QoS-Aware Orchestration of Network Intensive
Software Utilities within Software Defined Data

Centres
An Architecture and Implementation of a Global Cluster
Manager
Uros Pascinski! Jernej Trnkoczy? Vlado Stankovski?
Matej Cigale® Sandi Gec!
Abstract

Although the cloud computing domain is progressing rapidly, the de-
ployment of various network intensive software utilities in the cloud
is still a challenging task. The Quality of Service (QoS) for various
gaming, simulations, video-conferencing, video-streaming or even file
uploading tasks may be significantly affected by the quality and ge-
olocation of the selected underlying computing resources, which are
available only when the specific functionality is required. This study
presents a new architecture for geographic orchestration of network
intensive software components which is designed for high QoS. Key
elements of this architecture are a Global Cluster Manager (GCM)
operating within Software Defined Data Centres (SDDCs), a runtime
QoS Monitoring System, and a QoS Modeller and Decision Maker for
automated orchestration of software utilities. The implemented system
automatically selects the best geographically available computing re-
source within the SDDC according to the developed QoS model of the
software component. This architecture is event-driven as the services
are deployed and destroyed in real-time for every usage event. The
utility of the implemented orchestration technology is verified qualita-
tively, and in relation to the potential gains of selected QoS metrics by
using two network intensive software utilities implemented as contain-
ers: an HT'TP(S) file upload service and a Jitsi Meet videoconferencing
service. The study shows potential for QoS improvements in compari-
son to existing orchestration systems.

Keywords autonomic orchestration, Quality of Service, Software De-
fined Data Centre, event-driven cloud applications

!University of Ljubljana, Faculty of Computer and Information Science
*University of Ljubljana, Faculty of Civil and Geodetic Engineering
3Cardiff University, School of Computer Science

1 Introduction

There is a variety of popular Web-based and Internet of Things appli-
cations [6] including online gaming, videoconferencing, robot vision, re-
mote navigation and similar, which make use of software utilities that are
compute-, memory- and network-intensive.

The development and management process for this kind of applications has
considerably improved in the past few years with the emergence of vari-
ous new editors and tools (such as Juju [4] or Fabric8 [14]) and method-
ologies for component based software engineering [23]. According to these
new practices, commonly known as DevOps [13], applications are devel-
oped as collections of loosely coupled software components, e.g. databases,
simulation algorithms, speech-to-text translation services, computer-vision
services and alike. Software developers can then search for them in public
Open Source software repositories, connect them together by using special-
ized editors (such as Juju), and deploy them in cloud infrastructures. Such
applications can be fairly complex. Their components during the runtime
would normally communicate via standardised interfaces, while exposing
their services to end users via the Web.

Another important recent development is the emergence of Software Defined
Data Centres (SDDC) [2, 8], a term nowadays interpreted in many different
ways. In the present study, a SDDC is defined as set of Virtual Machines
and physical computing resources on which common middleware services are
deployed, thus forming a virtual cluster. Such cloud infrastructure can be
composed by computing elements of greatly varying physical characteristics
and can span geographically in order to serve customers World-wide. A
cloud application can be deployed and orchestrated on top of such SDDCs.

The above mentioned advanced software engineering and cloud computing
trends promise to improve the make-span of the software life-cycle, reduce
operational costs and improve Quality of Service (QoS) aspects to achieve
greater applications’ acceptance and improved services for the end users.

However, these new and promising trends have been followed by new prob-
lems, one of which is the difficult management of the QoS within the SDDCs.
Acquired computing resources from various cloud providers usually differ
significantly regarding their geolocation, the connectivity between the users
(clients) and the running software services, the quality of the allocated com-
puting resources such as the processor frequency, the amount of allocated
memory to applications, the operational cost including storage cost [17], and
many other aspects, which add to the complexity. It is therefore paramount
to design and implement specific autonomic orchestration technology that
can be used to address the QoS concerns of the end users.

Existing orchestration systems [27, 19, 48] have been designed mainly for
single data centres to help improve the make-span of workflow-based ap-
plications. QoS aspects related to networking have been traditionally ad-
dressed with Software Defined Networking (SDN) approaches [12], such as
the one of Wang et al. [47]. However, as previously elaborated, there exists
a range of network-intensive software utilities for which these existing ap-
proaches cannot be applied. Examples include interactive Web applications,
exposing data from cameras, microphones or other sensors, which require
that the clients use the services via the open Internet. In these cases, it
is reasonable to assume that high QoS can be achieved by careful selection
of the computing infrastructure (including its geolocation) each time the
particular software utility has to be used by the end users.

This work focuses on the design of a new architecture for the autonomic
orchestration of network-intensive software utilities. It is designed to achieve
high QoS of applications operating on top of a globally distributed SDDC.
One of the major requirements for this architecture is to support diverse
network-intensive software components, which are required by end users
accessing the services from various geographic regions.

Quality itself is multifaceted [15] and it is a difficult problem to assess it
for each and every network-intensive software component, it is difficult to
know in what way the underlying computing infrastructure and the en-
vironmental conditions affect the end users’ experience. Recently, various
new cloud monitoring systems [41, 43] have been designed that measure QoS
metrics at various levels, that is, infrastructure-level, network-level, Virtual
Machine (VM)-level, container-level, application-level and even user-level.
This plethora of QoS metrics could be effectively used to assess what affects
the quality for every single software utility, and then use the collected in-
formation in order to implement an intelligent orchestration capability con-
tributing to high QoS. An important undertaking in this work is therefore
to make advantage of runtime QoS measurements to be able to generate and
make use of QoS models in the designed autonomic orchestration capability

for SDDCs.

1.1 Goals of the study

Based on the above rationale the goals of this study are therefore to:

e develop an architecture for global orchestration of network-intensive
software utilities with high QoS;

e design and implement an orchestration technology and associated ser-
vices, implementing this architecture;

e design and implement a consistent QoS modelling approach by taking
into an account end users’ locations, current clusters’ load, network
conditions and pre-runtime QoS measurements of the software utilities,

e perform trace-based evaluation of the novel orchestration technology
by using two exemplary software utilities, a File Upload HTTPS ser-
vice, and a videoconferencing service based on the Jitsi Meet Open
Source software,

e present and evaluate an exemplary approach to QoS modelling and
decision making aiming at high QoS, which may be achieved within a
globally distributed SDDC.

1.2 Organisation

This work falls in the area of autonomic orchestration. It leads to a new
architecture and implementation of a Global Cluster Manager. Section 2
discusses related works. Section 3 presents an novel architecture and imple-
mentation of a Global Cluster Manager (GCM) — technology for geographic
orchestration of network-intensive software utilities, with all its components.
Description of the workflow between these components is also presented.
The following Section 4 elaborates the implemented QoS modelling and de-
cision making process, which is used by the GCM. QoS measurements for
two cloud applications (File Upload and Jitsi Meet Videoconferencing) that
benefit from the GCM, are presented in Section 5. Section 6 analyses the
utility of the developed platform in the context of the Software-as-a-Service
(SaaS) business model. Section 7 summarizes the work with focus on the
significance and relevance of the obtained results.

2 Related work

The area of autonomic computing [20, 28|, aims to address the increasing
heterogeneity and dynamics of networks, systems and applications. Its cen-
tral goal is to contribute to the design of computer and software systems
and applications that can manage themselves in accordance with high-level
guidance from humans. For example, the study of Liu et al. [28] presents a
component-based programming model for autonomic applications.

From the viewpoint of orchestration, autonomic orchestration strategies are
considered as the highest level of sophistication in orchestration. The work
of Weerasiri et al. [48] presents a taxonomy and survey of cloud resource or-
chestration techniques, which includes autonomic orchestration strategies.

They have found that mainly human-assisted techniques (including user-
defined and rule-based strategies), are currently being used as approaches
to autonomic orchestration. Our present work relies on specific QoS models
that are generated for the software utilities and then used in the orches-
tration process to more precisely address the end users’ QoS requirements.
Although the survey of Weerasiri et al. is very recent, it does not consider
some important technologies that can be used for geographic orchestration
of cloud services, such as Kubernetes [38], which is used in our present study.

The studies of Toosi et al. [44], Zhan et al. [52], Cheng et al. [11], Kacsuk
et al. [24] have focused on self-management of cloud resources applied to
maintain the expected QoS in the presence of various faults, variable envi-
ronmental conditions, and changes in user requirements. Their works con-
tribute to the area of autonomic orchestration. These authors list a number
of benefits that could be obtained with self-management of cloud resources,
such as the potential to enhance high availability of cloud resources through
dynamic (re-)configuration, and scaling up or down running applications by
analyzing the recent resource consumption statistics.

The survey of Singh [34] has analysed the possibilities for runtime man-
agement of QoS for applications. It presents an autonomic (self-* proper-
ties) resource management taxonomy that covers aspects related to runtime
QoS management of cloud-hosted applications. It considers that several el-
ements are necessary in order to achieve high QoS including QoS metrics
monitoring, fault tolerance, workload consolidation, and scheduling objec-
tive function. All considered techniques relate to autonomic management of
resources within a single data centre, while autonomic resource management
within multi-cloud, federated-cloud and other inter-cloud scenarios, are not
considered. The present work concentrates on SDDCs which emerge as a
more flexible mechanism for global delivery of software services.

Some very recent works have focused on aspects of QoS assurance with
light virtualization [18], container orchestration in fog computing infrastruc-
tures [32], many-objective Virtual Machine placement [29], and autonomic
mobile cloud computing [33], however, none of these studies have analysed
the potential of global orchestration of network-intensive software utilities.
Hence, the present study contributes to the overall agenda of achieving
event-driven, highly flexible and extensible, fault-tolerant, fast and light-
weight global autonomic orchestration capability for cloud services with
QoS-awareness through the use of container technologies.

An important goal undertaken by the present work is to address the QoS-
requirements of various network-intensive software utilities. This requires
the development of specific QoS models for every software utility, which are
then used in the operation of the autonomic orchestrator. Generally, the
modelling of software utilities for high QoS is an NP hard (non-deterministic

polynomial-time hardness) problem. Detailed QoS modelling approaches
have been developed for specific types of applications, such as workflow-
based applications for which the makespan can be optimized [47], or QoS
modelling for financial services [10].

Software Defined Networking (SDN) approaches and technologies have also
been designed to address the QoS requirements of network intensive appli-
cations [3], specific technologies which are used include vSwitch and Open-
Flow. However, such approaches cannot be applied to connectivity problems
in the open Internet, for example, they cannot be applied to User Datagram
Protocol (UDP) traffic for video-communications, gaming and similar ap-
plications, between the clients and the running software services. The open
Internet is best efforts, and various circumstances such as the geolocation of
the end users, the geographic placement of the software service, the current
quality of the connections, bandwidth and similar can significantly affect the
QoS. Existing approaches for QoS modelling are therefore not suitable for
the orchestration of network-intensive software components, and this study
makes a systematic approach to address this problem.

3 Architecture and Implementation

3.1 High-Level Architecture

Many software companies today focus on Web application development,
which is generally represented by the Software-as-a-Service (SaaS) business
model. Within such applications they need to implement various network
intensive functionalities and to reach end users on the global market. While
the cloud computing technology helps improve the software engineering life
cycle, for the software companies it is equally important to deliver high
QoS applications to the end users. Autonomic orchestration mechanisms
could therefore help to further simplify the delivery process for cloud ap-
plications. Major expected benefits are the handling of larger number of
non-functional requirements, including geolocation, improved resources uti-
lization and reduction of operational costs, practically unlimited scalability,
and most importantly, greater end users acceptance.

This work is motivated by a major trend in the cloud computing domain,
that is, the increased use of containers (instead of VMs) as a method for
packaging and delivery of software utilities. Major underlying technologies
in this area are Docker [36] for the management of containers, and Kuber-
netes [38] as a general purpose orchestration technology. The File Upload
and Videoconferencing applications are therefore packed into Docker con-
tainers for the purpose of this study. In contrast to Virtual Machines, con-

tainers can be spinned on and off much faster, practically within seconds,
thus forming basis for fine grained services orchestration based on events.
Whenever a specific service is required, it can be dynamically deployed and
started for a specific end user (or indeed another service).

In order to motivate this development, several potential applications have
been studied, including live-event broadcasting, videoconferencing, early-
warning systems and similar. Two software utilities have been selected in
order to illustrate the approach. For the purpose of the study they have
been implemented in containers:

e File Upload is a Web application designed for a single user to be able
to upload a single file to a cloud storage, and

e videoconferencing is much more complex Web application designed to
serve unified communications for multiple users at the same time.

Implemented solution services SDDC End users

Q

ANNAA

(N SN < E <

Orchestrator

2. Deployment

.

1. Request ‘

Figure 1: A high-level architecture of an autonomic orchestrator for network-
intensive software utilities.

Based on the above rationale and the extensive literature review, a new,
high-level architecture for an autonomic orchestrator was designed and is
presented in Figure 1. The overall solution is called a Global Cluster Man-
ager (GCM). It can be used to orchestrate services within a geographically
distributed SDDC.

The architecture consists of a GUI that can be used by software engineers

and end users to steer the operation of the Orchestrator of software utilities,
a Monitoring System for the runtime measurements of multi-level QoS met-
rics and two databases — a Time-Series Database (TSDB), which is used to
store QoS metrics collected from the runtime environment and a Knowledge
Base (KB), which is used to store already developed QoS models of software
utilities, adaptation rules and other information. The database services can
be accessed and used by the Orchestrator via convenient Application Pro-
gramming Interfaces (APIs).

Two very important elements of the GCM are the QoS Modeller component
and the Decision Maker, which are elaborated in detail in a separate section.
In the following sub-sections, key components of this solution are discussed
by following a logical order.

3.1.1 Monitoring System

Prerequisite for the functioning of the GCM as an autonomic orchestrator is
the existence of a monitoring system. The implemented Monitoring System
is available as Open Source, and can be used as a separate component of the
developed system [41]. Baseline technologies which were used to implement
the system are JCatascopia [45] and Netdata [39]. Its detailed architecture
is presented in Figure 2. The Monitoring System consists of three main
components: (i) Monitoring Server, (ii) Monitoring Agent(s) and (iii) Mon-
itoring Probe(s). It uses the TSDB to store the measurements.

N

@
Other services v/

:
| (=

Application Level

e — ey

VM Level

o] = Mgy

Physical level

Time series
database

Figure 2: Monitoring System architecture.

The Monitoring System has an important role in the system since it pro-
vides multi-level QoS metrics. These include application, container and VM
metrics, including network properties (between running services and clients)

and physical (infrastructure) metrics. Collecting monitoring metrics from
the cloud infrastructure and the application is therefore done continuously
in order to notify the system about the actual resources’ availability and
quality. The Monitoring Server has been designed for elasticity across the
SDDC and it adapts seamlessly together with the scaling of the applications.

Usually the monitoring process starts when an application (software utility
packed in a container) is deployed in a VM or on a physical resource, and
when the user starts using the service via the Web. An Alarm Trigger
is used to react in cases when monitoring metric data are exceeded and
violated by predefined threshold-based rules. Those thresholds are initially
defined in a monitoring environment, but can be also be extended to more
complex structure by using an OWL2 compliant ontology [26]. Alarms due
to threshold violations can be used to trigger specific autonomic adaptation
services by using implemented rules in the KB.

While the KB is used to store higher-level complex structured data, such as
the QoS model and adaptation rules for the application, the TSDB has a
simpler design as it is used to store only the monitored metrics. Thus, the
TSDB can be optimised for fast CRUD (create, read, update, and delete)
operations and does not require complex data queries.

The TSDB has been implemented by using the Apache Cassandra technol-
ogy, which is a distributed TSDB available as Open Source. The schema
used to store QoS metrics encapsulates all the needed monitoring informa-
tion (e.g. identity numbers of monitoring probes, agents, metrics, metric
types, frequencies of measurements and similar).

3.2 Global Cluster Manager for autonomic orchestration

A limited number of technologies today allow the geographic scaling of ap-
plications across multiple host systems. This requires capability to abstract
away the management of individual hosts and containers available across
multiple clouds. For this purpose it is possible to use some container or-
chestration tools that combine a set of independent bare-metal or Virtual
Machines into a cluster, and provide a unifying interface facilitating the de-
ployment, maintenance, resource management and scaling of containerized
applications across geographically distributed hosts. Existing orchestration
tools, however, are usually used to orchestrate relatively self-contained clus-
ter systems. Due to the design of scheduling and network routing mecha-
nisms of the orchestrating tools each cluster is usually setup within a rela-
tively performant, reliable and low cost network, which in practice bounds
the cluster boundaries to a single data centre or single availability zone of a
cloud provider. Global multi-instance applications on the other hand should

be running across different cloud providers and multiple data centres and
availability zones. In order to allow cloud applications to run across multi-
ple geographically distributed data centres, we developed a Global Cluster
Manager (GCM). It can be used through well-defined APIs. A Docker ex-
ample version of the developed GCM is made available via an Open Source
Apache License V2 [35].

The conceptual design of a GCM is presented in Figure 3. As it can be seen,
the GCM leverage the capabilities provided by the Kubernetes container
orchestration tool. Kubernetes already provides management API server
controlling a single self-contained cluster. However, our GCM is able to issue
orchestrating commands globally, over a set of globally distributed clusters.
In order to achieve this, the GCM component handles various authentication
mechanisms (e.g. password-based, certificates-based) required by different
management API servers belonging to individual Kubernetes clusters. In
order to be able to achieve high QoS in its operation, it communicates with
the KB, which stores QoS models for software utilities as well as other
information needed for the orchestration of applications across clusters, for
example, information about the cluster credentials, master nodes endpoints,
status of the environment and so on.

The functionality provided by the GCM includes running/stopping applica-
tion component instances in the selected geographic location (selection of
cluster and host machine), management of the component resources (RAM
and CPU), and monitoring of the status of application components. The
GCM exposes an Orchestrator API through which the federated clusters can
be manipulated. Thus, the developed API provides technical means to re-
alize QoS-aware orchestration of network-intensive software utilities, which
is based on QoS models.

3.3 Components workflow

Description of the data flow among the components of GCM is summarized
by using a sequence diagram for the videoconferencing (Jitsi Meet) applica-
tion as a particular network-intensive software utility. Figure 4 shows what
happens in the underlying system when an user wishes to use the videocon-
ferencing service via a Web browser (WebRTC protocol). The developed
autonomic orchestration system and its functionalities are used to obtain
best possible quality of experience for the users of the Jitsi Meet videocon-
ferencing application.

When using the system functionalities the following individual steps take
place:

1. An end user who wants to start a videoconference opens a GUI form,

10

HOST#L] | HosT #2|
‘ "

< |HosT#n| 1

CLOUD #1

Figure 3: Conceptual design of GCM API.

OTHER

®

CM SERVICES

Brcﬁestrator EE'

- deploy
- undeploy

 [HosTHn|

CLOUD #n

CLOUD #2

HOST #1

/[«uBERNETES| "
) MASTER ‘;

ST #2)

A

\

Knowledge
Base

Monitoring
Server

Cloud
Environment

Initialize deployment

Structured response

i
i
!
| Check state
i

Start application

o
-

I
Request QoS

|
Kl
Q(T
Client notifications A

(

I

I

|

i

1

! !
Clould state response |
I

i

I

I

i

I

|

Response QoS]
|
|

Send model

i
Response of selected cloud T]

Deployment initiali‘zation
T

Deployment start s{ate callback
T

Provide LINK

e e e il
Initialize monitoring:
T

|
Deployment stop refjuest

. Stop application

.= Client notification

i
Deployment stop state callback

Figure 4: Sequence diagram showing roles of the GCM components for the

videoconferencing application.

that is a Web application in its Web browser. This event triggers a
query in the KB, which returns the availability of resources in the
SDDC, taking into account the type of physical resources required for

the particular application.

11

2. The response of the current SDDC status (e.g. availability of currently
running VMs and/or containers and their QoS metrics) is provided to
the Decision Maker through the KB component.

3. System state parameters and participating clients’ Internet Protocol
(IP) numbers are collected.

4. The Monitoring System provides monitoring metric data of all required
metrics (for the specific Jitsi Meet application) to the KB component.

5. Monitoring response data is aggregated with RDF-based data to match
decision model scheme definition and is passed to the Decision Maker
component.

6. The Decision Maker component returns the most suitable host on
which the service should be deployed. The decision making process
itself is explained in Section 4.4.

7. The KB component initializes the application on the selected cloud
and passes all needed application definition and cloud credentials in
YAML format.

8. While deploying the application on the cloud the user is presented with
the deployment status through real-time callbacks. In case of errors
the user is notified and the execution is attempted again on the same
cloud or on another cloud, depending on the error type.

9. On successful deployment of the videoconferencing application the
Monitoring Server starts monitoring the running application, which
is bundled with a Monitoring Agent to collect specific application-
level metrics. Clusters are already monitored on the container, VM
and/or infrastructure level with permanently present agents. User’s
GUI is presented with a link for the private videoconference call. For
this particular application, the user might wish to share the link with
other participants.

10. After an end user or a group of users are finished with using the appli-
cation, the undeployment process of the container starts (when a user
requests to stop the application).

11. Similar to step 9. The user is also notified about the state of the action
in real-time and gets the final notification on successful undeployment.
In this step also application-level monitoring agents are undeployed
and the corresponding Cloud resources are released.

The discussed process can also be followed on the GUI presented in Section
6.

12

4 QoS modelling and decision making

QoS modelling and decision making for network-intensive software compo-
nents are two important aspects of the implemented autonomic, event-driven
global orchestration technology. In this section, the methodology and the
implementation of a specific approach for QoS modelling is presented. The
modelling approach is designed in a way that it can benefit from the capabil-
ities of the GCM. Of course, as is the case with all optimisation techniques,
further improvements of the presented QoS modelling approach could be
possible.

4.1 Background

In order to implement a QoS modelling and decision making approach it
is necessary to consider available adaptation mechanisms supported by the
underlying platform. Commonly used are horizontal scaling approaches,
such as those implemented by the ROAR project [40]. The ROAR solution
scales the number of running Virtual Machines, while considering QoS and
operational costs of the application. The horizontal scaling approach, how-
ever, is not sufficient to address the QoS requirements for network-intensive
functionalities. Another adaptation possibility is to select or dynamically
change the Virtual Machine instance types (e.g. T2, M4, C4, X1, P2 etc.),
the amount of allocated RAM or number of CPU cores. And a third op-
tion, investigated in this study, is to select geographically the best possible
infrastructure for the required service utility.

Thus, the QoS modelling approach has to take into account from one side,
the autonomic adaptation capabilities supported by the orchestrator, and
at the same time the plethora of available QoS metrics that can be collected
and analysed before deploying the application, but also at runtime. The
later relies heavily on the capabilities of the implemented QoS monitoring
system. For example, Salman et al. presented an example for Internet of
Things domain [42].

The prediction goals for the QoS modelling approach should be also clearly
specified. One possibility is to create application models that predict the
performance of the software utility on different systems. For example, vPer-
fguard [51] uses a two-step modelling approach. In the first step, an ag-
gressive detection and removal of correlated metrics takes place, which re-
duces the computational complexity for the implemented algorithm. To
further reduce the complexity, in the second stage, only a subset of uncorre-
lated metrics is selected and used for the prediction. Such reduction of the
search space could negatively affect the prediction accuracy. Their used ap-
proach generates several possible models, such as a linear regression model,

13

k-nearest neighbour, regression tree and boosting approach, and selects the
one with lowest error for the application. Another approach used by Xiong
et al. [51] has concentrated on finding those QoS metrics that can be used
to predict the performance of the application. This is an interesting ap-
proach, however, it is based on aggressive metric pruning, and the fact that
the models take a lot of time to calculate makes them hard to use in most
scenarios.

Furthermore, the models created by vPerfguard are highly susceptible to
noise, which has been addressed by fuzzy logic to some extent [22]. The
approach relies on taking concepts from experts in the field to fuzzify the
variables. This approach works for a smaller set of common variables. If
the number of variables grow, or are hard to qualify, for example, by us-
ing application-level QoS metrics, the fuzzification of the metrics becomes
impossible.

Most of these modelling approaches do not take into account network-level
metrics, such as throughput, latency, packet loss and jitter, which are in the
focus of this study. These are often most important for network-intensive
software utilities. The values of such network-related QoS metrics often de-
termines the end users’ quality of experience, and thus are highly relevant
and have to be taken in the modelling process. The CA-DAG model devel-
oped by Kliazovich et al. [25] accounts for network-level metrics, however,
it is merely a conceptual approach and has not been applied in real-world
scenarios.

An important additional consideration to be made is the quality of the
network-related metrics observed for InfiniBand connections within specific
data centres, which is usually very high, and the quality of open Internet
connections between the end users and the running software services. The
later is much more critical, and has not been sufficiently addressed by exist-
ing studies. In this work, a new approach based on a qualitative modelling
technique is presented that is suitable for a variety of network-intensive
software utilities and for its use to predict the QoS within geographically
distributed multi-cloud environments. Qualitative modelling is a well-known
technique [31], used mostly in control and analysis of complex systems. It is
resilient to noise, requires small learning sets and is more intuitive for human
understanding than most other Machine Learning systems. In recent years
it has been used to detect faults in complex systems, such as Centrifugal
compressors [30]. In some applications, qualitative modelling is augmented
with rule-based approaches [9].

While quantitative modelling techniques, such as statistical and machine
learning methods are used to induce exact models (e.g. expressed with equa-
tions, decision trees, rules and other formalisms) of the investigated phe-
nomenon, qualitative modelling approaches aim at inducing models only as

14

incentives to be used in a decision making process. Qualitative modelling
is usually viewed as abstraction of quantitative modelling and is extensively
elaborated elsewhere [7] and [16]. Examples of applications include predic-
tion of ozone concentration [53] and modelling of phytoplankton [46]. In
this work, qualitative modelling is used to provide support for the decision
making process of the developed GCM.

4.2 Qualitative QoS modelling approach

Real time applications, such as videoconferencing and online gaming, are
time-critical since they rely heavily on UDP traffic. Different aspects of the
quality of such traffic can affect significantly the experience of the end users.

It is extremely hard to predict what affects the quality of experience of in-
dividual end users, even when the application is concise enough that all the
users expect the same thing. Some users may expect quality sound, other
ultra high definition for the video, for third, it is important that communica-
tion flows without noticeable delay. The usual way to find out what satisfies
individual users is by preparing a questionnaire and collecting feedback from
them. For example, popular online services ask the users to rate the various
aspects of their experience (with 1-5 stars), after using the online service.
While this is not an ideal approach (as it does not provide complete informa-
tion to the developer to adapt the application), it still provides some useful
information about the users’ experience that can be used to implement an
autonomic orchestration capability.

In our approach, feedback from potential end users can be collected during
the beta testing phase of the application or when the application is in pro-
duction, along with multi-level (infrastructure, networking, Virtual Machine,
container and application-level) QoS metrics [41]. High-level (application-
level) QoS metrics are, for example, the Peak Signal-to-Noise-Ration (PSNR)
which is important for videoconferencing applications [50], video delay or file
upload speed in case the end user wishes to upload a file to a cloud service,
and similar. The users’ feedbacks on various quality aspects may also be
considered as high-level (user-level) QoS metrics, for example, rating the
sound quality in a videoconference with 1-5 stars after the session. High-
level QoS metrics may be selected and used in the QoS modelling process,
in order to predict what affects the QoS of the application.

Therefore, the question to be answered by the QoS model is which under-
lying (infrastructure, networking, Virtual Machine, container, etc.) QoS
metrics affect the application at runtime; how, and to what extent. This
should be predicted at fine-grained level for every single software utility.
Such QoS model can be used in a predictive manner to steer and make use

15

of the capabilities of the global autonomic orchestrator. In the current ap-
proach this manifests as prediction of what QoS metrics are influencing the
performance of a specific software utility.

The implemented technology is based on qualitative modelling [1]. As such,
this approach does not provide concrete prediction for the experience of
the end users, but a way to compare the performance of the same software
utility, when running in two different geolocations or on two different infras-
tructures. It can thus be used to predict what are the important QoS metrics
for the particular software utility, which pairs of metrics are correlated, and
SO on.

4.3 Implementation of the QoS modelling approach

The implemented qualitative QoS modelling process goes through several
steps. First, the developer has to run the software utility for which she
wishes to generate a QoS model. This process involves the collection of
multi-level monitoring data, which is conveniently stored in a time-series
database. Once an initial set of runs is completed, the collected data can be
used to generate a QoS model.

The implemented algorithm for building QoS model from measurements is
presented in Listing 1 as code in Python. For illustration, the algorithm is
shown in steps as a manipulation of tables in the following. The collected
data (in our example Table 1) are used to create a differential table, which
contains element-wise differences between all of the row pairs. The differ-
ential Table 2 shows examples of row pair differences between rows five and
one, rows six and one, and rows six and five. Note the presence of the QoS
metric in the first column of Table 1 and Table 2. Next, for each row, all of
the values for non-QoS metrics differences are compared to the respective
QoS metric difference. If the direction of change matches, the correlation
is positive; otherwise, it can be either negative or neutral. Correlation is
negative if the direction of change between QoS metric difference and non-
QoS metric difference is opposite. An example of this step is presented in
Table 3. The last step (shown in Table 4) simply adds all the values along
the columns together. Positive values (in the table marked as green) denote
positive correlation with the QoS metric, while negative values (red in the
table) denote negative correlation. The resulting QoS model is then nor-
malisation of the summed values. The model does not contain QoS metric,
but encodes it in the rest of the metrics. This allows for performing mea-
surements and making decision based on the non-QoS metrics only without
having the application deployed.

Thus, the implemented algorithm simply calculates the probability of the

16

Listing 1: Python implementation of the QoS modelling algorithm.

from itertools import combinations
import numpy

M is an input numpy 2d array of metrics.
The QoS metric is stored in the first column.
M has n rows (i.e. examples) and m columns (i.e. metrics)

n, m = M.shape

Compute the total number of all unique pairs of the rows
of M.
nn =n % (n—1) / 2

Initialise regression vector to zeros for all non—QoS
metrics.
r = np.zeros (m—1, dtype=int)

For every wunique pair of rows i, j in metric table M
for i, j in combinations(range(n), 2):
compute vector of differences between rows i and j of
M
d=M[i,:] —M[j,:]

keep only the direction of change in d, i.e. the sign
s = numpy.sign (d).astype (int)

add +1 to the regression wvector r for all non—QoS
metrics
that match in the direction of change with the
direction
of change of the QoS metric, and —1 for those non—QoS
metrics that are opposite in the direction compared
to
the QoS metric.
r += s[0] * s[1:]
Finally, normalize the regression wvector such that all
values
are bound to the [—1, 1] interval.
qos_model = r % (1 / nn)

17

Table 1: An example of the monitoring data represented as an input for the
qualitative modelling.

QoS RTT No. Hops Memory Free [MB] No. Cores CPU

2 33 20 1000 1 12
2 32 20 600 1 50
5 12 5 200 1 30
4 27 15 100 2 20
3 12) 100 1 100
4 40 25 100 2 25
1 44 20 500 1 60

Table 2: An example showing a selection of calculated differentials from
Table 1.

QoS RTT No. Hops Memory Free [MB] No. Cores CPU

1 -21 -15 -800 0 18
2 7 5 -900 1 13
1 28 20 0 1 -75

Table 3: An example correlation table computed from Table 2 showing
coloured correlations between non-QoS metric differences and the QoS met-
ric differences — red is negative, blue is neutral and green is positive corre-
lation.

RTT No. Hops Memory Free [MB] No. Cores CPU

Table 4: An example QoS model before normalisation computed from Ta-
ble 3. Rows of the previous table reduce to a single row, encoding a QoS
model.

RTT No. Hops Memory Free [MB] No. Cores CPU

1 1 -2 2 1

positive correlation of each QoS metric compared to one selected, impor-
tant (governing), high-level ”Quality of Experience” / QoS metric. When
correctly modelled, the function modelling the QoE metric is monotonic. If
the qualitative modelling process results in a non-monotonic function, this
is usually the result of noise. The result of the technique is interpreted as

18

probability value that determines the parameters (in our case monitoring
metrics, such as throughput, latency or software component constraints),
which have the greatest influence on the experience of the end users. In our
case, the existing qualitative modelling algorithm has been simplified due to
the nature of the investigated modelling problem.

The final result of the process is therefore a vector of weights that correspond
to the strength and correlation direction (positive or negative) of the QoS
metrics with regard to the governing QoS (QoE) metric. Generated models
by using the presented algorithm have been shown in the Results section for
both developed applications.

The generated model for the particular software component can then be
conveniently stored in the KB by using the KB APIs, so that the decision
making component of the orchestrator can use it to make decision where
and with what computing resources to start the service.

Examples of realistically generated QoS models can be found in Section 5
based on the two cloud applications used in the experimentation.

4.3.1 Runtime multi-level QoS measurements

In the presented architecture, the operation of the Global Cluster Manager
relies heavily on the existence of QoS models as described in the previous
sections, and on runtime measurements of all multi-level (infrastructure,
networking, etc.) metrics affecting the quality of the users’ experience. The
implemented Monitoring System [41] is designed in a way that supports hor-
izontal and vertical scaling mechanisms as well as geographic placement of
software utilities. Once the software component is launched, it is monitored
and data are collected in a time-series databases. The Monitoring System
relies on a great number of Monitoring Probes for various metrics to be
collected (see results section) when the software component runs in various
cloud providers and Virtual Machine/container configurations. Particular
focus has been given on the development of network-related Monitoring
Probes. If the Internet Protocol (IP) numbers of the clients are known,
these Monitoring Probes can measure network-related metrics (e.g. jitter)
from various Virtual Machines running in the SDDC and the clients. This
allows to select the best possible placement for the software utility (which
requires to minimize jitter for high quality of experience) and for the par-
ticular client.

The implemented Monitoring System also allows the implementation of cus-
tom Monitoring Probes in case the type of existing probes is insufficient for
the monitoring of a particular software utility. This runtime information

19

is therefore used in the decision making process used by the orchestrator,
which is elaborated in the following subsection.

4.4 Decision making

When an application (network-intensive software utility) is to be deployed,
an automated decision has to be made on where to place it. The decision
making is done in two stages. In the first stage the KB filters out all the
deployment possibilities that do not reach the minimal requirements for
the application. For example, it removes all the configurations that do not
have enough memory for the application or the CPU instruction set of the
computer system is not compatible with the application code (e.g. in edge
clouds an ARM CPU architecture might be more common than x86, but
the container is only compatible with one of them).

After the first stage a subset of computing resources with different configu-
rations remains that could successfully be used to run the application, but
not necessarily with the sufficient QoS. Therefore, at the second stage the
decision making module is invoked. It retrieves the model from the KB
and starts comparing the configurations according to the relevant metrics.
It queries the Monitoring System running on all the appropriate locations
(VMs or physical computing resources) to provide the QoS metrics that were
used for the model creation. Once all this information is gathered the al-
gorithm computes average values of the measurements, resulting in a single
vector (i.e. a row) of data per available machine. What follows is a com-
putation of a score metric. For each of the machines the score is computed
by subtracting element-wise all of the rows resembling the performance of
the other machines, preserving only the direction of change, and adding up
all the elements which have the same sign as the corresponding QoS metric
of the model. The resulting vector is then weighted with the weight from
the QoS model, to capture the relative importance of the metrics in a single
score. The higher score means better machine.

5 Results

The architecture and design of the GCM has been tested and validated by
using two software utilities: File Upload and Jitsi Meet videoconferencing.
The File Upload is a rather simple usage scenario; however, it is still network-
intensive, and therefore represents the core problem addressed by this work.
A user may wish to upload a file to a Web service as quickly as possible from
anywhere on Earth, which is an adequate representation for the required
QoS. The second, Jitsi Meet software utility is much more complex. A

20

videoconferencing Web application was developed based on the Jitsi Meet
Open Source software, and it can be used from a Web browser via the
WebRTC protocol. It allows several users to engage in video-conversation
in real time. Such users, potentially film directors or medical doctors, may
have stringent high-level quality of experience requirements, for example,
Ultra High Definition (UHD) video resolution without noticeable delay.

The complete workflow of QoS model building, decision making and service
placement by using the developed GCM was tested for both applications.
This section summarizes the obtained results.

5.1 Cloud applications
5.1.1 File Upload

The File Upload application (i.e. network-intensive service utility) allows
users to upload their files to the cloud. Services like this already exist for a
long time and one may argue that such functionality is best provided via a
solution with permanently running servers, like in the traditional Content
Delivery Networks (CDNs). However, such solutions are costly, because
the computing resources are consumed even, if there are no user requests to
upload files, meaning that the storage services are operating in an idle mode.
In our solution the service is created, served and destroyed for every file
upload request. This approach can reduce costs and allows to dynamically
select/modify all the aspects of the service operation. With wise selection
of the location and the infrastructure, where the service is instantiated it
is possible to provide best possible QoS, while at the same time reduce the
operational cost or satisfy any other operational strategy defined by the
application administrator.

The File Upload application is relatively simple and in its basic form does
not require any kind of configuration; however, in some cases it might be
beneficial to collect the information about the file size prior to deciding
upon the location of the service. For very small files the distance and net-
work characteristics between the client and server might not really matter in
the decision making steps, because provision time of container and the ap-
plication might outlast the upload time when uploading to the more distant
server. (In any case, it should be beneficial for medium- to large-sized files.)
The simplest way to implement such context gathering step is to provide a
form to an end user and ask for file size (or an order of the size). Based
on the file size the server would either handle the request itself (for small
files) or invoke the orchestrator to prepare the service at suitable location
and provide a user with a link.

21

Let us assume that the quality of experience for the File Upload service is
directly proportional to the time needed for file upload. This QoS metric
depends on many factors, such as client to service network QoS and the
server-side resources (disk I/O, RAM and CPU). The File Upload service is
designed to work over the best-effort public Internet with clients from any-
where and unpredictable network traffic patterns. The challenge is therefore
to determine the best possible VM /cloud provider from the SDDC, and its
resource characteristics, where the service should be deployed to serve a
particular file upload event with high QoS. We expect that this location
will primarily depend on the network conditions between the client and the
service; however, the computing resources allocated to the service also need
to be taken into account.

Depending on the performance characteristics of the VMs and physical hosts,
both container and service provision times might vary between different ma-
chines. In our simplistic case the difference was not significant and therefore
as a rule of thumb, the metric Round-Trip-Time (RTT) was considered rea-
sonable to describe the quality of the network paths between the client and
the potential service endpoints. Another estimate is to perform a Trans-
mission Control Protocol (TCP) throughput test, which might require more
bandwidth and more tests compared to the RTT. Furthermore, many TCP
throughput tests, such as iperf3 require to install a piece of software on
both the client and server side of the link. Therefore, in order to develop a
monitoring probe for the File Upload application, one can use the ping tool
to estimate an average RTT from the server to the client. Alternatively,
pinging can be implemented on a client side from a browser script.

5.1.2 Videoconferencing

The videoconferencing example application is represented by a WebRTC
multiparty videoconferencing application that is based on real-time mul-
timedia streaming RTP/UDP protocols. For our purposes we selected an
open source Selective Forwarding Unit (SFU)-based videoconferencing ap-
plication called Jitsi Meet. The application uses a centralized architecture,
with media processing component that only decrypts, encrypts and forwards
RTP packets, optionally changing their headers, but without processing the
payload, such as computationally intensive video and audio transcoding. In
general, this makes the component more CPU-efficient, but less bandwidth-
efficient. The SFU component is called Jitsi Videobridge. Other central-
ized units are included. Jicofo acts as a conference focus initiating sessions
between the endpoints. Web server hosts Jitsi Meet JavaScript WebRTC
application. Prosody XMPP server allows for the exchange of the signalling
messages between components. The client part of the application runs as a

22

javascript in modern Web browsers that support WebRTC protocol, such as
Google Chrome and Mozilla Firefox.

Similarly to the File Upload application, we are not using dedicated servers
to host the Jitsi Meet services. Instead, the services are created and de-
stroyed dynamically for each individual video conference. Again, the appli-
cation is intended to work over the public Internet, providing no means of
network QoS tuning or assurance. Besides high bandwidth requirements and
low packet loss this kind of applications require also low network latency,
due to the interactive nature of the communication. Although the service is
SFU-based it still requires substantial amount of CPU power, which could
also represent the application bottleneck when many users are involved in
a videoconferencing event. It is therefore expected that by wise selection of
the location of the service and the computational resources where the service
will be instantiated it should be possible to leverage the required quality of
experience. Additionally, it could be possible to reduce the operational cost,
because the service will never run in idle mode. Also, elasticity to a vary-
ing number of users will be achieved automatically, as long as a single Jitsi
Meet instance can handle the resources required for all of the participants
involved in a single videoconferencing event.

5.2 Testing environments

Testing was done by using on-premise and public and private cloud infras-
tructures. The SDDCs are not the same for the two example applications
due to various reasons, so they are separately explained in the following.

5.2.1 File Upload

The File Upload application is composed of a single client and a single server
computing node. QoS models were built based on measurements performed
between a client VM running on our on-premise servers, and servers running
in the SDDC. The VM configuration for machines deployed in the SDDC
was the following: 4 vCPUs VM with hardware accelerated CPU virtual-
ization powered by Intel Xeon E5649 CPUs clocked at 2.53GHz, 2 GB of
RAM, 20 GB of disk backed by RAID 6 network-shared disks, Ubuntu 15.10
operating system, and was running on top of VMware hypervisor. A client
VM was located in Ljubljana, Slovenia.

The SDDC is composed of cloud servers running in public and private
cloud infrastructures. For public cloud we used Google Container En-
gine with Kubernetes clusters deployed in five different regions: Asia East
(Changua County, Taiwan), Asia Northeast (Tokyo, Japan), Asia Southeast

23

(Sydney, Australia), Europe West (St. Ghislain, Belgium), and US West
(The Dalles, Oregon, USA). Every cluster comprised two nl-standard-1 VM
worker nodes, each with 1 vCPU, 3.75 GB of RAM and 100 GB of locally
mounted hard disk. Every vCPU was run on a dedicated hardware thread
backed by powerful Intel Xeon processors. Kubernetes nodes communicated
via hardware-switched network. The network interface per node was at
least 1 Gbps. The software running on each node was Container-Optimized
operating system from Google, and Docker container version 1.11.2.

Moreover, private infrastructure were also included in the SDDC. These
included Arnes cloud located in Ljubljana, Slovenia, and an infrastructure
of FlexiOps located in Edinburgh, UK. Kubernetes cluster in Arnes cloud
comprised two worker nodes, each with a single vCPU accelerated by Intel
Haswell processor, 4 GB of RAM, and 80 GB large network-shared disks.
The installed software was CoreOS operating system and Docker version
1.10.3.

FlexiOps’ Kubernetes cluster comprised three worker nodes with AMD Opteron
backed 4 vCPUs, 4 GB of RAM and 100 GB of network shared disk (Ceph)
each. The installed software was CoreOS operating system and Docker
version 1.11.2. Different to the commercial GCP solution, both Arnes and
FlexiOps clouds vCPUs were scheduled pre-emptively and Kubernetes nodes
were communicating via flannel network overlay.

5.2.2 Videoconferencing

The videoconferencing application requires two client computers hosting in-
browser WebRTC application and one server node hosting Jitsi Meet ap-
plication components. Laptops with mounted Web camera and microphone
were required for the experiment. The software installed on laptops was
Windows operating system and recent Google Chrome browser. Both client
computers were connected into the local network over a physical network ca-
ble to remove the potential issues that could arise from using WiFi connec-
tion. Because the Jitsi Meet application relies on SFU-based videobridging,
the video and audio transcoding process happens — if so required — on the
client side. Therefore, it was necessary to assure that the client computers
are powerful enough for the task.

Server part of the videoconferencing application was run on a HP ProLiant
on-premise server with 16 computing threads, 8 GB RAM, 2 x 2 TB disk and
1 Gbit network interface. The installed software was Ubuntu 16.04.3 LTS
and Docker version 17.06.0-ce. Network simulations were carried out by
using tc (i.e. traffic control) netem command line utility from the iproute2
Debian package. The Linux kernel version was 4.4.0-66-generic. The Jitsi

24

Meet application was containerized and it is available freely under an Open
Source license on Docker hub [37].

5.3 Experimentation

The goal of experimental evaluation was to show that the proposed architec-
ture is operational and at the same time — with respect to the QoS model —
allows for improved QoS based on the network metrics. Due to prerequisites
to our solution that software engineer performs the measurements required
for building the QoS model, the appropriateness of the model depends a lot
on the careful consideration of the performed measurements. Based on the
experience we had obtained previously with videoconferencing applications
and preliminary observations carried out, we have decided to perform an
experiment in which network conditions were emulated and controlled in-
house rather than captured through observations of Jitsi Meet running in
different regions over the World. This way it was possible to achieve greater
variety in network conditions, perform experiments much faster and study
effects of network conditions for arbitrary settings. Contrary to this, for
the File Upload application we performed measurements in a scenario that
mimics realistic use case. Further details on the experimental setup for both
applications are given in the following.

5.3.1 File upload

For the File Upload application in order to obtain the metrics required to
build the QoS model a series of file uploads of various sizes were performed.
The client was fixed at one location while the server part was floating around
all of the available machines in all of the clusters. The end user was simulated
on the client machine with the script executing the file upload action. While
in realistic scenario besides the upload time the end user would perceive
also the pre-deployment time of the File Upload application and then also
spending some time with the File Upload GUI to select the file and click the
upload button, the experiment focused only on the upload time.

Table 5 shows metrics that were of interest for the File Upload application.
The QoS metric chosen was the upload speed — the ratio between the size of
the uploaded file and the time needed to upload it. This metric is reasonable
choice for the QoS, because it reflects the time needed to perform the upload.
Therefore, it could directly correspond with the QoE perceived by the end
user. Instead of choosing upload time needed for the QoS we decided for the
upload speed to hide the file size. However, while clearly the upload time
generally increases for larger files, even the upload speed metric still depends
on the file size, as this ratio increases for larger files too. The other three

25

Table 5: Metrics collected to create the QoS model for the File Upload
application.

Metric Description

Upload speed (B/s) The goodput: the average upload speed for the
client—server connection. This is the QoS met-

ric.

Delay (ms) The packet round-trip-time as measured for the
client-server connection.

Jitter (ms) Jitter as measured for the client-server connec-

tion. This metric was computed from the sam-
ples of delay metrics: as a sampled standard de-
viation of the delay.

Packet loss (%) Packet loss as measured for the client—server
connection.

metrics of interest were packet delay, jitter and packet loss. Throughout
the course of each upload session, a NetData [39] monitoring server was
deployed on the same machine as the File Upload server application in order
to measure these three metrics against the client. This setting required the
client to be accessible to ping echo requests over the ICMP protocol. In
realistic scenario such assumption is not generally viable, but due to the
simplicity and known methods to mitigate this problem we assumed that
ICMP traffic towards the client does not end in a black hole. The ping
measurement interval was 200ms and every ping request was sent with a
small payload.

Because the client application was executed from a VM that usually serves
as a server machine, it largely eliminated other possible issues that otherwise
can occur in realistic scenarios, such as overloaded client machine, competi-
tion for network bandwidth with other applications and even other users in
the same local network, and WiFi connectivity problems. This is reasonable
assumption as we focused on what can be achieved on the server side.

5.3.2 Videoconferencing

For the videoconferencing application we performed a subjective QoE mea-
surement experiments in a scenario with two end users connected to a video-
conferencing server and exposed to varying network QoS settings. Similar
to the File Upload application, the network QoS was represented by three
network parameters, i.e. jitter, delay and packet loss. Because in real net-
works these parameters cannot be controlled, we performed a simulation
with Linux Traffic Control tool. We setup a videoconference room and after

26

that we modified the settings for the three network parameters described
in Table 6 to simulate different network QoS conditions. For each setting
the human observers were asked to rate the quality of the videoconferencing
session. Of course, the quality of videoconference potentially depends on
many parameters, such as the processing power on both clients, as well as
on the media server. However, it was necessary to simplify the model for
the study, and these parameters were not taken into account. The generated
model therefore assumes that all other infrastructure-level parameter values
are in the range, where the quality of experience is not affected significantly.
To make sure that during the experiment the infrastructure-level parame-
ters do not affect the quality of experience (i.e. a governing QoS metric),
we assured that both client machines had enough computing resources, i.e.
powerful personal computers were used, and during the experimentation
all other applications except the Web browser were closed. On the server
side we installed the NetData [39] monitoring tool, and we made sure that
during the videoconference the CPU, memory consumption, I/O, software
interrupts and other important metrics were far below the thresholds, where
they could potentially start to affect the quality of experience. For example,
throughout the course of experiments the CPU usage on the server, even in
peaks, never surpassed the 10% mark.

Table 6: Metrics measured to create the QoS model for the videoconferenc-
ing application.

Metric Description

Star rating (MOS) QoE metric. Number of stars collected per each
videoconferencing event for each of the users.
The range is 1-5 stars where 1 star is the worst
and 5 stars is the best quality as perceived by
the end user, respectively.

Delay (ms) The average inbound and outbound packet (IP
layer) delay on the network interface. The total
end-to-end delay is therefore a sum of current
inbound and outbound packet delay.

Jitter (ms) The average inbound and outbound packet (IP
layer) jitter on the network interface. The total
end-to-end jitter is therefore a combination of
these two values. This metric is computed as a
sampled standard deviation of the delay.

Packet loss (%) The average inbound and outbound packet (IP
layer) loss on the network interface. The total
end-to-end packet loss is therefore a combination
of current values of these two parameters.

27

In the following, few additional details on the server side setup are pro-
vided. On the videoconferencing server the Jitsi Meet application with all
of its components was run in a single Docker container. A separate bridge
network interface was created beforehand to only affect that interface with
performed network QoS simulations, while keeping the server otherwise nor-
mally operational. The Jitsi Meet application was attached to this bridge
network interface. The network simulations were performed as described
on the Linux Foundation Wiki page [49]. In particular, we configured the
interface to simulate delay, jitter and packet loss symmetrically in both di-
rections. Because both clients were located in the same local network and
communicated to the same server, also the network conditions were nearly
symmetrical for both of them. The configuration for jitter was selected to
be normally distributed around the specified mean value and the packet loss
was configured to appear more likely in bursts rather than in a uniform
distribution. However, the bandwidth was not controlled. The monitoring
agent with ping probes was deployed in a separate Docker container on the
same server and bridge interface as the videoconferencing application. This
caused similar network QoS conditions against both the videoconferencing
application server and the monitoring agent in order to measure degraded
delay, jitter and packet loss against both clients. The selected ping interval
was one second with small payload.

It is well known that in-depth subjective quality assessment of telemeetings
is a very complicated task. To verify the perceived quality in this kind of
applications, formally agreed test methods were published: the most relevant
of them is the ITU-T Recommendation P.1301 [21]. Many factors can affect
telemeeting quality and the situation gets more complicated if there are
several participants using different types of equipment. This leads to a
complicated and costly test methods. Because the purpose of our work was
not to build the application model with the highest possible accuracy, we did
not follow any formally defined test method, and the tests were simplified
considerably.

In our experiment only two participants were involved. The two users were
non-experts, and were asked to have an arbitrary videoconferencing con-
versation, displayed on their desktop screens and using their own personal
computers equipped with Web cameras and microphones. After each traffic
configuration change the conversation of the two participants lasted for 3
minutes and after that they were asked to independently evaluate an overall
session Mean Opinion Score (MOS) rating from 1 to 5. The traffic configura-
tion was then changed and next score collected from the users. To minimize
the effect of uncontrollable additional QoS degradation caused by the real
network between both users and centralized media server, both users and
the server were located in the same local network. The obtained results are
presented in Section 5.4.2.

28

5.4 QoS measurements

By following the procedures described in Section 5.3, we carried out mea-
surements required to build QoS models for both example applications. In
general, the results match with our expectations, and show that the pro-
posed QoS metrics are to some degree influenced by the proposed network-
level QoS metrics. This opens possibilities for our solution to make informed
decisions about application deployment that lead to achieving high QoS.

5.4.1 File upload

Figure 5 shows the results of the measurements for the File Upload ap-
plication. Not surprising, the upload speed declines as the network delay
increases. From the plot it is hard to see any effects of jitter, since the
measured jitter was low for all of the measurements. Packet loss was only
occasionally observed in one of the distant regions and is not shown on the
plot. For the sake of the QoS model generation, in this experiment it would
have been probably better to perform network QoS simulations, similar as it
was done for the videoconferencing example, in order to end up with a train-
ing data better representing diverse network conditions (e.g. heavy Monday
morning traffic).

| delay (ms) jitter (ms) upload speed (B/s) |
-108
‘ ‘ -1300
1.5
1200
—~ 1 —~
w0
B £
-1 100
0.5 |-
() ! ! ! ! ! 10
0 5 10 15 20 25
event

Figure 5: The results of the QoS measurements for the File Upload ap-
plication sorted by the upload speed, descending. Events denote each of
the performed upload session. Only uploads for the file size of 1 MB are
presented here.

5.4.2 Videoconferencing

The results of the QoE evaluation of the videoconferencing application in
different simulated network conditions are presented in Figure 6. The event

29

represents a particular traffic configuration (i.e. delay, jitter and packet
loss configuration) and respective MOS score for one of the end users. In
total, 49 different traffic configurations were performed and two users were
grading the QoE: this resulted in 98 ”events” shown on the graph. The value
of 49 traffic configurations was chosen by a rule of thumb. On one hand we
did not want to stress the human participants too much, since tiredness
of the evaluators can have impact on the MOS grading they give. On the
other hand, the number of experiments (i.e. learning set) should be large
enough for the model maker to produce a meaningful model. Also, the set
of traffic configurations should be diverse, with the values in the range that
can be typically expected in real global Internet network infrastructures.
For this purpose we first measured the typical values that can be expected
in real networks, i.e. we measured the delay, packet loss and jitter on six
different clusters of our test bed. After obtaining these orientation values, we
performed a test phase, in which two participants started a videoconference,
while an expert was modifying the delay, jitter and packet loss settings and
tried to find the thresholds when the QoE started to deteriorate. Based on
these observations the expert selected a suitable set of 49 different network
settings. Some outlier values (i.e. values that cannot be typically expected
in real networks) were also consciously included in this set in order to prove
the effect on the quality of experience, and evaluate how the model deals
with them.

1,500 |- —V oo
80

packet gain (%) MOS (%) delay (ms) jitter (ms)

_ 1,000 |- .
g 160 X
500 |- 140
oL ! ! ! ! ! L 20
0 20 40 60 80 100
event

Figure 6: The results of the quality assessment for the videoconferencing
application sorted by the MOS and then by the packet loss, descending.
The MOS expressed as a percentage corresponds to star rating, where 100%
MOS score here translates to five stars (i.e. the best quality of experience),
80% MOS corresponds to four stars, and so on down to 20% MOS matching
one star. For the clarity of presentation the packet loss is shown as 100 -
packet gain.

The obtained results are in line with human reasoning. It can be seen
that the MOS score falls with the increase of packet loss and jitter. One

30

observation is that the delay does not seem to be strongly correlated with
the given MOS score. However, it was shown in the previous studies that
the influence of delay is not always mirrored in test results, but might affect
the conversational quality of videoconference quite substantially [5]. Special
purpose quality evaluation methods and separate questionnaires should be
used for delay tests, which was not the case in our study.

80 [1
1,500 |

100 |- 4~

_ _ S 1
) n N
£ 1,000 - 1 & g

S a0l .
g g50 13
L [~ | = v

Q500 é = g S 20 l I .
[a Wy

| | | | | | | | | | | | | | |

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Star rating (MOS) Star rating (MOS) Star rating (MOS)
(a) Delay (b) Jitter (c) Packet loss

Figure 7: Delay, jitter and packet loss per star rating for the videoconferenc-
ing application. Box plots show the first, the second and the third quartile,
respectively; whisker plots show the minimum and the maximum values.

Because in our experiment the network QoS values were selected by a rule
of thumb and not in any systematic way, Figure 7 shows the basic statistics
of the three observed metrics in relation to the quality of experience. While
outliers tend to be present in all star rating classes below five stars, again
the trend is clearly seen: the higher each of the observed metrics is, the
worse the star rating gets.

5.5 QoS models

With the QoS measurements of Section 5.4 and the QoS modelling technique
presented in Section 4.3 the QoS models for each of the two example applica-
tions were created. The interactivity of the File Upload and videoconferenc-
ing application differ drastically, with File Upload having low interactivity
and videoconferencing having high one. Despite that, the degraded network
conditions tend to have similar effects with respect to the QoS on both ap-
plications, although the exact effect of individual parameters might vary.
The resulting QoS model of both applications show negative correlation of
all of the three observed network metrics with the QoS. This confirms the
usefulness of the model, although the degree of the acceptance would require
more thorough evaluation.

31

5.5.1 File Upload

Generated QoS model for the File Upload application is presented in Fig-
ure 8. The model suggests that by large the packet delay negatively influ-
ences the upload speed, followed by the packet loss and jitter. The result
is inline with the common use of geolocation, since the network delay gen-
erally increases with the increasing physical distance between the endpoints
of interest. Nevertheless, even though the results might be correct for the
delay, the exact effect of the other two parameters, especially the packet loss
is less clear since in our experiment the latter only occurred for one of the
servers that was the furthest away from the client. As already mentioned,
network simulations might help.

delay —-0.7 =
packet loss —0.33 =
jitter —0.12 =

\ \ \ \ \ \ \ \ \
-0.8 -0.7 —0.6 —0.5 —0.4 -0.3 —0.2 —0.1 0

correlation with QoS metric

Figure 8: A QoS model for the File Upload application, measured for 1 MB
file upload. All three observed metrics are negatively correlated with the

QoS.

An important observation had occurred during the evaluation of the model.
Due to the fact that the selected QoS metric — the upload speed — tends to
increase with the increased file size, the model obtained from measurements
with varying size of the uploaded file tend to show less confidence in either of
the observed parameters. In other words, while the increase in parameters
still indicate negative impact on the QoS, their correlation approaches zero.
The reason for that is clear: because the modelling technique compares every
pair of measurements with each other, the situation might occur in which
one example has much smaller delay than the other, yet it also has smaller
upload speed than the other. This usually happens if the two measurements
represent two servers with increasing distance with respect to the client, but
in the course of the measurement for the first much smaller file was uploaded
than for the second. Therefore, during the model creation when subtracting
the second measurement from the first one both the delay and the upload
speed difference is negative, indicating the positive correlation between the
delay and the QoS metric.

The solution to the above problem is either selection of a QoS metric which
does not depend on any hidden parameter or clear separation of the ex-
amples with respect to any of the hidden parameters. At the same time
the weakness of the proposed QoS modelling technique has been exposed.

32

Consider, for example, that the observed metrics are CPU and memory us-
age. Then two notably different machine configurations in terms of these
two parameters can show different behavioural patterns. Most importantly,
without prior normalisation the measurements between such different ma-
chines should not be compared. Our testing infrastructure comprised more
or less machines with similar configurations; besides they were compared in
network performance only, which in most cases depends less on the sheer
performance of the individual machines. Therefore, we allowed ourself to
mix the measurements from various machine configurations.

5.5.2 Videoconferencing

Quality of experience model for the videoconferencing application is depicted
in Figure 9. Compared to the File Upload application the importance of jit-
ter and delay metrics are swapped. The difference between the metrics
importance is, however, less evident. As a consequence, the decision making
should take into account all of the metrics, not only a single one. Their
relative difference is also small enough such that even a slight variance in
the experimental setup could produce different results in the order of impor-
tance. For that to assert more thorough evaluation is needed. Nevertheless,
if the model fairly represents the effect of these parameters on the qual-
ity of experience, the effectiveness of geolocation for this kind of problem
becomes less evident. One should be reminded that we drastically simpli-
fied the videoconferencing application by only considering two parties, while
both communicated on nearly symmetrical network configuration compared
to each other. In more realistic scenario many users could participate with
much higher variety than we were able to achieve. The variety can appear
in many ways, including geographical diversity of the participants for which
the effectiveness of the geolocation is also less evident.

delay —0.23 =

]
Ut
T

packet loss —0.2¢
jitter 4 —0.36 n

\ \ \ \ \
—-0.4 -0.3 -0.2 -0.1 0

correlation with the quality of experience metric

Figure 9: A QoS model for the videoconferencing application. All three
observed metrics are negatively correlated with the selected quality of expe-
rience metric.

33

5.6 Automated decision making

Decision making is a process not directly connected to modelling, but uses
its outputs. Decisions on where to start applications are adapted to the end
users. To make a decision the created model identifies which measurements
should be performed to support the decision about the placement of the
application. Once the measurements are performed, which should take only
a few seconds in time, they directly guide the decision maker in the process
of making the decision. By following the second stage of the procedure
described in Section 4.4, we performed measurements for delay, jitter and
packet loss against one fixed VM located in Ljubljana, Slovenia, from all
of the available machines in our testing infrastructure, except for FlexiOps,
which was not available at the time of measurements. The ping echo requests
were sent simultaneously 50 times with interval 200 ms from each of the
server against the client. The averaged measurements results are presented
in Table 7. The results show that packet loss was not sensed, the delay was
nearly constant from the VMs residing in the same geographic region, and
the jitter was slightly less predictable, although the trend of increased jitter
with the distance can be noticed. Based on these measurements we used the
respective QoS model for each of the example applications.

Table 7: Delay (ms), jitter (ms) and packet loss (%) for all of the machines
available in the testing environment, except for FlexiOps.

VM Delay Jitter Packet loss
arnes?2 0.53 0.05 0.00
arnes3 0.52 0.04 0.00
gke-eu-west1 29.45 0.27 0.00
gke-eu-west2 29.53 0.23 0.00
gke-us-west1 169.99 0.57 0.00
gke-us-west2 169.99 047 0.00
gke-asia-east1 283.92 0.60 0.00
gke-asia-east2 284.31 0.06 0.00
gke-asia-northeastl 259.60 0.50 0.00
gke-asia-northeast2 259.28 0.68 0.00
gke-asia-southeastl 323.73 0.18 0.00
gke-asia-southeast2 325.85 0.62 0.00

5.6.1 File Upload
The QoS model of Section 5.5.1 and the measurements from Table 7 give the

results presented in Table 8. In general, the results match the expectation:
the servers with lower delay are better, which turned out to be the case also

34

for all of the upload tests we performed. Even though the decision maker
considers all of the available metrics, in this case the ranking of the servers
aligns with the decision made solely on the delay metric, except for the two
servers in Eastern Asia region, where the difference in jitter was big enough
to place the server with slightly higher delay and significantly lower jitter
before the other.

Table 8: Decision maker’s ranks and scores for the File Upload applica-
tion. Higher score means better machine based on the pre-deployment time
measurements and the respective QoS model.

VM Rank Score
arnes3 1 071
arnes2 2 0.65
gke-eu-west1 3 0.5
gke-eu-west?2 4 0.51
gke-us-west1 5 0.42
gke-us-west2 6 038
gke-asia-northeast2 7 0.28
gke-asia-northeast1 8 0.26
gke-asia-east2 9 0.20
gke-asia-east1 10 0.18
gke-asia-southeast1 11 0.13
gke-asia-southeast?2 12 0.01

Note that the score is a relative metric depending on the set of available
servers. Therefore, expanding or contracting the set of servers would result
in smaller or larger relative differences in score between servers, respectively.
The maximum possible score is 1.0, but can be achieved only if there exists
a server which is better than other servers in all of the metrics. Clearly,
in our case ping was unable to capture any packet loss; therefore, the best
performing server (i.e. arnes3) is not superior to any other in the packet loss.
The relative weight of the packet loss is 0.29 — an amount that complements
0.71 to 1.

5.6.2 Videoconferencing

Using the quality of experience model from Section 5.5.2 for the videocon-
ferencing application and pre-deployment time measurements from Table 7,
the decision maker ranks the machines as presented in Table 9. Clearly,
the packet loss played no role in the decision making process; therefore, the
competing metrics were delay and jitter. As expected, machines located
in Ljubljana (i.e. Arnes) won over more distant Google Cloud Platform

35

machines with the closest location in Belgium. In general, the results are
somewhat similar to the File Upload case. Because the jitter is — accord-
ing to the model — the most important metric, servers with smaller jitter
sometimes precede the servers with larger jitter but smaller delay.

From the experiments that we performed with videoconferencing on all of
the machines available in the testing environment, we were rarely able to
perceive any significant degradation of the quality of experience, except for
the increased delay, which can only be noticed in more interactive conver-
sations. Another perceived degradation was occasionally stalled video for
more distant servers, but is not always easy to sense, even when present.
Thus, with the experiments done so far, it is not straightforward to assess
whether the decision maker prefers better machines over worse ones. More
thorough evaluation is needed.

Table 9: Decision maker’s ranks and scores for the videoconferencing ap-
plication. Higher score means better machine based on the pre-deployment
time measurements and the respective QoS model.

VM Rank Score
arnes3 1 0.70
arnes2 2 0.64
gke-eu-west?2 3 047
gke-eu-west1 4 0.46
gke-asia-east?2 5 040
gke-us-west2 6 0.34
gke-asia-southeast1 7 034
gke-us-west1 8 0.29
gke-asia-northeast1 9 0.26
gke-asia-east1 10 0.15
gke-asia-northeast2 11 0.12
gke-asia-southeast?2 12 0.04

An issue could arise from the inability to capture the packet loss, while it
does occur from the perspective of the videoconferencing application. This
is a challenge related to monitoring and is not the goal of this work.

Regarding the measurements presented in Table 7 an important detail arises
when comparing both applications. Videoconferencing application is multi-
party while File Upload is single-party. The measurements were performed
in a single-party fashion since only one client was pinged. We can justify
such experimental design with the following claims. Firstly, only one peer
is required to setup the videoconference: the peer creates a room and sends
the resulting link to other participants. There is no guarantee that all of
the peers engaged in a videoconferencing will be present at the setup time —

36

some may even join the call later, sometime during the session. As a result,
we can only rely on the presence of the conference organiser, that is, a single
person, prior to the session. Secondly, if at the setup time more peers are
known, the presented measurements should be treated as averaged metrics
over all the peers. We only considered a simplistic case with two peers, in
which both are almost symmetric in the performance behaviour; therefore,
observing metrics for one client is almost the same as taking the averaged
values from observing both.

6 Using the GCM

In this section, the utility of the GCM is analysed in relation to the stake-
holders. A GUI is presented, which was developed specifically to explain the
operation of the autonomic orchestrator, once the cloud application(s) (con-
taining network-intensive software components) are deployed in a SDDC,
and can be used massively by end users World-wide.

6.1 Stakeholders and usage scenarios for the GCM

Within a wider context the developed GCM is designed to be beneficial for
two types of end users: software developers (DevOps) and end users.

By using usual software engineering tools, such as Juju, Fabric8 or SWITCH,
a software developer could select important QoS metrics for an application.
The same tools can be used in the testing and tuning phases of the applica-
tion. If some QoS metrics have not been implemented in the underlying mon-
itoring system, the developer can implement and include additional probes
for monitoring QoS metrics. The testing can involve the use of diverse com-
puting resources. Collecting QoS metrics in this phase is important, as it
can help develop a QoS model of the developed software utility, and store it
in a knowledge base. This means, that the QoS model of the software utility
can further be used by the autonomic orchestrator, when the application is
deployed and used by users World-wide, and thus achieve high QoS for the
end users (Figure 10).

Much wider user base for the GCM are the application’s end users. They
can use the capabilities of the autonomic orchestrator to decide where and
at what cost they wish to use their services. Recent study conducted in the
context of the ENTICE project[17] showed that Multi-Objective Pareto-
based modelling can be used to graphically inform the end users, and let
them chose the non-functional properties of their service. For example, an
end user from China could decide to use services only deployed in China,
another end user from Australia could decide to use only cheapest possible

37

o
2

» L] 3. QoE
£ > ORCHESTRATOR
2. APPLICATION “ 4. MONITORING

DEVELOPMENT PROBES
WY
&la

< o

1. IDE, APPLICATION

CLOUD MODELER 6. TESTS 5. QoSMETRICSJ COMPOSED
APPLICATION APPLICATION
DEVELOPER

Figure 10: Life cycle perspective of a cloud application developer for event-
driven and short-lived applications.

videoconferencing services, meaning that each time when the service utility
is required, it will be deployed on cheapest cloud resources (Figure 11).

= .
» tPPUtTK)N ~

1. APPLICATION ‘ CONFIGURATION

”»
o CATALOGUE ‘ ¢

ASSESSED
*‘ % USER
5. APPLICATION EXPERIENCE
4. APPLICATION ¥ APP'-'CAT'ON

STOP
CLOUD USAGE
APPLICATION
USER

QoE
FEEDBACK

Figure 11: Life cycle perspective of an application end user for event-driven
and short-lived applications.

6.2 Presentation layer of the system’s workflow
A simple Web application was developed to present the idea of an end user
who uses various network-intensive software utilities. Of course, in a more

realistic scenario, such network-intensive software utilities can be included
in stand-alone Web applications.

38

From the Web-based interface presented in Figure 12, the end users can
select software utilities to run, perform simple applications setup, run and
terminate applications and rate their experience. One can see that each end
user must be able to use the available applications in a transparent way by
simply running them and stopping them on demand, being not concerned
with irrelevant information (e.g. state of the available cloud resources, the
monitoring mechanisms and similar). Moreover, the orchestrator can deploy
the container-based software utilities on different platforms (e.g. computer,
mobile devices) to serve various types of clients including the use of the
WebRTC protocol implemented in Web browsers, and similar. By carefully
selecting computing resources, geographically, the system provides the high-
est possible QoS for the end users. In case when an end user runs several
software utilities (applications) at the same time, the Web GUI registry
reflects their actual state, including important metrics such as application
status, service running time, cost and other, as presented in Figure 12.

- o x
¥ SWITCH Run x

€«-2>c¢b %2 =

@ SWITCH App monitor s

Double-click a task name, time, or goal to edit it
Task Time Spent Progress Options
Heart Monitor 0:00:06 DX B4
MCU 0:00:00 OF: k-1~
File Upload 0:00:00 DX E-X-]
Video Encoder 0:00:00 DX - 4-)
Totals 0:00:06 @20

Figure 12: Application manager form — allowing end users to run and stop
software utilities.

Another Web application presented in Figure 13 was developed to demon-
strate the process of launching the cloud application and the functioning
of the autonomic orchestrator i.e. the developed GCM. All process related
information is presented, including the list of available geographically dis-
tributed cloud providers, where the container-based service can be started,
the acquired IP numbers of the end users’ clients that require to use the ser-
vice (based on which the Decision Making component operates), the appli-
cation’s run and stop buttons, runtime QoS monitoring information, which
can be seen in real-time for all selected QoS metrics, other real-time re-
ports as well as form to collect various aspects of the end user’s quality of
experience by using 1-5 star feedback collection mechanism.

The developed system can effectively operate in case the following assump-
tions are met:

e a monitoring system is established that can help collect network-related
metrics between services running in a SDDC and clients that wish to

39

JitsiMeet APPLICATION DEPLOYMENT
Available clusters
ames T4

Current running pods

Pod - Cluster ames | Pod fileuploadhostport001w v

Stop selected pod

List video conference participants IPs delimited with comma

93.103.12.138,93.101.97.51

Stop existing pods

RUN STOP

MONITORING

OUTPUT

LOG
QoE: * % % Kk %

Figure 13: Presentation layer of the system workflow.

use a software utility. Such clients could potentially access the services
from anywhere. Once the QoS requirements are taken into account and
the service is established, the system cannot cater for late joiners or
FW/NAT blocked peers. The only way this problem can be addressed,
to the best of our knowledge, is by re-establishing the service,

an application developer is able to select appropriate QoS metrics that
can affect the performance of the developed cloud application. If ad-
ditional metrics are required, the developer has to implement her own
Monitoring Probes for the specific metrics,

the proposed solution does not provide dynamic adaptation to mitigate
network congestions or overloaded servers. Should such unfortunate
situation occur, the application has to be restarted,

due to technological (network overlays) difficulties, the current solu-
tion supports multi-component cloud applications only when they are
deployed in a single data centre for the particular user. This is only
a current technical difficulty and it may be expected that will be im-
proved in near future.

40

7 Conclusions

According to many studies, the implementation of various compute, mem-
ory and network intensive functionalities within cloud applications is still
a challenging task. The achievement of adequately high QoS for the ap-
plication can be affected by various external and internal aspects such as
the geolocation of the end users and the type and quantity of computing
resources, which are acquired for the application to run. Our work focused
on addressing these complex aspects through the development of a new au-
tonomic orchestration architecture and its implementation with a Global
Cluster Manager.

The solution relies on multi-level (processor, memory, networking, container
and so on) QoS metrics collected in the runtime and a QoS modelling and
decision making solution. The QoS and modelling solutions could potentially
be further enhanced depending on the modelling technique used. They
indicate the type of needed computing resources, their quantity as well as
geographic location given important QoS metrics which are measured during
the runtime.

Various cloud monitoring systems use hundreds of metrics for their oper-
ation. The collection of such metrics may or may not be relevant for a
particular software component. Generally, it is relatively difficult to define
a single high-level QoS metric (a governing QoE metric), which is correlated
with the experience perceived by the end users. The final selection of such a
QoE governing metric is left to the discretion of the software engineer. The
applied qualitative modelling technique is designed to be generic, so that
it can be used for a wide spectrum of software utilities and contribute to
achieving higher QoS of diverse applications. The KB component allows for
different QoS models to be plugged in the system, so that other strategies
(such as other QoS models, low-cost, low-power and similar) can be used.

This new orchestration architecture is primarily developed for event-driven
functionalities, such as those triggered by an user who requests a videocon-
ference. Such events are short-lived, for example, they could last from 5
minutes to 1 hour. Nevertheless, the quality of experience for some users
(e.g. medical doctors offering telemedical services) is paramount, and the
developed architecture may offer obvious benefits to such users.

For the implementation of this new architecture container technologies were
used. They allow for much fast orchestration of services, such as starting
and stopping services, and fine-grained allocation of computing resources
to various containers comprising the cloud application. The Global Cluster
Manager and its APIs were developed by using Kubernetes as an advanced
Open Source orchestration technology enabling seamless container configu-

41

ration and independence from the infrastructure providers.

The developed system is primarily intended for Software as a Service (SaaS)
providers that would like to implement network-intensive cloud applications.
The results presented in this work support the conclusions that an adequate
QoS modelling approach coupled with geographic orchestration technology
can significantly improve the quality of network-intensive software utilities,
perceived by the end users. Moreover, this event-driven autonomic orches-
tration approach helps spare computing resources since the software compo-
nents are started and executed in the cloud only when needed. After their
use, they are immediately stopped, and the allocated resources are released
to be used for another purpose. This allows for much finer grained use of
resources.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement no. 643963
(SWITCH project: Software Workbench for Interactive, Time Critical and
Highly self-adaptive cloud applications) and under grant agreement no.
644179 (ENTICE project: dEcentralised repositories for traNsparent and
efficienT vIrtual maChine opErations). The authors are thankful to the
Academic and Research Network of Slovenia (ARNES) for using their pub-
lic cloud infrastructure.

References

[1] Jarmo J. Ahonen. On qualitative modelling. Al & SOCIETY, 8(1):17-
28, Mar 1994.

[2] A. I Avetisyan, R. Campbell, I. Gupta, M. T. Heath, S. Y. Ko, G. R.
Ganger, M. A. Kozuch, D. O’Hallaron, M. Kunze, T. T. Kwan, K. Lai,
M. Lyons, D. S. Milojicic, H. Y. Lee, Y. C. Soh, N. K. Ming, J. Y. Luke,
and H. Namgoong. Open cirrus: A global cloud computing testbed.
Computer, 43(4):35-43, April 2010.

[3] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. Policy-
cop: An autonomic qos policy enforcement framework for software de-
fined networks. In 2013 IEEE SDN for Future Networks and Services
(SDN/FNS), pages 1-7, Nov 2013.

42

[4]

Kent Baxley, Jose De la Rosa, and Mark Wenning. Deploying workloads
with juju and maas in ubuntu 14.04 lts, May 2014. A Dell Technical
White paper.

Gunilla Berndtsson, Mats Folkesson, and Valentin Kulyk. Subjective
quality assessment of video conferences and telemeetings. In Proceedings
of the 19th International Packet Video Workshop, pages 25-30. IEEE,
2012.

Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog
computing: A platform for internet of things and analytics. In Nik
Bessis and Ciprian Dobre, editors, Big Data and Internet of Things:
A Roadmap for Smart Environments, pages 169-186. Springer Interna-
tional Publishing, Cham, 2014.

Ivan Bratko and Dorian Suc. Learning qualitative models. Al magazine,
24(4):107, 2003.

Rajkumar Buyya, Rodrigo N. Calheiros, Jungmin Son, Amir Vahid
Dastjerdi, and Young Yoon. Software-defined cloud computing: Archi-
tectural elements and open challenges. CoRR, abs/1408.6891, 2014.

J. P. Carvalho and J. A. B. Tome. Qualitative modelling of an eco-
nomic system using rule-based fuzzy cognitive maps. In 200/ IEEFE In-
ternational Conference on Fuzzy Systems (IEEE Cat. No.04CH37542),
volume 2, pages 659-664 vol.2, July 2004.

Victor Chang and Muthu Ramachandran. Financial modeling and pre-
diction as a service. Journal of Grid Computing, 15(2):177-195, Jun
2017.

Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske,
Marin Litoiu, Hausi A. Miiller, Patrizio Pelliccione, Anna Perini, Nau-
man A. Qureshi, Bernhard Rumpe, Daniel Schneider, Frank Trollmann,
and Norha M. Villegas. Using Models at Runtime to Address Assur-
ance for Self-Adaptive Systems, pages 101-136. Springer International
Publishing, Cham, 2014.

N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of
network virtualization. Comput. Netw., 54(5):862-876, April 2010.

DevOps. Devops official web page, December 2016.
Fabric8. Fabric8 Documentation, December 2016.

M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic quantitative re-
lationship between quality of experience and quality of service. IEEE
Network, 24(2):36-41, March 2010.

43

[16]

[19]

[21]

22]

[23]

[25]

Kenneth D. Forbus. Qualitative modeling. In Frank van Harmelen,
Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,
Handbook of Knowledge Representation, chapter 9, pages 361-393. El-
sevier Science, 2007.

Sandi Gec, Dragi Kimovski, Uros Pascinski, Radu Prodan, and Vlado
Stankovski. Semantic approach for multi-objective optimisation of the
entice distributed virtual machine and container images repository.
Concurrency and Computation: Practice and Experience, pages e4264—
n/a, 2017. 4264 cpe.4264.

P. Heidari, Y. Lemieux, and A. Shami. Qos assurance with light virtu-
alization - a survey. In 2016 IEEFE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 558-563, Dec
2016.

S. Hoque, M. S. d. Brito, A. Willner, O. Keil, and T. Magedanz. To-
wards container orchestration in fog computing infrastructures. In 2017
IEEE J1st Annual Computer Software and Applications Conference
(COMPSAC), volume 2, pages 294-299, July 2017.

Markus C. Huebscher and Julie A. McCann. A survey of autonomic
computing—degrees, models, and applications. ACM Comput.
Surv., 40(3):7:1-7:28, August 2008.

ITU-T. P.1301 : Subjective quality evaluation of audio and audiovi-
sual multiparty telemeetings. Recommendation P.1301, International
Telecommunication Union, Geneva, November 2012.

Pooyan Jamshidi, Claus Pahl, and Nabor C. Mendonca. Managing
Uncertainty in Autonomic Cloud Elasticity Controllers. IEEE Cloud
Computing, 3(3):50-60, 2016.

He Jifeng, Xiaoshan Li, and Zhiming Liu. Component-based software
engineering. In Dang Van Hung and Martin Wirsing, editors, The-
oretical Aspects of Computing — ICTAC 2005: Second International
Colloquium, Hanoi, Vietnam, October 17-21, 2005. Proceedings, pages
70-95. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

Peter Kacsuk, Gabor Kecskemeti, Attila Kertesz, Zsolt Nemeth, J6zsef
Kovécs, and Zoltan Farkas. Infrastructure aware scientific workflows

and infrastructure aware workflow managers in science gateways. Jour-
nal of Grid Computing, 14(4):641-654, Dec 2016.

Dzmitry Kliazovich, Johnatan E. Pecero, Andrei Tchernykh, Pascal
Bouvry, Samee U. Khan, and Albert Y. Zomaya. CA-DAG: Modeling
Communication-Aware Applications for Scheduling in Cloud Comput-
ing. Journal of Grid Computing, 14(1):23-39, 2016.

44

[26]

[27]

28]

w W
R e A2 A

w
J

w
0

= w o W o o
S O

[41]

Elena Kornyshova and Rébecca Deneckere. Using an Ontology for Mod-
eling Decision-Making Knowledge. pages 1553—1562, 2012.

Changbin Liu, Jacobus E. Van Der Merwe, Yun Mao, and Mary F.
Fernandez. Cloud resource orchestration: A data-centric approach,
pages 241-248. 2011.

Hua Liu, M. Parashar, and S. Hariri. A component-based program-
ming model for autonomic applications. In International Conference
on Autonomic Computing, 2004. Proceedings., pages 10-17, May 2004.

Fabio Lépez-Pires and Benjamin Bardn. Many-objective virtual ma-
chine placement. Journal of Grid Computing, 15(2):161-176, Jun 2017.

Yunsong Lu, Fuli Wang, Mingxing Jia, and Yuanchen Qi. Centrifugal
compressor fault diagnosis based on qualitative simulation and thermal
parameters. Mechanical Systems and Signal Processing, 81:259-273,
2016.

J. Lunze. Qualitative modelling of linear dynamical systems with quan-
tized state measurements. Automatica, 30(3):417 — 431, 1994.

C. Pahl and B. Lee. Containers and clusters for edge cloud architectures
— a technology review. In 2015 3rd International Conference on Future
Internet of Things and Cloud, pages 379-386, Aug 2015.

D. M. Shila, W. Shen, Y. Cheng, X. Tian, and a. X. S. Shen. Amcloud:
Toward a secure autonomic mobile ad hoc cloud computing system.
IEEE Wireless Communications, 24(2):74-81, April 2017.

Sukhpal Singh and Inderveer Chana. A survey on resource scheduling
in cloud computing: Issues and challenges. Journal of Grid Computing,
14(2):217-264, Jun 2016.

Software. Autonomous Self-Adaptation Platform, 2017.
Software. Docker Official Web page, 2017.

Software. Jitsi Meet Docker container, 2017.

Software. Kubernetes, 2017.

Software. Netdata, 2017.

Yu Sun, Jules White, Sean Eade, and Douglas C. Schmidt. ROAR: A
QoS-oriented modeling framework for automated cloud resource alloca-
tion and optimization. Journal of Systems and Software, 116:146-161,
2016.

Salman Taherizadeh, Taylor Ian, Andrew Jones, Zhiming Zhao, and
Vlado Stankovski. A network edge monitoring approach for real-time

45

[42]

[44]

[45]

data streaming applications. In In Proceedings of the 13th Interna-
tional Conference on Economics of Grids, Clouds, Systems and Services
(GECON 2016), ACM, Athens, Greece, 2016a.

Salman Taherizadeh and Vlado Stankovski. Quality of service assurance
for internet of things time-critical cloud applications. In Proceedings of
the 6th International Congress on Advanced Applied Informatics (AAI
2017), July 2017.

Salman Taherizadeh, Ian Taylor, Andrew Jones, Zhiming Zhao, and
Vlado Stankovski. A Network Edge Monitoring Approach for Real-Time
Data Streaming Applications, pages 293-303. Springer International
Publishing, Cham, 2017.

Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. In-
terconnected cloud computing environments: Challenges, taxonomy,
and survey. ACM Comput. Surv., 47(1):7:1-7:47, May 2014.

Demetris Trihinas, Chrystalla Sofokleous, Nicholas Loulloudes, Athana-
sios Foudoulis, George Pallis, and Marios D. Dikaiakos. Managing and
Monitoring Elastic Cloud Applications, pages 523-527. Springer Inter-
national Publishing, Cham, 2014.

Daniel Vladusic, Boris Kompare, and Ivan Bratko. Modelling lake
glumso with q2 learning. Ecological Modelling, 191:33-46, 2006.

Junchao Wang, Arie Taal, Paul Martin, Yang Hu, Huan Zhou, Jianmin
Pang, Cees de Laat, and Zhiming Zhao. Planning virtual infrastructures
for time critical applications with multiple deadline constraints. Future
Generation Computer Systems, 75:365 — 375, 2017.

Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z.
Sheng, and Rajiv Ranjan. A taxonomy and survey of cloud resource
orchestration techniques. ACM Comput. Surv., 50(2):26:1-26:41, May
2017.

Wikipage. Linux Foundation Wiki Web page, 2017.

S. Winkler and P. Mohandas. The evolution of video quality measure-
ment: From psnr to hybrid metrics. IEEE Transactions on Broadcast-
ing, 54(3):660-668, Sept 2008.

Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. vper-
fguard: an automated model-driven framework for application perfor-
mance diagnosis in consolidated cloud environments. In Proceedings of
the 4th ACM/SPEC' International Conference on Performance Engi-
neering, pages 271-282. ACM, 2013.

46

[52]

Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-
Hung Chung, and Yun Li. Cloud computing resource scheduling and a
survey of its evolutionary approaches. ACM Comput. Surv., 47(4):63:1—
63:33, July 2015.

Jure Zabkar, Rahela Zabkar, Daniel Vladusi¢, Danijel Cemas, Dorian
Suc, and Ivan Bratko. Q? Prediction of ozone concentrations. Ecological
Modelling, 191(1):68 — 82, 2006. Selected Papers from the Fourth Inter-
national Workshop on Environmental Applications of Machine Learn-
ing, September 27 - October 1, 2004, Bled, Slovenia.

47

