSx86) web-

site. http://marss86.org/ marss86/index.php/Home.
13. mnist. http://yann.lecun.com/exdb/mnist/.
14. Simflex fast, accurate & flexible computer architecture simulation.

http://parsa.epfl.ch/simflex/.
15. Simics website. http://www.windriver.com/simics/.
16. Sogou labs. http://www.sogou.com/labs/.
17. Standard performance evaluation corporation (spec) website.

http://www.spec.org.

Handbook of BigDataBench 3.1 89

18. wikipedia. http://en.wikipedia.org.
19. A. Agust́ı-Torra, F. Raspall, D. Remondo, D. Rincón, and G. Giuliani. On the

feasibility of collaborative green data center ecosystems. Ad Hoc Networks, 2014.
20. A. Akdogan, H. To, S. H. Kim, and C. Shahabi. A benchmark to evaluate mobile

video upload to cloud infrastructures. In Big Data Benchmarks, Performance
Optimization, and Emerging Hardware, pages 57–70. Springer, 2014.

21. S. Akoush, L. Carata, R. Sohan, and A. Hopper. Mrlazy: Lazy runtime label
propagation for mapreduce. In 6th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 14). USENIX Association.

22. K. Ammar and M. T. Özsu. Wgb: Towards a universal graph benchmark. In
Advancing Big Data Benchmarks, pages 58–72. Springer, 2014.

23. M. Baruwal Chhetri, S. Chichin, Q. Bao Vo, and R. Kowalczyk. Smart cloud broker:
Finding your home in the clouds. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages 698–701. IEEE, 2013.

24. C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, January 2011.

25. C. Bienia and K. Li. Fidelity and scaling of the PARSEC benchmark inputs. In
IEEE International Symposium on Workload Characterization, pages 1–10, Dec.
2010.

26. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal
of machine Learning research, 3:993–1022, 2003.

27. P. Chen, Y. Qi, D. Hou, and H. Sun. Invarnet-x: A comprehensive invariant based
approach for performance diagnosis in big data platform. In Big Data Bench-
marks, Performance Optimization, and Emerging Hardware(BPOE), pages 124–
140. Springer, 2014.

28. P. Chen, Y. Qi, X. Li, and L. Su. An ensemble mic-based approach for performance
diagnosis in big data platform. In Big Data, 2013 IEEE International Conference
on, pages 78–85. IEEE, 2013.

29. M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk. Smart cloudbench–
automated performance benchmarking of the cloud. In Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on, pages 414–421. IEEE,
2013.

30. M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk. Smart cloudmonitor-
providing visibility into performance of black-box clouds. In Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, pages 777–784. IEEE,
2014.

31. B. Chowdhury, T. Rabl, P. Saadatpanah, J. Du, and H.-A. Jacobsen. A bigbench
implementation in the hadoop ecosystem. Springer International Publishing.

32. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

33. M. Dimitrov, K. Kumar, P. Lu, V. Viswanathan, and T. Willhalm. Memory system
characterization of big data workloads. In Big Data, 2013 IEEE International
Conference on, pages 15–22. IEEE, 2013.

34. L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload design: Select-
ing representative program-input pairs. In International Conference on Parallel
Architectures and Compilation Techniques, pages 83–94, Sep. 2002.

35. L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quantifying the impact of
input data sets on program behavior and its applications. Journal of Instruction-
Level Parallelism, 5(1):1–33, 2003.

90 Chunjie Luo and etc.

36. S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A performance counter
architecture for computing accurate CPI components. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 175–184, Oct. 2006.

37. P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmen-
tation. International Journal of Computer Vision, 59(2):167–181, 2004.

38. W. Gao, Y. Zhu, Z. Jia, C. Luo, L. Wang, J. Zhan, Y. He, S. Gong, X. Li, S. Zhang,
and B. Qiu. Bigdatabench: a big data benchmark suite from web search engines.
The Third Workshop on Architectures and Systems for Big Data (ASBD 2013), in
conjunction with ISCA 2013, 2013.

39. Q. He, D. Jiang, Z. Liao, S. C. Hoi, K. Chang, E.-P. Lim, and H. Li. Web
query recommendation via sequential query prediction. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on, pages 1443–1454. IEEE, 2009.

40. Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo. Characterizing data analysis
workloads in data centers. In Workload Characterization (IISWC), 2013 IEEE
International Symposium on. IEEE.

41. Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo. Characterizing data analysis
workloads in data centers. In Workload Characterization (IISWC), 2013 IEEE
International Symposium on, pages 66–76. IEEE, 2013.

42. Z. Jia, J. Zhan, L. Wang, R. Han, S. A. McKee, Q. Yang, C. Luo, and J. Li.
Characterizing and subsetting big data workloads. In Workload Characterization
(IISWC), 2014 IEEE International Symposium on. IEEE.

43. T. Jiang, R. Hou, L. Zhang, K. Zhang, L. Chen, M. Chen, and N. Sun. Micro-
architectural characterization of desktop cloud workloads. In Workload Character-
ization (IISWC), 2012 IEEE International Symposium on, pages 131–140. IEEE,
2012.

44. T. Jiang, Q. Zhang, R. Hou, L. Chai, S. A. Mckee, Z. Jia, and N. Sun. Understand-
ing the behavior of in-memory computing workloads. In Workload Characterization
(IISWC), 2014 IEEE International Symposium on. IEEE.

45. I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2005.
46. K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. Perfor-

mance characterization of a Quad Pentium Pro SMP using OLTP workloads. In
International Symposium on Computer Architecture, Jun. 1998.

47. J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos. Realistic, mathemat-
ically tractable graph generation and evolution, using kronecker multiplication. In
Knowledge Discovery in Databases: PKDD 2005, pages 133–145. Springer, 2005.

48. J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kro-
necker graphs: An approach to modeling networks. The Journal of Machine Learn-
ing Research, 11:985–1042, 2010.

49. D. Levinthal. Cycle accounting analysis on Intel Core 2 processors.
https://software.intel.com/sites/products/collateral/hpc/vtune/
cycle accounting analysis.pdf, cited Apr. 2014.

50. D. Levinthal. Spark configuration. http://spark.apache.org/docs/0.8.0/configuration.html,
cited Dec. 2014.

51. H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. Pfp: parallel fp-growth
for query recommendation. In Proceedings of the 2008 ACM conference on Rec-
ommender systems, pages 107–114. ACM, 2008.

52. M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The alpbench
benchmark suite for complex multimedia applications. In Workload Characteriza-
tion Symposium, 2005. Proceedings of the IEEE International, pages 34–45. IEEE,
2005.

Handbook of BigDataBench 3.1 91

53. F. Liang, C. Feng, X. Lu, and Z. Xu. Performance benefits of datampi: A case
study with bigdatabench. arXiv preprint arXiv:1403.3480, 2014.

54. F. Liang, C. Feng, X. Lu, and Z. Xu. Performance characterization of hadoop and
data mpi based on amdahl’s second law. In Networking, Architecture, and Storage
(NAS), 2014 9th IEEE International Conference on, pages 207–215. IEEE, 2014.

55. Y. Liang, Y. Wang, M. Fan, C. Zhang, and Y. Zhu. Predoop: Preempting reduce
task for job execution accelerations. In Big Data Benchmarks, Performance Op-
timization, and Emerging Hardware(BPOE-5), in conjunction with VLDB 2014.
Springer.

56. T. Lins, A. C. Pereira, and F. Benevenuto. Workload characterization of a location-
based social network. Social Network Analysis and Mining, 4(1):1–14, 2014.

57. J. Liu, Y. Chai, X. Qin, and Y. Xiao. PLC-Cache: Endurable ssd cache for
deduplication-based primary storage. In In Proceeding of MSST(30th International
Conference on Massive Storage Systems and Technology), 2014.

58. D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

59. G. Lu, J. Zhan, H. Wang, L. Yuan, Y. Gao, C. Weng, and Y. Qi. Powertracer:
Tracing requests in multi-tier services to reduce energy inefficiency. Computers,
IEEE Transactions on , vol.PP, no.99, pp.1,1 doi: 10.1109/TC.2014.2315625.

60. X. Lu, M. Wasi-ur Rahman, N. S. Islam, and D. K. D. Panda. A micro-benchmark
suite for evaluating hadoop rpc on high-performance networks. In Advancing Big
Data Benchmarks, pages 32–42. Springer, 2014.

61. C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C.-Z. Xu, and N. Sun.
Cloudrank-d: benchmarking and ranking cloud computing systems for data pro-
cessing applications. Frontiers of Computer Science, 6(4):347–362, 2012.

62. Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan. Bdgs: A
scalable big data generator suite in big data benchmarking. Proceedings of the
Third Workshop on Big Data Benchmarking (WBDB2013), 2013.

63. R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing the
graph 500. Cray User’s Group (CUG), 2010.

64. E. Nakucçi, V. Theodorou, P. Jovanovic, and A. Abelló. Bijoux: Data generator for
evaluating etl process quality. In Proceedings of the 17th International Workshop
on Data Warehousing and OLAP, pages 23–32. ACM, 2014.

65. F. Ning, C. Weng, and Y. Luo. Virtualization i/o optimization based on shared
memory. In Big Data, 2013 IEEE International Conference on, pages 70–77. IEEE,
2013.

66. F. Pan, Y. Yue, J. Xiong, and D. Hao. I/O characterization of big data workloads in
data centers. In Big Data Benchmarks, Performance Optimization, and Emerging
Hardware(BPOE-4), in conjunction with ASPLOS, 2014.

67. A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A comparison of approaches to large-scale data analysis. In
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, pages 165–178. ACM, 2009.

68. D. Pelleg and A. W. Moore. X-means: Extending K-means with efficient estimation
of the number of clusters. In International Conference on Machine Learning, pages
727–734, Jun. 2000.

69. A. Phansalkar, A. Joshi, and L. John. Analysis of redundancy and application
balance in the SPEC CPU2006 benchmark suite. In International Symposium on
Computer Architecture, Jun. 2007.

92 Chunjie Luo and etc.

70. X. Qin and X. Zhou. A survey on benchmarks for big data and some more consid-
erations. In Intelligent Data Engineering and Automated Learning–IDEAL 2013,
pages 619–627. Springer, 2013.

71. J. Quan, Y. Shi, M. Zhao, and W. Yang. The implications from benchmarking
three big data systems. In Big Data, 2013 IEEE International Conference on,
pages 31–38. IEEE, 2013.

72. T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A data generator for cloud-scale
benchmarking. In Performance Evaluation, Measurement and Characterization of
Complex Systems, pages 41–56. Springer, 2011.

73. B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and Z. Jia. Precise,
scalable, and online request tracing for multitier services of black boxes. Parallel
and Distributed Systems, IEEE Transactions on, 23(6):1159–1167, 2012.

74. J. Sanger, C. Richthammer, S. Hassan, and G. Pernul. Trust and big data: A
roadmap for research. In Database and Expert Systems Applications (DEXA),
2014 25th International Workshop on, pages 278–282. IEEE, 2014.

75. D. Shankar, X. Lu, M. Wasi-ur Rahman, N. Islam, and D. K. D. Panda. A micro-
benchmark suite for evaluating hadoop mapreduce on high-performance networks.
pages 19–33. Springer, 2014.

76. F. Song, S. Tang, W. Li, F. Miao, H. Zhang, D. Fan, and Z. Liu. Cranarch: A fea-
sible processor micro-architecture for cloud radio access network. Microprocessors
and Microsystems, 38(8):1025–1036, 2014.

77. J. E. Stone. An efficient library for parallel ray tracing and animation. Intel
Supercomputer Users Group Conference, 1998.

78. M. Uřičář, V. Franc, and V. Hlaváč. Detector of facial landmarks learned by
the structured output SVM. In G. Csurka and J. Braz, editors, VISAPP ’12:
Proceedings of the 7th International Conference on Computer Vision Theory and
Applications, volume 1, pages 547–556, Portugal, 2012. SciTePress — Science and
Technology Publications.

79. Q. B. Vo and R. Kowalczyk. Smart cloudbench-test drive the cloud before you
buy. Service Research and Innovation, page 59.

80. H. Wang, J. Li, H. Zhang, and Y. Zhou. Benchmarking replication and consis-
tency strategies in cloud serving databases: Hbase and cassandra. In Big Data
Benchmarks, Performance Optimization, and Emerging Hardware, pages 71–82.
Springer, 2014.

81. L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang,
et al. Bigdatabench: A big data benchmark suite from internet services. The
20th IEEE International Symposium On High Performance Computer Architecture
(HPCA), 2014.

82. W. Wei, D. Jiang, J. Xiong, and M. Chen. Exploring opportunities for non-volatile
memories in big data applications. In Big Data Benchmarks, Performance Opti-
mization, and Emerging Hardware(BPOE-4), in conjunction with ASPLOS, 2014.

83. H. Xi, J. Zhan, Z. Jia, X. Hong, L. Wang, L. Zhang, N. Sun, and G. Lu. Charac-
terization of real workloads of web search engines. In Workload Characterization
(IISWC), 2011 IEEE International Symposium on, pages 15–25. IEEE, 2011.

84. W. Xiong, Z. Yu, Z. Bei, J. Zhao, F. Zhang, Y. Zou, X. Bai, Y. Li, and C. Xu. A
characterization of big data benchmarks. In Big Data, 2013 IEEE International
Conference on, pages 118–125. IEEE, 2013.

85. J. Xu, Y. Zhao, K. Zhan, H. Li, and X. Han. Performance analysis of mpi parallel
programs on xen virtual machines. In High Performance Computing and Com-
munications & 2013 IEEE International Conference on Embedded and Ubiquitous

Handbook of BigDataBench 3.1 93

Computing (HPCC EUC), 2013 IEEE 10th International Conference on, pages
1528–1535. IEEE, 2013.

86. J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang. Cost-aware co-
operative resource provisioning for heterogeneous workloads in data centers. Com-
puters, IEEE Transactions on, 62(11):2155–2168, 2013.

87. J. Zhan, L. Zhang, N. Sun, L. Wang, Z. Jia, and C. Luo. High volume throughput
computing: Identifying and characterizing throughput oriented workloads in data
centers. In Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International, pages 1712–1721. IEEE, 2012.

88. F. Zhang and M. Sakr. Performance variations in resource scaling for mapreduce
applications on private and public clouds. In Cloud Computing (CLOUD), 2014
IEEE 7th International Conference on, pages 456–465. IEEE, 2014.

89. Z. Zhang and O. Nasraoui. Mining search engine query logs for query recommen-
dation. In Proceedings of the 15th international conference on World Wide Web,
pages 1039–1040. ACM, 2006.

90. R. Zhou, Y. Shi, and C. Zhu. Axpue: Application level metrics for power usage
effectiveness in data centers. In Big Data, 2013 IEEE International Conference
on, pages 110–117. IEEE, 2013.

91. Y. Zhu, J. Zhan, C. Weng, R. Nambiar, J. Zhang, X. Chen, and L. Wang. BigOP:
Generating comprehensive big data workloads as a benchmarking framework. In
Database Systems for Advanced Applications, pages 483–492. Springer, 2014.

94 Chunjie Luo and etc.

Table 17. Clustering Results

Cluster Workloads

1 Cloud-OLTP-Read, Impala-JoinQuery, Shark-Difference, Hadoop-
Sort, Cloud-OLTP-San, Ipala-TPC-DS-query8, Impala-Crossproduct,
Impala-Project, Impala-AggregationQuery, Cloud-OLTP-Write

2 Hive-TPC-DS-query10, Hive-TPC-DS-query12-1, Hive-Difference,
Hadoop-Index, Hive-TPC-DS-query6, Hive-TPC-DS-query7, Hive-
TPC-DS-query9, Hive-TPC-DS-query13, Hive-TPC-DS-query12-2

3 Hive-Orderby, Hive-SelectQuery, Hive-TPC-DS-query8, Impala-
SelectQuery, Hive-Crossproduct, Hive-Project, Hive-JoinQuery,
Hive-AggregationQuery

4 Impala-TPC-DS-query6, Impala-TPC-DS-query12 2, Hive-TPC-DS-
query3,Spark-NaiveBayes, Impala-TPC-DS-query7, Impala-TPC-DS-
query13, Impala-TPC-DS-query9, Impala-TPC-DS-query10, Impala-
TPC-DS-query3

5 Shark-Union, Spark-WordCount, Shark-Aggregation-AVG, Shark-
Filter, Shark-Aggregation-MAX, Shark-SelectQuery, Shark-
Aggregation-MIN, Shark-Aggregation-SUM

6 Impala-Filter, Impala-Aggregation-AVG, Impala-Union, Impala-
Orderby, Impala-Aggregation-MAX, Impala-Aggregation-MIN,
Impala-Aggregation-SUM

7 Hive-Aggregation-AVG, Hive-Aggregation-MIM, Hive-
AggregationSUM, Hadoop-Grep, Hive-Union, Hive-AggregationMAX,
Hive-Filter, Hadoop-Pagerank

8 Shark-TPC-DS-query9, Shark-TPC-DS-query7, Shark-TPC-DS-
query10, Shark-TPC-DS-query3

9 Shark-AggregationQuery, Shark-TPC-DS-query6, Shark-Project,
Shark-TPC-DS-query13

10 Shark-JoinQuery, Shark-Orderby, Shark-Crossproduct

11 Spark-Kmeans

12 Shark-TPCDS-query8

13 Spark-Pagerank

14 Spark-Grep

15 Hadoop-WordCount

16 Hadoop-NaiveBayes

17 Spark-Sort

Handbook of BigDataBench 3.1 95

Table 18. Treat the marginal ones as representative workloads

No. Workload name Number of workloads in its cluster

1 Cloud-OLTP-Read 10

2 Hive-Difference 9

3 Impala-SelectQuery 9

4 Hive-TPC-DS-query3 9

5 Spark-WordCount 8

6 Impala-Orderby 7

7 Hadoop-Grep 7

8 Shark-TPC-DS-query10 4

9 Shark-Project 4

10 Shark-Orderby 3

11 Spark-Kmeans 1

12 Shark-TPC-DS-query8 1

13 Spark-Pagerank 1

14 Spark-Grep 1

15 Hadoop-WordCount 1

16 Hadoop-NaiveBayes 1

17 Spark-Sort 1

Table 19. Treat the central ones as representative workloads

No. Workload name Number of workloads in its cluster

1 Cloud-OLTP-Write 10

2 Hive-TPC-DS-query13 9

3 Hive-AggregationQuery 9

4 Impala-TPC-DS-query6 9

5 Shark-Union 8

6 Impala-Aggregation-MAX 7

7 Hive-Aggregation-AVG 7

8 Shark-TPC-DS-query7 4

9 Shark-TPC-DS-query6 4

10 Shark-Crossproduct 3

11 Spark-Kmeans 1

12 Shark-TPC-DS-query8 1

13 Spark-Pagerank 1

14 Spark-Grep 1

15 Hadoop-WordCount 1

16 Hadoop-NaiveBayes 1

17 Spark-Sort 1

96 Chunjie Luo and etc.

Table 21. Spark Properties

Property Name Default Meaning

spark.executor.memory 512m Amount of memory to use
per executor process, in the
same format as JVM mem-
ory strings (e.g. 512m, 2g).

spark.shuffle.consolidateFiles false If set to ”true”, consoli-
dates intermediate files cre-
ated during a shuffle. Creat-
ing fewer files can improve
filesystem performance for
shuffles with large numbers
of reduce tasks. It is rec-
ommended to set this to
”true” when using ext4 or
xfs filesystems. On ext3, this
option might degrade per-
formance on machines with
many (>8) cores due to
filesystem limitations.

spark.shuffle.file.buffer.kb 100 Size of the in-memory buffer
for each shuffle file output
stream, in kilobytes. These
buffers reduce the number of
disk seeks and system calls
made in creating intermedi-
ate shuffle files.

spark.default.parallelism 8 Default number of tasks to
use for distributed shuffle
operations (groupByKey, re-
duceByKey, etc) when not
set by user.

spark.cores.max (infinite) When running on a stan-
dalone deploy cluster or a
Mesos cluster in ”coarse-
grained” sharing mode, how
many CPU cores to request
at most. The default will use
all available cores offered by
the cluster manager.

