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Introduction

▪ Wolfram Burgard, 
Albert-Ludwigs-Universität Freiburg

▪ Sebastian Thrun, Wolfram Burgard
and Dieter Fox,Probabilistic 
Robotics, The MIT Press, 2005
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Introduction

▪ Course Introduction to Mobile Robotics – Autonomous 
Mobile Systems at the Albert-Ludwigs-Universität Freiburg
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Introduction

▪ Course Introduction to Mobile Robotics – Autonomous 
Mobile Systems at the Albert-Ludwigs-Universität Freiburg

▪ This course:



Goal of this course

▪ Provide an overview of problems / 
approaches in mobile robotics

▪ Probabilistic reasoning: Dealing with 
noisy data

▪ Hands-on experience



Actions

Control system

Sensor data

World model

AI View on Mobile Robotics
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Components of Typical Robots

base

laser

sonars

cameras

sensors

actuators



Architecture of a Typical Control 
System
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Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

Robot Control Paradigms

Introduction to
Mobile Robotics



11

Classical / Hierarchical Paradigm

▪ 70’s

▪ Focus on automated reasoning and knowledge representation

▪ STRIPS (Stanford Research Institute Problem Solver): Perfect 
world model, closed world assumption

▪ Find boxes and move them to designated position

Sense Plan Act
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Classical Paradigm
Stanford Cart

1. Take nine images of the environment, identify 
interesting points in one image, and use other 
images to obtain depth estimates.

2. Integrate information into global world model.

3. Correlate images with previous image set to 
estimate robot motion.

4. On basis of desired motion, estimated motion, 
and current estimate of environment, determine 
direction in which to move.

5. Execute the motion.



Stanford Cart

13
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Classical Paradigm as 
Horizontal/Functional  Decomposition

Sense Plan Act
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Reactive / Behavior-based Paradigm

Sense Act

▪ No models: The world is its own, best 
model

▪ Easy successes, but also limitations

▪ Investigate biological systems
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Reactive Paradigm as 
Vertical Decomposition

…

Avoid obstacles

Wander

Explore

ActionSensing

Environment
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Characteristics of Reactive 
Paradigm

▪ Situated agent, robot is integral part of the 
world.

▪ No memory, controlled by what is 
happening in the world.

▪ Tight coupling between perception and 
action via behaviors.

▪ Only local, behavior-specific sensing is 
permitted (ego-centric representation).
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Behaviors

▪ … are a direct mapping of sensory 
inputs to a pattern of motor actions 
that are then used to achieve a task.

▪ … serve as the basic building block for 
robotics actions, and the overall 
behavior of the robot is emergent.

▪ … support good software design 
principles due to modularity.
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Subsumption Architecture

▪ Introduced by Rodney Brooks ’86.

▪ Behaviors are networks of sensing and 
acting modules (augmented finite 
state machines AFSM).

▪ Modules are grouped into layers of 
competence.

▪ Layers can subsume lower layers.

▪ No internal state!
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Level 0: Avoid

Polar plot of sonars

Collide

Feel force Run away Turn

Forward

Sonar polar 
plot

force heading

halt

heading

encoders
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Level 1: Wander
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Level 2: Follow Corridor

Collide

Feel force Run away Turn

Forward

Sonar polar 
plot
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Reactive Paradigm

▪ Representations?

▪ Good software engineering principles?

▪ Easy to program?

▪ Robustness?

▪ Scalability?
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Hybrid Deliberative/reactive 
Paradigm

Sense Act

▪ Combines advantages of previous paradigms
▪ World model used for planning

▪ Closed loop, reactive control

Plan
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Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

Probabilistic Motion Models

Introduction to
Mobile Robotics
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Robot Motion

▪ Robot motion is inherently uncertain.

▪ How can we model this uncertainty?
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Dynamic Bayesian Network for 
Controls, States, and Sensations
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Probabilistic Motion Models

▪ To implement the Bayes Filter, we need the 
transition model p(x | x’, u).

▪ The term p(x | x’, u) specifies a posterior 
probability, that action u carries the robot 
from x’ to x.

▪ In this section we will specify, how 
p(x | x’, u) can be modeled based on the 

motion equations.
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Coordinate Systems

▪ In general the configuration of a robot can be 
described by six parameters.

▪ Three-dimensional Cartesian coordinates plus 
three Euler angles pitch, roll, and tilt.

▪ Throughout this section, we consider robots 
operating on a planar surface.

▪ The state space of such 
systems is three-
dimensional (x,y,).
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Typical Motion Models

▪ In practice, one often finds two types of 
motion models:

▪ Odometry-based

▪ Velocity-based (dead reckoning)

▪ Odometry-based models are used when 
systems are equipped with wheel encoders.

▪ Velocity-based models have to be applied 
when no wheel encoders are given. 

▪ They calculate the new pose based on the 
velocities and the time elapsed.
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Example Wheel Encoders

These modules require 
+5V and GND to power 
them, and provide a 0 to 
5V output. They provide 
+5V output when they 
"see" white, and a 0V 
output when they "see" 
black. These disks are 

manufactured out of high 
quality laminated color 
plastic to offer a very crisp 
black to white transition. 
This enables a wheel 
encoder sensor to easily 
see the transitions. 

Source: http://www.active-robots.com/
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Dead Reckoning

▪ Derived from “deduced reckoning.”

▪ Mathematical procedure for determining 
the present location of a vehicle.

▪ Achieved by calculating the current pose of 
the vehicle based on its velocities and the 
time elapsed.
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Reasons for Motion Errors

bump

ideal case different wheel
diameters

carpet

and many more …



Odometry Model
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Noise Model for Odometry

▪ The measured motion is given by the true 
motion corrupted with noise.
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Typical Distributions for 
Probabilistic Motion Models

2

2

2

2

1

22

1
)( 





x

ex
−

=








−



=

2

2

2

6

||6

6|x|if0

)(2








 xx

Normal distribution Triangular distribution



Application

▪ Repeated application of the sensor model for short 
movements.

▪ Typical banana-shaped distributions obtained for 
2d-projection of 3d posterior.

x’
u

p(x|u,x’)

u

x’



Sample Odometry Motion Model

1. Algorithm sample_motion_model(u, x):

1.

2.

3.

4.

5.

6.

7. Return  
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Sampling from Our Motion 
Model

Start



Examples (Odometry-Based)
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Wolfram Burgard, Cyrill Stachniss, Maren 

Bennewitz, Giorgio Grisetti, Kai Arras

Probabilistic Sensor Models

Introduction to
Mobile Robotics
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Sensors for Mobile Robots

▪ Contact sensors: Bumpers

▪ Internal sensors

▪ Accelerometers (spring-mounted masses)

▪ Gyroscopes (spinning mass, laser light)

▪ Compasses, inclinometers (earth magnetic field, gravity)

▪ Proximity sensors

▪ Sonar (time of flight)

▪ Radar (phase and frequency)

▪ Laser range-finders (triangulation, tof, phase)

▪ Infrared (intensity)

▪ Visual sensors: Cameras

▪ Satellite-based sensors: GPS
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Proximity Sensors

▪ The central task is to determine P(z|x), i.e., the 
probability of a measurement z given that the robot 
is at position x.

▪ Question: Where do the probabilities come from?

▪ Approach: Let’s try to explain a measurement.
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Beam-based Sensor Model

▪ Scan z consists of K measurements.

▪ Individual measurements are independent 
given the robot position.
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Beam-based Sensor Model
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Typical Measurement Errors of 
an Range Measurements

1. Beams reflected by 
obstacles

2. Beams reflected by 
persons / caused 
by crosstalk

3. Random 
measurements

4. Maximum range 
measurements
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Proximity Measurement

▪ Measurement can be caused by …

▪ a known obstacle.

▪ cross-talk.

▪ an unexpected obstacle (people, furniture, …).

▪ missing all obstacles (total reflection, glass, …).

▪ Noise is due to uncertainty …

▪ in measuring distance to known obstacle.

▪ in position of known obstacles.

▪ in position of additional obstacles.

▪ whether obstacle is missed.
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Beam-based Proximity Model

Measurement noise
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Beam-based Proximity Model

Random measurement Max range
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Resulting Mixture Density
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Raw Sensor Data

Measured distances for expected distance of 300 cm. 

Sonar Laser
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Approximation

▪ Maximize log likelihood of the data

▪ Search space of n-1 parameters.

▪ Hill climbing

▪ Gradient descent

▪ Genetic algorithms

▪ …

▪ Deterministically compute the n-th 
parameter to satisfy normalization 
constraint.

)|( expzzP
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Approximation Results

Sonar

Laser

300cm 400cm
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Example

z P(z|x,m)
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Scan-based Model

▪ Probability is a mixture of …

▪ a Gaussian distribution with mean at distance to 
closest obstacle,

▪ a uniform distribution for random 
measurements, and 

▪ a small uniform distribution for max range 
measurements.

▪ Again, independence between different 
components is assumed.
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Example

P(z|x,m)

Map m

Likelihood field
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San Jose Tech Museum

Occupancy grid map Likelihood field
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Scan Matching

▪ Extract likelihood field from scan and use it 
to match different scan.



59

Scan Matching

▪ Extract likelihood field from first scan and 
use it to match second scan.

~0.01 sec
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Properties of Scan-based Model

▪ Highly efficient, uses 2D tables only.

▪ Smooth w.r.t. to small changes in robot 

position.

▪ Allows gradient descent, scan matching.

▪ Ignores physical properties of beams.

▪ Will it work for ultrasound sensors?
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Additional Models of Proximity 
Sensors

▪ Map matching (sonar, laser): generate 
small, local maps from sensor data and 
match local maps against global model.

▪ Scan matching (laser): map is represented 
by scan endpoints, match scan into this 
map.

▪ Features (sonar, laser, vision): Extract 
features such as doors, hallways from 
sensor data.
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Landmarks

▪ Active beacons (e.g., radio, GPS)

▪ Passive (e.g., visual, retro-reflective)

▪ Standard approach is triangulation

▪ Sensor provides

▪ distance, or

▪ bearing, or

▪ distance and bearing.
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Distance and Bearing
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Summary of Sensor Models

▪ Explicitly modeling uncertainty in sensing is key to 
robustness.

▪ In many cases, good models can be found by the 
following approach:

1. Determine parametric model of noise free measurement.

2. Analyze sources of noise.

3. Add adequate noise to parameters (eventually mix in 
densities for noise).

4. Learn (and verify) parameters by fitting model to data.

5. Likelihood of measurement is given by “probabilistically 
comparing” the actual with the expected measurement.

▪ This holds for motion models as well.

▪ It is extremely important to be aware of the 
underlying assumptions!
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Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

Mapping with Known Poses

Introduction to
Mobile Robotics
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Why Mapping?

▪ Learning maps is one of the fundamental 
problems in mobile robotics

▪ Maps allow robots to efficiently carry out 
their tasks, allow localization …

▪ Successful robot systems rely on maps for 
localization, path planning, activity 
planning etc.
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The General Problem of 
Mapping

What does the 
environment look like?
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The General Problem of 
Mapping

▪ Formally, mapping involves, given the 
sensor data,

to calculate the most likely map
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Mapping as a Chicken and Egg 
Problem

▪ So far we learned how to estimate the pose 
of the vehicle given the data and the map.

▪ Mapping, however, involves to 
simultaneously estimate the pose of the 
vehicle and the map.

▪ The general problem is therefore denoted 
as the simultaneous localization and 
mapping problem (SLAM).

▪ Throughout this section we will describe 
how to calculate a map given we know the 
pose of the vehicle.
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Types of SLAM-Problems

▪ Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

▪ Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Problems in Mapping

▪ Sensor interpretation
▪ How do we extract relevant information

from raw sensor data?

▪ How do we represent and integrate this 
information over time?

▪ Robot locations have to be estimated
▪ How can we identify that we are at a 

previously visited place?

▪ This problem is the so-called data 
association problem.
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Occupancy Grid Maps

▪ Introduced by Moravec and Elfes in 1985

▪ Represent environment by a grid.

▪ Estimate the probability that a location is 
occupied by an obstacle.

▪ Key assumptions
▪ Occupancy of individual cells (m[xy]) is 

independent

▪ Robot positions are known!
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Incremental Updating 
of Occupancy Grids (Example) 
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Resulting Map Obtained with 
Ultrasound Sensors
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Occupancy Grids: From scans to maps
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Tech Museum, San Jose

CAD map occupancy grid map
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Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

Bayes Filter – Discrete Filters
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Probabilistic Localization
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Grid-based Localization
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Sonars and 
Occupancy Grid Map 
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Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

Bayes Filter – Particle Filter 
and Monte Carlo Localization

Introduction to
Mobile Robotics
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▪ Recall: Discrete filter

▪ Discretize the continuous state space

▪ High memory complexity

▪ Fixed resolution (does not adapt to the belief)

▪ Particle filters are a way to efficiently represent 

non-Gaussian distribution

▪ Basic principle

▪ Set of state hypotheses (“particles”)

▪ Survival-of-the-fittest

Motivation



Sample-based Localization (sonar)



85

▪ Set of weighted samples

Mathematical Description

▪ The samples represent the posterior

State hypothesis Importance weight
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▪ Particle sets can be used to approximate functions

Function Approximation

▪ The more particles fall into an interval, the higher 

the probability of that interval

▪ How to draw samples form a function/distribution?
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▪ Let us assume that f(x)<1 for all x

▪ Sample x from a uniform distribution

▪ Sample c from [0,1]

▪ if f(x) > c keep the sample

otherwise reject the sampe

Rejection Sampling

c

x

f(x)

c’

x’

f(x’)

OK



Particle Filters
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Robot Motion
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Robot Motion
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Particle Filter Algorithm

▪ Sample the next generation for particles using the 

proposal distribution

▪ Compute the importance weights :

weight = target distribution / proposal distribution

▪ Resampling: “Replace unlikely samples by more 

likely ones”
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1. Algorithm particle_filter( St-1, ut-1 zt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample     from                         using          and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights

Particle Filter Algorithm
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Mobile Robot Localization

▪ Each particle is a potential pose of the robot

▪ Proposal distribution is the motion model of 

the robot (prediction step)

▪ The observation model is used to compute 

the importance weight (correction step)

[For details, see PDF file on the lecture web page]
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Initial Distribution
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After Incorporating Ten 
Ultrasound Scans
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After Incorporating 65 Ultrasound 
Scans
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Estimated Path
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Summary – Particle Filters

▪ Particle filters are an implementation of 
recursive Bayesian filtering

▪ They represent the posterior by a set of 
weighted samples

▪ They can model non-Gaussian distributions

▪ Proposal to draw new samples

▪ Weight to account for the differences 
between the proposal and the target

▪ Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter
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Summary – PF Localization

▪ In the context of localization, the particles 
are propagated according to the motion 
model.

▪ They are then weighted according to the 
likelihood of the observations.

▪ In a re-sampling step, new particles are 
drawn with a probability proportional to the 
likelihood of the observation. 
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The SLAM Problem

SLAM is the process by which a robot builds 
a map of the environment and, at the same 
time, uses this map to compute its location

• Localization: inferring location given a map 

• Mapping: inferring a map given a location

• SLAM: learning a map and locating the robot 
simultaneously

121



The SLAM Problem

• SLAM is a chicken-or-egg problem:

→ A map is needed for localizing a robot

→ A pose estimate is needed to build a map

• Thus, SLAM is (regarded as) a hard problem in 

robotics

122
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• SLAM is considered one of the most 

fundamental problems for robots to become 

truly autonomous

• A variety of different approaches to address the 

SLAM problem have been presented

• Probabilistic methods rule

• History of SLAM dates back to the mid-eighties 

(stone-age of mobile robotics)

The SLAM Problem
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Given:

• The robot’s controls

• Relative observations

Wanted:

• Map of features

• Path of the robot

The SLAM Problem



The SLAM Problem
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• Absolute
robot pose

• Absolute
landmark positions

• But only relative 
measurements of 
landmarks



SLAM Applications

SLAM is central to a range of indoor, 
outdoor, in-air and underwater applications 
for both manned and autonomous vehicles.

Examples:

•At home: vacuum cleaner, lawn mower

•Air: surveillance with unmanned air vehicles

•Underwater: reef monitoring

•Underground: exploration of abandoned mines

•Space: terrain mapping for localization

126
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SLAM Applications

Indoors

Space

Undersea

Underground
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Map Representations

Examples:

Subway map, city map, landmark-based map

Maps are topological and/or metric 

models of the environment
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Map Representations

• Grid maps or scans, 2d, 3d

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 

99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
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Why is SLAM a hard problem?

• In the real world, the mapping between 
observations and landmarks is unknown 
(origin uncertainty of measurements)

• Data Association: picking wrong data 
associations can have catastrophic 
consequences (divergence)

Robot pose

uncertainty
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SLAM: 
Simultaneous Localization And Mapping

• Full SLAM:

• Online SLAM:

Integrations (marginalization) typically done 
recursively, one at a time

 

p(x0:t,m | z1:t ,u1:t )

 

p(x t,m | z1:t ,u1:t ) = K p(x1:t ,m | z1:t,u1:t ) dx1 dx2...dx t−1

Estimates most recent pose and map!

Estimates entire path and map!
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Graphical Model of Full SLAM 
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Graphical Model of Online SLAM 
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Graphical Model: Models

"Motion model"

"Observation model"



EKF SLAM: State representation

• Localization

3x1 pose vector

3x3 cov. matrix

• SLAM

Landmarks are simply added to the state. 

Growing state vector and covariance matrix!
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EKF SLAM: Building the Map

Filter Cycle, Overview:

1. State prediction (odometry)

2. Measurement prediction

3. Observation

4. Data Association

5. Update

6. Integration of new landmarks

137



• State Prediction

EKF SLAM: Building the Map

138

Odometry:

(skipping time index k)

Robot-landmark cross-
covariance prediction:



EKF SLAM: Building the Map

• Measurement Prediction
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Global-to-local 
frame transform h



• Observation

EKF SLAM: Building the Map

140

(x,y)-point landmarks



Associates predicted 
measurements
with observation

• Data Association

EKF SLAM: Building the Map
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? (Gating)



EKF SLAM: Building the Map

• Filter Update

142

The usual Kalman 
filter expressions 



• Integrating New Landmarks

EKF SLAM: Building the Map
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State augmented by

Cross-covariances:



144

EKF SLAM

Map              Correlation matrix
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EKF SLAM

Map              Correlation matrix
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EKF SLAM

Map              Correlation matrix



SLAM: Loop Closure

• Loop closure is the problem of recognizing an 
already mapped area, typically after a long 
exploration path (the robot "closes a loop")

• Structually identical to data association, but

• high levels of ambiguity

• possibly useless validation gates

• environment symmetries

• Uncertainties collapse after a loop closure
(whether the closure was correct or not)
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SLAM: Loop Closure

• Before loop closure
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SLAM: Loop Closure

• After loop closure
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SLAM: Loop Closure

• By revisiting already mapped areas, uncertain-
ties in robot and landmark estimates can be 
reduced

• This can be exploited to "optimally" explore
an environment for the sake of better (e.g. 
more accurate) maps

• Exploration: the problem of where to acquire 
new information (e.g. depth-first vs. breadth 
first)

→ See separate chapter on exploration
150



• The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically as 
successive observations are made

151

KF-SLAM Properties (Linear Case)

[Dissanayake et al., 2001]

• When a new land-
mark is initialized,
its uncertainty is 
maximal

• Landmark uncer-
tainty decreases 
monotonically with 
each new observation



• In the limit, the landmark estimates become 
fully correlated
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KF-SLAM Properties (Linear Case)

[Dissanayake et al., 2001]



• In the limit, the covariance associated with any 
single landmark location estimate is determined 
only by the initial covariance in the vehicle 
location estimate.
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KF-SLAM Properties (Linear Case)

[Dissanayake et al., 2001]
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EKF SLAM Example: Victoria Park
Syndey, Australia
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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Victoria Park: Estimated Trajectory

[courtesy by E. Nebot]
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis Court

[courtesy by J. Leonard]
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EKF SLAM Example: Tennis Court

odometry estimated trajectory

[courtesy by John Leonard]



EKF SLAM Example: Line Features

• KTH Bakery Data Set

161[Wulf et al., ICRA 04]
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EKF-SLAM: Complexity

• Cost per step: quadratic in n, the number of 

landmarks: O(n2)

• Total cost to build a map with n landmarks: 

O(n3)

• Memory: O(n2)

Problem: becomes computationally intractable 

for large maps!

➔ Approaches exist that make EKF-SLAM 

amortized O(n) / O(n2) / O(n2)

D&C SLAM [Paz et al., 2006]
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SLAM Techniques

• EKF SLAM

• FastSLAM

• Graphical SLAM

• Topological SLAM
(mainly place recognition)

• Scan Matching / Visual Odometry
(only locally consistent maps)

• Approximations for SLAM: Local submaps, 
Sparse extended information filters, Sparse 
links, Thin junction tree filters, etc.
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Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras

SLAM –
Grid-based FastSLAM

Introduction to
Mobile Robotics
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▪ Can we solve the SLAM problem if no pre-defined 

landmarks are available?

▪ Can we use the ideas of FastSLAM to build grid 

maps?

▪ As with landmarks, the map depends on the poses 

of the robot during data acquisition

▪ If the poses are known, grid-based mapping is easy 

(“mapping with known poses”)

Grid-based SLAM
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Mapping with Known Poses

▪ Mapping with known poses using laser range data
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Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Rao-Blackwellization

This is localization, use MCL

Use the pose estimate 

from the MCL and apply 

mapping with known poses
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Rao-Blackwellized Mapping

▪ Each particle represents a possible trajectory of 
the robot

▪ Each particle 

▪ maintains its own map and 

▪ updates it upon “mapping with known poses”

▪ Each particle survives with a probability 
proportional to the likelihood of the observations 
relative to its own map
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Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Problem

▪ Each map is quite big in case of grid maps

▪ Since each particle maintains its own map

▪ Therefore, one needs to keep the number 
of particles small

▪ Solution:
Compute better proposal distributions!

▪ Idea:
Improve the pose estimate before applying 
the particle filter
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Pose Correction Using Scan 
Matching

Maximize the likelihood of the i-th pose and 
map relative to the (i-1)-th pose and map

 )ˆ,|( )ˆ ,|( maxargˆ
111 −−− = tttttt

x
t xuxpmxzpx

t

robot motioncurrent measurement

map constructed so far
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Motion Model for Scan Matching

Raw Odometry

Scan Matching
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FastSLAM with Improved 
Odometry

▪ Scan-matching provides a locally 
consistent pose correction

▪ Pre-correct short odometry sequences 
using scan-matching and use them as 
input to FastSLAM

▪ Fewer particles are needed, since the 
error in the input in smaller

[Haehnel et al., 2003]
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FastSLAM with Scan-Matching
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Conclusion (so far…)

▪ The presented approach is a highly efficient 
algorithm for SLAM combining ideas of scan 
matching and FastSLAM

▪ Scan matching is used to transform sequences of 
laser measurements into odometry measurements

▪ This version of grid-based FastSLAM can handle 
larger environments than before in “real time”



180

What’s Next?

▪ Further reduce the number of particles

▪ Improved proposals will lead to more 
accurate maps

▪ Use the properties of our sensor when 
drawing the next generation of particles
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Intel Lab

▪ 15 particles

▪ four times faster 
than real-time
P4, 2.8GHz

▪ 5cm resolution 
during scan 
matching

▪ 1cm resolution in 
final map
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Outdoor Campus Map

▪ 30 particles

▪ 250x250m2

▪ 1.75 km 
(odometry)

▪ 20cm resolution 
during scan 
matching

▪ 30cm resolution 
in final map
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MIT Killian Court

▪ The “infinite-corridor-dataset” at MIT
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MIT Killian Court
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MIT Killian Court - Video
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Conclusion

▪ The ideas of FastSLAM can also be applied in the 
context of grid maps

▪ Utilizing accurate sensor observation leads to 
good proposals and highly efficient filters

▪ It is similar to scan-matching on a per-particle 
base

▪ The number of necessary particles and
re-sampling steps can seriously be reduced

▪ Improved versions of grid-based FastSLAM can 
handle larger environments than naïve 
implementations in “real time” since they need 
one order of magnitude fewer samples
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More Details on FastSLAM

▪ M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A 
factored solution to simultaneous localization and mapping, AAAI02
(The classic FastSLAM paper with landmarks)

▪ D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efcient FastSLAM 
algorithm for generating maps of large-scale cyclic environments from raw 
laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

▪ G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with 
rao-blackwellized particle filters by adaptive proposals and selective 
resampling, ICRA05
(Proposal using laser observation, adaptive resampling)

▪ A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localization 
and mapping without predetermined landmarks, IJCAI03 (A representation 
to handle big particle sets)
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Robot Motion Planning

J.-C. Latombe (1991): 

“…eminently necessary since, by definition, 
a robot accomplishes tasks by moving in 
the real world.”

Goals

▪ Collision-free trajectories

▪ Robot should reach the goal location
as fast as possible
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Problem Formulation

▪ The problem of motion planning can be 
stated as follows. Given:

▪ A start pose of the robot

▪ A desired goal pose

▪ A geometric description of the robot

▪ A geometric description of the world

▪ Find a path that moves the robot 
gradually from start to goal while
never touching any obstacle
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Problem Formulation

Motion planning is sometimes also called piano mover's problem
196



Piano mover's problem
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Configuration Space

▪ Although the motion planning problem is 
defined in the regular world, it lives in 
another space: the configuration space

▪ A robot configuration q is a specification of 

the positions of all robot points relative to 
a fixed coordinate system

▪ Usually a configuration is expressed as a 
vector of positions and orientations
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Configuration Space

Rigid-body robot example

▪ 3-parameter representation: q = (x,y,)

▪ In 3D, q would be of the form (x,y,z,,b,g)
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Reference point

x

y


Robot

Reference direction



Configuration Space

▪ Example: circular robot

▪ C-space is obtained by sliding the robot 
along the edge of the obstacle regions 
"blowing them up" by the robot radius
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Configuration Space

▪ Example: polygonal robot, translation only

▪ C-space is obtained by sliding the robot 
along the edge of the obstacle regions
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Configuration Space

▪ Example: polygonal robot, translation only

▪ C-space is obtained by sliding the robot 
along the edge of the obstacle regions

202

Configuration spaceWork space

Reference point



Configuration Space

▪ Example: polygonal robot, trans+rotation

▪ C-space is obtained by sliding the robot 
along the edge of the obstacle regions
in all orientations
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Configuration Space

Free space and obstacle region

▪ With            being the work space,            
the set of obstacles,       the robot in 
configuration

▪ We further define

▪ : start configuration

▪ : goal configuration 
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Then, motion planning amounts to

▪ Finding a continuous path

with

▪ Given this setting,
we can do planning
with the robot being
a point in C-space!

Configuration Space
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C-Space Discretizations

▪ Continuous terrain needs to be
discretized for path planning

▪ There are two general approaches
to discretize C-spaces:

▪ Combinatorial planning

Characterizes Cfree explicitely by capturing the 
connectivity of Cfree into a graph and finds 

solutions using search

▪ Sampling-based planning

Uses collision-detection to probe and 
incrementally search the C-space for solution
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Combinatorial Planning

▪ We will look at four combinatorial 
planning techniques

▪ Visibility graphs

▪ Voronoi diagrams

▪ Exact cell decomposition

▪ Approximate cell decomposition

▪ They all produce a road map

▪ A road map is a graph in Cfree in which each 
vertex is a configuration in Cfree and each edge
is a collision-free path through Cfree
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Combinatorial Planning

▪ Without loss of generality, we will consider 
a problem in            with a point robot 
that cannot rotate. In this case:         

▪ We further assume a polygonal world
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qI

qG



qI

qG

▪ Idea: construct a path as a polygonal line 
connecting qI and qG through vertices of Cobs

▪ Existence proof for such paths, optimality

▪ One of the earliest path planning methods

▪ Best algorithm: O(n2 log n)

Visibility Graphs
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qI

qG



▪ Defined to be the set of points q whose 

cardinality of the set of boundary points of 
Cobs with the same distance to q is greater 

than 1

▪ Let us decipher
this definition...

▪ Informally:
the place with the
same maximal
clearance from
all nearest obstacles

Generalized Voronoi Diagram
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qI
qG

qI' qG'



▪ Geometrically:

▪ For a polygonal Cobs, the Voronoi diagram 
consists of (n) lines and parabolic segments

▪ Naive algorithm: O(n4), best: O(n log n)

Generalized Voronoi Diagram
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p

clearance(q)

one closest point

q

q

q

p
p

two closest points
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Voronoi Diagram

▪ Voronoi diagrams have been well studied 
for (reactive) mobile robot path planning

▪ Fast methods exist to compute and 
update the diagram in real-time for low-
dim. C's

▪ Pros: maximize clear-
ance is a good idea for
an uncertain robot

▪ Cons: unnatural at-
traction to open space,
suboptimal paths

▪ Needs extensions 212



Exact Cell Decomposition 

▪ Idea: decompose Cfree into non-overlapping 

cells, construct connectivity graph to 
represent adjacencies, then search

▪ A popular implementation of this idea:

1. Decompose Cfree into trapezoids with vertical 

side segments by shooting rays upward and 
downward from each polygon vertex

2. Place one vertex in the interior of every 
trapezoid, pick e.g. the centroid

3. Place one vertex in every vertical segment

4. Connect the vertices
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Exact Cell Decomposition 

▪ Trapezoidal decomposition (          max) 

▪ Best known algorithm: O(n log n) where n is 
the number of vertices of Cobs
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(a)

(b)

(c)

(d)



Approximate Cell Decomposition 

▪ Exact decomposition methods can be invol-
ved and inefficient for complex problems

▪ Approximate decomposition uses cells with 
the same simple predefined shape
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qI qI

qGqG

Quadtree decomposition



Approximate Cell Decomposition 

▪ Exact decomposition methods can be invol-
ved and inefficient for complex problems

▪ Approximate decomposition uses cells with 
the same simple predefined shape

▪ Pros:

▪ Iterating the same simple computations

▪ Numerically more stable 

▪ Simpler to implement

▪ Can be made complete
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Combinatorial Planning

Wrap Up

▪ Combinatorial planning techniques are 
elegant and complete (they find a
solution if it exists, report failure otherwise)

▪ But: become quickly intractable when
C-space dimensionality increases (or n resp.)

▪ Combinatorial explosion in terms of
facets to represent    ,    , and       , 
especially when rotations bring in non-
linearities and make C a nontrivial manifold

➡ Use sampling-based planning
Weaker guarantees but more efficient
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Sampling-Based Planning

▪ Abandon the concept of explicitly 
characterizing Cfree and Cobs and leave the 
algorithm in the dark when exploring Cfree

▪ The only light is provided by a collision-
detection algorithm, that probes C to
see whether some configuration lies in Cfree

▪ We will have a look at 

▪ Probabilistic road maps (PRM)
[Kavraki et al., 92]

▪ Rapidly exploring random trees (RRT)
[Lavalle and Kuffner, 99]
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Probabilistic Road Maps

▪ Idea: Take random samples from C, 
declare them as vertices if in Cfree, try to 

connect nearby vertices with local planner

▪ The local planner checks if line-of-sight is 
collision-free (powerful or simple methods)

▪ Options for nearby: k-nearest neighbors
or all neighbors within specified radius

▪ Configurations and connections are added 
to graph until roadmap is dense enough
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Probabilistic Road Maps

▪ Example

220

specified radius

Example local planner

What means "nearby" on a manifold? 
Defining a good metric on C is crucial



Probabilistic Road Maps

Good and bad news:

▪ Pros:

▪ Probabilistically complete

▪ Do not construct C-space

▪ Apply easily to high-dim. C's

▪ PRMs have solved previously
unsolved problems

▪ Cons:

▪ Do not work well for some
problems, narrow passages

▪ Not optimal, not complete
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Rapidly Exploring Random Trees

▪ Idea: aggressively probe and explore the 
C-space by expanding incrementally 
from an initial configuration q0

▪ The explored territory is marked by a
tree rooted at q0
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From Road Maps to Paths

▪ All methods discussed so far construct a 
road map (without considering the query 
pair qI and qG)

▪ Once the investment is made, the same  
road map can be reused for all queries 
(provided world and robot do not change) 

1. Find the cell/vertex that contain/is close to qI

and qG (not needed for visibility graphs)

2. Connect qI and qG to the road map

3. Search the road map for a path from qI to qG
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Sampling-Based Planning

Wrap Up

▪ Sampling-based planners are more efficient in 
most practical problems but offer weaker 
guarantees

▪ They are probabilistically complete: the 
probability tends to 1 that a solution is found if 
one exists (otherwise it may still run forever)

▪ Performance degrades in problems with narrow 
passages. Subject of active research

▪ Widely used. Problems with high-dimensional 
and complex C-spaces are still computationally 
hard
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Potential Field Methods

▪ All techniques discussed so far aim at cap-
turing the connectivity of Cfree into a graph

▪ Potential Field methods follow a 
different idea:

The robot, represented as a point in C, is 

modeled as a particle under the influence 
of a artificial potential field U

U superimposes 

▪ Repulsive forces from obstacles

▪ Attractive force from goal
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Potential Field Methods

▪ Potential function

▪ Simply perform gradient descent

▪ C-pace typically discretized in a grid

226
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Potential Field Methods

▪ Main problems: robot gets stuck in
local minima

▪ Way out: Construct local-minima-free 
navigation function ("NF1"), then do 
gradient descent (e.g. bushfire from goal)

▪ The gradient of the potential function 
defines a vector field (similar to a policy) 
that can be used as feedback control 
strategy, relevant for an uncertain robot

▪ However, potential fields need to represent 
Cfree explicitely. This can be too costly.
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Robot Motion Planning

▪ Given a road map, let's do search!
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A* Search

▪ A* is one of the most widely-known 
informed search algorithms with many 
applications in robotics

▪ Where are we?
A* is an instance of an informed 
algorithm for the general problem of 
search

▪ In robotics: planning on a
2D occupancy grid map is
a common approach
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Search

The problem of search: finding a sequence 
of actions (a path) that leads to desirable 
states (a goal)

▪Uninformed search: besides the problem 
definition, no further information about the 
domain ("blind search")

▪The only thing one can do is to expand 
nodes differently

▪Example algorithms: breadth-first, uniform-
cost, depth-first, bidirectional, etc.

230



Search

The problem of search: finding a sequence 
of actions (a path) that leads to desirable 
states (a goal)

▪Informed search: further information 
about the domain through heuristics

▪Capability to say that a node is "more 
promising" than another node

▪Example algorithms: greedy best-first 
search, A*, many variants of A*, D*, etc.
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▪ A* vs. Theta*

Any-Angle A* Examples

232

(len: path length, nhead = # heading changes)

len: 30.0

nhead: 11

len: 28.9

nhead: 5

len: 24.1

nhead: 9

len: 22.9

nhead: 2



D* Search

▪ Problem: In unknown, partially known or 
dynamic environments, the planned path 
may be blocked and we need to replan

▪ Can this be done efficiently, avoiding to 
replan the entire path?

▪ Idea: Incrementally repair path keeping 
its modifications local around robot pose

▪ Several approaches implement this idea:

▪ D* (Dynamic A*) [Stentz, ICRA'94, IJCAI'95]

▪ D* Lite [Koenig and Likhachev, AAAI'02]

▪ Field D* [Ferguson and Stentz, JFR'06]
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D* Family

▪ D* Lite produces the same paths than D* 
but is simpler and more efficient

▪ D*/D* Lite are widely used

▪ Field D* was running on Mars rovers 
Spirit and Opportunity (retrofitted in yr 3)
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Tracks left by a drive executed with Field D*



Still in Dynamic Environments...

▪ Do we really need to replan the entire path 
for each obstacle on the way?

▪ What if the robot has to react quickly to 
unforeseen, fast moving obstacles?

▪ Even D* Lite can be too slow in such a situation

▪ Accounting for the robot shape
(it's not a point)

▪ Accounting for kinematic and dynamic 
vehicle constraints, e.g.

▪ Decceleration limits, 

▪ Steering angle limits, etc.
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Collision Avoidance

▪ This can be handled by techniques called 
collision avoidance (obstacle avoidance)

▪ A well researched subject, different 
approaches exist:

▪ Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

▪ Nearness Diagram Navigation
[Minguez et al., 2001, 2002]

▪ Vector-Field-Histogram+
[Ulrich & Borenstein, 98]

▪ Extended Potential Fields
[Khatib & Chatila, 95]
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Collision Avoidance

▪ Integration into general motion planning?

▪ It is common to subdivide the problem into 
a global and local planning task:

▪ An approximate global planner computes 
paths ignoring the kinematic and dynamic 
vehicle constraints

▪ An accurate local planner accounts for the 
constraints and generates (sets of) feasible 
local trajectories ("collision avoidance")

▪ What do we loose? What do we win?
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Two-layered Architecture
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Planning

Collision Avoidance

sensor data

map

robot

low frequency

high frequency

sub-goal

motion command
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