
Razvoj inteligentnih sistemov

Development of intelligent systems
(RInS)

Mobile robotics

Danijel Skočaj

University of Ljubljana

Faculty of Computer and Information Science

Slides: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai
Arras, UNI Freiburg, Introduction to Mobile Robotics

Academic year: 2023/24

Razvoj inteligentnih sistemov, Mobilna robotika 2

Introduction

▪ Slides credit to:

Albert-Ludwigs-Universität, Freiburg, Germany

Autonomous Intelligent Systems
Wolfram Burgard

Social Robotics
Kai Arras

Humanoid Robots
Maren Bennewitz

Autonomous Intelligent Systems
Cyrill Stachniss

Razvoj inteligentnih sistemov, Mobilna robotika 3

Introduction

▪ Wolfram Burgard,
Albert-Ludwigs-Universität Freiburg

▪ Sebastian Thrun, Wolfram Burgard
and Dieter Fox,Probabilistic
Robotics, The MIT Press, 2005

Razvoj inteligentnih sistemov, Mobilna robotika 4

Introduction

▪ Course Introduction to Mobile Robotics – Autonomous
Mobile Systems at the Albert-Ludwigs-Universität Freiburg

Razvoj inteligentnih sistemov, Mobilna robotika 5

Introduction

▪ Course Introduction to Mobile Robotics – Autonomous
Mobile Systems at the Albert-Ludwigs-Universität Freiburg

▪ This course:

Goal of this course

▪ Provide an overview of problems /
approaches in mobile robotics

▪ Probabilistic reasoning: Dealing with
noisy data

▪ Hands-on experience

Actions

Control system

Sensor data

World model

AI View on Mobile Robotics

8

Components of Typical Robots

base

laser

sonars

cameras

sensors

actuators

Architecture of a Typical Control
System

10

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Robot Control Paradigms

Introduction to
Mobile Robotics

11

Classical / Hierarchical Paradigm

▪ 70’s

▪ Focus on automated reasoning and knowledge representation

▪ STRIPS (Stanford Research Institute Problem Solver): Perfect
world model, closed world assumption

▪ Find boxes and move them to designated position

Sense Plan Act

12

Classical Paradigm
Stanford Cart

1. Take nine images of the environment, identify
interesting points in one image, and use other
images to obtain depth estimates.

2. Integrate information into global world model.

3. Correlate images with previous image set to
estimate robot motion.

4. On basis of desired motion, estimated motion,
and current estimate of environment, determine
direction in which to move.

5. Execute the motion.

Stanford Cart

13

14

Classical Paradigm as
Horizontal/Functional Decomposition

Sense Plan Act

P
e
rc

e
p
ti
o
n

M
o
d
e
l

P
la

n

E
x
e
c
u
te

M
o
to

r
C
o
n
tr

o
l

ActionSensing

Environment

15

Reactive / Behavior-based Paradigm

Sense Act

▪ No models: The world is its own, best
model

▪ Easy successes, but also limitations

▪ Investigate biological systems

16

Reactive Paradigm as
Vertical Decomposition

…

Avoid obstacles

Wander

Explore

ActionSensing

Environment

17

Characteristics of Reactive
Paradigm

▪ Situated agent, robot is integral part of the
world.

▪ No memory, controlled by what is
happening in the world.

▪ Tight coupling between perception and
action via behaviors.

▪ Only local, behavior-specific sensing is
permitted (ego-centric representation).

18

Behaviors

▪ … are a direct mapping of sensory
inputs to a pattern of motor actions
that are then used to achieve a task.

▪ … serve as the basic building block for
robotics actions, and the overall
behavior of the robot is emergent.

▪ … support good software design
principles due to modularity.

19

Subsumption Architecture

▪ Introduced by Rodney Brooks ’86.

▪ Behaviors are networks of sensing and
acting modules (augmented finite
state machines AFSM).

▪ Modules are grouped into layers of
competence.

▪ Layers can subsume lower layers.

▪ No internal state!

20

Level 0: Avoid

Polar plot of sonars

Collide

Feel force Run away Turn

Forward

Sonar polar
plot

force heading

halt

heading

encoders

21

Level 1: Wander

Collide

Feel force Run away Turn

Forward

Sonar polar
plot

force
heading

halt

Wander Avoid
force

heading

s

modified

heading

heading

encoders

22

Level 2: Follow Corridor

Collide

Feel force Run away Turn

Forward

Sonar polar
plot

force

halt

Wander Avoid
force

heading

to middle

s

modified

heading

Look
Stay in

middle

s

corridor

heading

Integrate

heading

encoders

distance, direction traveled

23

Reactive Paradigm

▪ Representations?

▪ Good software engineering principles?

▪ Easy to program?

▪ Robustness?

▪ Scalability?

24

Hybrid Deliberative/reactive
Paradigm

Sense Act

▪ Combines advantages of previous paradigms
▪ World model used for planning

▪ Closed loop, reactive control

Plan

25

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Probabilistic Motion Models

Introduction to
Mobile Robotics

26

Robot Motion

▪ Robot motion is inherently uncertain.

▪ How can we model this uncertainty?

27

Dynamic Bayesian Network for
Controls, States, and Sensations

28

Probabilistic Motion Models

▪ To implement the Bayes Filter, we need the
transition model p(x | x’, u).

▪ The term p(x | x’, u) specifies a posterior
probability, that action u carries the robot
from x’ to x.

▪ In this section we will specify, how
p(x | x’, u) can be modeled based on the

motion equations.

29

Coordinate Systems

▪ In general the configuration of a robot can be
described by six parameters.

▪ Three-dimensional Cartesian coordinates plus
three Euler angles pitch, roll, and tilt.

▪ Throughout this section, we consider robots
operating on a planar surface.

▪ The state space of such
systems is three-
dimensional (x,y,).

30

Typical Motion Models

▪ In practice, one often finds two types of
motion models:

▪ Odometry-based

▪ Velocity-based (dead reckoning)

▪ Odometry-based models are used when
systems are equipped with wheel encoders.

▪ Velocity-based models have to be applied
when no wheel encoders are given.

▪ They calculate the new pose based on the
velocities and the time elapsed.

31

Example Wheel Encoders

These modules require
+5V and GND to power
them, and provide a 0 to
5V output. They provide
+5V output when they
"see" white, and a 0V
output when they "see"
black. These disks are

manufactured out of high
quality laminated color
plastic to offer a very crisp
black to white transition.
This enables a wheel
encoder sensor to easily
see the transitions.

Source: http://www.active-robots.com/

32

Dead Reckoning

▪ Derived from “deduced reckoning.”

▪ Mathematical procedure for determining
the present location of a vehicle.

▪ Achieved by calculating the current pose of
the vehicle based on its velocities and the
time elapsed.

33

Reasons for Motion Errors

bump

ideal case different wheel
diameters

carpet

and many more …

Odometry Model

22)'()'(yyxxtrans −+−=

 −−−=)','(atan21 xxyyrot

12 ' rotrot  −−=

• Robot moves from to .

• Odometry information .

,, yx ',',' yx

transrotrotu  ,, 21=

trans
1rot

2rot

,, yx

',',' yx

Noise Model for Odometry

▪ The measured motion is given by the true
motion corrupted with noise.

||||11 211

ˆ
transrotrotrot  ++=

||||22 221

ˆ
transrotrotrot  ++=

|||| 2143

ˆ
rotrottranstranstrans  +++=

Typical Distributions for
Probabilistic Motion Models

2

2

2

2

1

22

1
)(





x

ex
−

=








−



=

2

2

2

6

||6

6|x|if0

)(2








 xx

Normal distribution Triangular distribution

Application

▪ Repeated application of the sensor model for short
movements.

▪ Typical banana-shaped distributions obtained for
2d-projection of 3d posterior.

x’
u

p(x|u,x’)

u

x’

Sample Odometry Motion Model

1. Algorithm sample_motion_model(u, x):

1.

2.

3.

4.

5.

6.

7. Return

)||sample(ˆ
21111 transrotrotrot  ++=

|))||(|sample(ˆ
2143 rotrottranstranstrans  +++=

)||sample(ˆ
22122 transrotrotrot  ++=

)ˆcos(ˆ' 1rottransxx  ++=

)ˆsin(ˆ' 1rottransyy  ++=

21
ˆˆ' rotrot  ++=

',',' yx

 ,,,,, 21 yxxu transrotrot ==

sample_normal_distribution

Sampling from Our Motion
Model

Start

Examples (Odometry-Based)

41

Wolfram Burgard, Cyrill Stachniss, Maren

Bennewitz, Giorgio Grisetti, Kai Arras

Probabilistic Sensor Models

Introduction to
Mobile Robotics

42

Sensors for Mobile Robots

▪ Contact sensors: Bumpers

▪ Internal sensors

▪ Accelerometers (spring-mounted masses)

▪ Gyroscopes (spinning mass, laser light)

▪ Compasses, inclinometers (earth magnetic field, gravity)

▪ Proximity sensors

▪ Sonar (time of flight)

▪ Radar (phase and frequency)

▪ Laser range-finders (triangulation, tof, phase)

▪ Infrared (intensity)

▪ Visual sensors: Cameras

▪ Satellite-based sensors: GPS

43

Proximity Sensors

▪ The central task is to determine P(z|x), i.e., the
probability of a measurement z given that the robot
is at position x.

▪ Question: Where do the probabilities come from?

▪ Approach: Let’s try to explain a measurement.

44

Beam-based Sensor Model

▪ Scan z consists of K measurements.

▪ Individual measurements are independent
given the robot position.

},...,,{ 21 Kzzzz =


=

=
K

k

k mxzPmxzP
1

),|(),|(

45

Beam-based Sensor Model


=

=
K

k

k mxzPmxzP
1

),|(),|(

46

Typical Measurement Errors of
an Range Measurements

1. Beams reflected by
obstacles

2. Beams reflected by
persons / caused
by crosstalk

3. Random
measurements

4. Maximum range
measurements

47

Proximity Measurement

▪ Measurement can be caused by …

▪ a known obstacle.

▪ cross-talk.

▪ an unexpected obstacle (people, furniture, …).

▪ missing all obstacles (total reflection, glass, …).

▪ Noise is due to uncertainty …

▪ in measuring distance to known obstacle.

▪ in position of known obstacles.

▪ in position of additional obstacles.

▪ whether obstacle is missed.

48

Beam-based Proximity Model

Measurement noise

zexp zmax0

b

zz

hit e
b

mxzP

2
exp)(

2

1

2

1
),|(

−
−

=









 

=
−

otherwise

zz
mxzP

z

0

e
),|(exp

unexp



Unexpected obstacles

zexp zmax0

49

Beam-based Proximity Model

Random measurement Max range

max

1
),|(

z
mxzPrand =

smallz
mxzP

1
),|(max =

zexp zmax0zexp zmax0

50

Resulting Mixture Density











































=

),|(

),|(

),|(

),|(

),|(

rand

max

unexp

hit

rand

max

unexp

hit

mxzP

mxzP

mxzP

mxzP

mxzP

T









How can we determine the model parameters?

51

Raw Sensor Data

Measured distances for expected distance of 300 cm.

Sonar Laser

52

Approximation

▪ Maximize log likelihood of the data

▪ Search space of n-1 parameters.

▪ Hill climbing

▪ Gradient descent

▪ Genetic algorithms

▪ …

▪ Deterministically compute the n-th
parameter to satisfy normalization
constraint.

)|(expzzP

53

Approximation Results

Sonar

Laser

300cm 400cm

54

Example

z P(z|x,m)

55

Scan-based Model

▪ Probability is a mixture of …

▪ a Gaussian distribution with mean at distance to
closest obstacle,

▪ a uniform distribution for random
measurements, and

▪ a small uniform distribution for max range
measurements.

▪ Again, independence between different
components is assumed.

56

Example

P(z|x,m)

Map m

Likelihood field

57

San Jose Tech Museum

Occupancy grid map Likelihood field

58

Scan Matching

▪ Extract likelihood field from scan and use it
to match different scan.

59

Scan Matching

▪ Extract likelihood field from first scan and
use it to match second scan.

~0.01 sec

60

Properties of Scan-based Model

▪ Highly efficient, uses 2D tables only.

▪ Smooth w.r.t. to small changes in robot

position.

▪ Allows gradient descent, scan matching.

▪ Ignores physical properties of beams.

▪ Will it work for ultrasound sensors?

61

Additional Models of Proximity
Sensors

▪ Map matching (sonar, laser): generate
small, local maps from sensor data and
match local maps against global model.

▪ Scan matching (laser): map is represented
by scan endpoints, match scan into this
map.

▪ Features (sonar, laser, vision): Extract
features such as doors, hallways from
sensor data.

62

Landmarks

▪ Active beacons (e.g., radio, GPS)

▪ Passive (e.g., visual, retro-reflective)

▪ Standard approach is triangulation

▪ Sensor provides

▪ distance, or

▪ bearing, or

▪ distance and bearing.

63

Distance and Bearing

64

Summary of Sensor Models

▪ Explicitly modeling uncertainty in sensing is key to
robustness.

▪ In many cases, good models can be found by the
following approach:

1. Determine parametric model of noise free measurement.

2. Analyze sources of noise.

3. Add adequate noise to parameters (eventually mix in
densities for noise).

4. Learn (and verify) parameters by fitting model to data.

5. Likelihood of measurement is given by “probabilistically
comparing” the actual with the expected measurement.

▪ This holds for motion models as well.

▪ It is extremely important to be aware of the
underlying assumptions!

65

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Mapping with Known Poses

Introduction to
Mobile Robotics

66

Why Mapping?

▪ Learning maps is one of the fundamental
problems in mobile robotics

▪ Maps allow robots to efficiently carry out
their tasks, allow localization …

▪ Successful robot systems rely on maps for
localization, path planning, activity
planning etc.

67

The General Problem of
Mapping

What does the
environment look like?

68

The General Problem of
Mapping

▪ Formally, mapping involves, given the
sensor data,

to calculate the most likely map

},,,,,,{ 2211 nn zuzuzud =

)|(maxarg* dmPm
m

=

69

Mapping as a Chicken and Egg
Problem

▪ So far we learned how to estimate the pose
of the vehicle given the data and the map.

▪ Mapping, however, involves to
simultaneously estimate the pose of the
vehicle and the map.

▪ The general problem is therefore denoted
as the simultaneous localization and
mapping problem (SLAM).

▪ Throughout this section we will describe
how to calculate a map given we know the
pose of the vehicle.

70

Types of SLAM-Problems

▪ Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

▪ Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…

71

Problems in Mapping

▪ Sensor interpretation
▪ How do we extract relevant information

from raw sensor data?

▪ How do we represent and integrate this
information over time?

▪ Robot locations have to be estimated
▪ How can we identify that we are at a

previously visited place?

▪ This problem is the so-called data
association problem.

72

Occupancy Grid Maps

▪ Introduced by Moravec and Elfes in 1985

▪ Represent environment by a grid.

▪ Estimate the probability that a location is
occupied by an obstacle.

▪ Key assumptions
▪ Occupancy of individual cells (m[xy]) is

independent

▪ Robot positions are known!

=

= −

yx

xy

t

tttt

mBel

zuzumPmBel

,

][

121

)(

),,,|()(

73

Incremental Updating
of Occupancy Grids (Example)

74

Resulting Map Obtained with
Ultrasound Sensors

75

76

Occupancy Grids: From scans to maps

77

Tech Museum, San Jose

CAD map occupancy grid map

78

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Bayes Filter – Discrete Filters

Introduction to
Mobile Robotics

79

Probabilistic Localization

80

Grid-based Localization

81

Sonars and
Occupancy Grid Map

82

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Bayes Filter – Particle Filter
and Monte Carlo Localization

Introduction to
Mobile Robotics

83

▪ Recall: Discrete filter

▪ Discretize the continuous state space

▪ High memory complexity

▪ Fixed resolution (does not adapt to the belief)

▪ Particle filters are a way to efficiently represent

non-Gaussian distribution

▪ Basic principle

▪ Set of state hypotheses (“particles”)

▪ Survival-of-the-fittest

Motivation

Sample-based Localization (sonar)

85

▪ Set of weighted samples

Mathematical Description

▪ The samples represent the posterior

State hypothesis Importance weight

86

▪ Particle sets can be used to approximate functions

Function Approximation

▪ The more particles fall into an interval, the higher

the probability of that interval

▪ How to draw samples form a function/distribution?

87

▪ Let us assume that f(x)<1 for all x

▪ Sample x from a uniform distribution

▪ Sample c from [0,1]

▪ if f(x) > c keep the sample

otherwise reject the sampe

Rejection Sampling

c

x

f(x)

c’

x’

f(x’)

OK

Particle Filters

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling

− 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling

Robot Motion

− 'd)'()'|()(, xxBelxuxpxBel

93

Particle Filter Algorithm

▪ Sample the next generation for particles using the

proposal distribution

▪ Compute the importance weights :

weight = target distribution / proposal distribution

▪ Resampling: “Replace unlikely samples by more

likely ones”

94

1. Algorithm particle_filter(St-1, ut-1 zt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample from using and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights

Particle Filter Algorithm

0, == tS

ni 1=

},{ = i

t

i

ttt wxSS

i

tw+=

i

tx),|(11 −− ttt uxxp)(

1

ij

tx − 1−tu

)|(i

tt

i

t xzpw =

ni 1=

/i

t

i

t ww =

95

Mobile Robot Localization

▪ Each particle is a potential pose of the robot

▪ Proposal distribution is the motion model of

the robot (prediction step)

▪ The observation model is used to compute

the importance weight (correction step)

[For details, see PDF file on the lecture web page]

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Initial Distribution

115

After Incorporating Ten
Ultrasound Scans

116

After Incorporating 65 Ultrasound
Scans

117

Estimated Path

118

Summary – Particle Filters

▪ Particle filters are an implementation of
recursive Bayesian filtering

▪ They represent the posterior by a set of
weighted samples

▪ They can model non-Gaussian distributions

▪ Proposal to draw new samples

▪ Weight to account for the differences
between the proposal and the target

▪ Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter

119

Summary – PF Localization

▪ In the context of localization, the particles
are propagated according to the motion
model.

▪ They are then weighted according to the
likelihood of the observations.

▪ In a re-sampling step, new particles are
drawn with a probability proportional to the
likelihood of the observation.

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

SLAM: Simultaneous Localization
and Mapping

Introduction to
Mobile Robotics

Slides by Kai Arras and Wolfram Burgard

Last update: June 2010

The SLAM Problem

SLAM is the process by which a robot builds
a map of the environment and, at the same
time, uses this map to compute its location

• Localization: inferring location given a map

• Mapping: inferring a map given a location

• SLAM: learning a map and locating the robot
simultaneously

121

The SLAM Problem

• SLAM is a chicken-or-egg problem:

→ A map is needed for localizing a robot

→ A pose estimate is needed to build a map

• Thus, SLAM is (regarded as) a hard problem in

robotics

122

123

• SLAM is considered one of the most

fundamental problems for robots to become

truly autonomous

• A variety of different approaches to address the

SLAM problem have been presented

• Probabilistic methods rule

• History of SLAM dates back to the mid-eighties

(stone-age of mobile robotics)

The SLAM Problem

124

Given:

• The robot’s controls

• Relative observations

Wanted:

• Map of features

• Path of the robot

The SLAM Problem

The SLAM Problem

125

• Absolute
robot pose

• Absolute
landmark positions

• But only relative
measurements of
landmarks

SLAM Applications

SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

•At home: vacuum cleaner, lawn mower

•Air: surveillance with unmanned air vehicles

•Underwater: reef monitoring

•Underground: exploration of abandoned mines

•Space: terrain mapping for localization

126

127

SLAM Applications

Indoors

Space

Undersea

Underground

128

Map Representations

Examples:

Subway map, city map, landmark-based map

Maps are topological and/or metric

models of the environment

129

Map Representations

• Grid maps or scans, 2d, 3d

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras,

99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…

130

Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated

131

Why is SLAM a hard problem?

• In the real world, the mapping between
observations and landmarks is unknown
(origin uncertainty of measurements)

• Data Association: picking wrong data
associations can have catastrophic
consequences (divergence)

Robot pose

uncertainty

132

SLAM:
Simultaneous Localization And Mapping

• Full SLAM:

• Online SLAM:

Integrations (marginalization) typically done
recursively, one at a time



p(x0:t,m | z1:t ,u1:t)



p(x t,m | z1:t ,u1:t) = K p(x1:t ,m | z1:t,u1:t) dx1 dx2...dx t−1

Estimates most recent pose and map!

Estimates entire path and map!

133

Graphical Model of Full SLAM

),|,(:1:1:1 ttt uzmxp

134

Graphical Model of Online SLAM

121:1:1:1:1:1 ...),|,(),|,(−  = ttttttt dxdxdxuzmxpuzmxp 

135

Graphical Model: Models

"Motion model"

"Observation model"

EKF SLAM: State representation

• Localization

3x1 pose vector

3x3 cov. matrix

• SLAM

Landmarks are simply added to the state.

Growing state vector and covariance matrix!

136

EKF SLAM: Building the Map

Filter Cycle, Overview:

1. State prediction (odometry)

2. Measurement prediction

3. Observation

4. Data Association

5. Update

6. Integration of new landmarks

137

• State Prediction

EKF SLAM: Building the Map

138

Odometry:

(skipping time index k)

Robot-landmark cross-
covariance prediction:

EKF SLAM: Building the Map

• Measurement Prediction

139

Global-to-local
frame transform h

• Observation

EKF SLAM: Building the Map

140

(x,y)-point landmarks

Associates predicted
measurements
with observation

• Data Association

EKF SLAM: Building the Map

141

? (Gating)

EKF SLAM: Building the Map

• Filter Update

142

The usual Kalman
filter expressions

• Integrating New Landmarks

EKF SLAM: Building the Map

143

State augmented by

Cross-covariances:

144

EKF SLAM

Map Correlation matrix

145

EKF SLAM

Map Correlation matrix

146

EKF SLAM

Map Correlation matrix

SLAM: Loop Closure

• Loop closure is the problem of recognizing an
already mapped area, typically after a long
exploration path (the robot "closes a loop")

• Structually identical to data association, but

• high levels of ambiguity

• possibly useless validation gates

• environment symmetries

• Uncertainties collapse after a loop closure
(whether the closure was correct or not)

147

SLAM: Loop Closure

• Before loop closure

148

SLAM: Loop Closure

• After loop closure

149

SLAM: Loop Closure

• By revisiting already mapped areas, uncertain-
ties in robot and landmark estimates can be
reduced

• This can be exploited to "optimally" explore
an environment for the sake of better (e.g.
more accurate) maps

• Exploration: the problem of where to acquire
new information (e.g. depth-first vs. breadth
first)

→ See separate chapter on exploration
150

• The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

151

KF-SLAM Properties (Linear Case)

[Dissanayake et al., 2001]

• When a new land-
mark is initialized,
its uncertainty is
maximal

• Landmark uncer-
tainty decreases
monotonically with
each new observation

• In the limit, the landmark estimates become
fully correlated

152

KF-SLAM Properties (Linear Case)

[Dissanayake et al., 2001]

• In the limit, the covariance associated with any
single landmark location estimate is determined
only by the initial covariance in the vehicle
location estimate.

153

KF-SLAM Properties (Linear Case)

[Dissanayake et al., 2001]

154

EKF SLAM Example: Victoria Park
Syndey, Australia

155

Victoria Park: Landmarks

[courtesy by E. Nebot]

156

157

Victoria Park: Estimated Trajectory

[courtesy by E. Nebot]

158

Victoria Park: Landmarks

[courtesy by E. Nebot]

159

EKF SLAM Example: Tennis Court

[courtesy by J. Leonard]

160

EKF SLAM Example: Tennis Court

odometry estimated trajectory

[courtesy by John Leonard]

EKF SLAM Example: Line Features

• KTH Bakery Data Set

161[Wulf et al., ICRA 04]

162

EKF-SLAM: Complexity

• Cost per step: quadratic in n, the number of

landmarks: O(n2)

• Total cost to build a map with n landmarks:

O(n3)

• Memory: O(n2)

Problem: becomes computationally intractable

for large maps!

➔ Approaches exist that make EKF-SLAM

amortized O(n) / O(n2) / O(n2)

D&C SLAM [Paz et al., 2006]

163

SLAM Techniques

• EKF SLAM

• FastSLAM

• Graphical SLAM

• Topological SLAM
(mainly place recognition)

• Scan Matching / Visual Odometry
(only locally consistent maps)

• Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.

164

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

SLAM –
Grid-based FastSLAM

Introduction to
Mobile Robotics

165

▪ Can we solve the SLAM problem if no pre-defined

landmarks are available?

▪ Can we use the ideas of FastSLAM to build grid

maps?

▪ As with landmarks, the map depends on the poses

of the robot during data acquisition

▪ If the poses are known, grid-based mapping is easy

(“mapping with known poses”)

Grid-based SLAM

166

Mapping with Known Poses

▪ Mapping with known poses using laser range data

167

Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements

168

Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements

169

Rao-Blackwellization

This is localization, use MCL

Use the pose estimate

from the MCL and apply

mapping with known poses

170

Rao-Blackwellized Mapping

▪ Each particle represents a possible trajectory of
the robot

▪ Each particle

▪ maintains its own map and

▪ updates it upon “mapping with known poses”

▪ Each particle survives with a probability
proportional to the likelihood of the observations
relative to its own map

171

Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles

172

Problem

▪ Each map is quite big in case of grid maps

▪ Since each particle maintains its own map

▪ Therefore, one needs to keep the number
of particles small

▪ Solution:
Compute better proposal distributions!

▪ Idea:
Improve the pose estimate before applying
the particle filter

173

Pose Correction Using Scan
Matching

Maximize the likelihood of the i-th pose and
map relative to the (i-1)-th pose and map

 )ˆ,|()ˆ ,|(maxargˆ
111 −−− = tttttt

x
t xuxpmxzpx

t

robot motioncurrent measurement

map constructed so far

174

Motion Model for Scan Matching

Raw Odometry

Scan Matching

175

FastSLAM with Improved
Odometry

▪ Scan-matching provides a locally
consistent pose correction

▪ Pre-correct short odometry sequences
using scan-matching and use them as
input to FastSLAM

▪ Fewer particles are needed, since the
error in the input in smaller

[Haehnel et al., 2003]

176

177

178

FastSLAM with Scan-Matching

179

Conclusion (so far…)

▪ The presented approach is a highly efficient
algorithm for SLAM combining ideas of scan
matching and FastSLAM

▪ Scan matching is used to transform sequences of
laser measurements into odometry measurements

▪ This version of grid-based FastSLAM can handle
larger environments than before in “real time”

180

What’s Next?

▪ Further reduce the number of particles

▪ Improved proposals will lead to more
accurate maps

▪ Use the properties of our sensor when
drawing the next generation of particles

181

Intel Lab

▪ 15 particles

▪ four times faster
than real-time
P4, 2.8GHz

▪ 5cm resolution
during scan
matching

▪ 1cm resolution in
final map

182

Outdoor Campus Map

▪ 30 particles

▪ 250x250m2

▪ 1.75 km
(odometry)

▪ 20cm resolution
during scan
matching

▪ 30cm resolution
in final map

183

MIT Killian Court

▪ The “infinite-corridor-dataset” at MIT

184

MIT Killian Court

185

MIT Killian Court - Video

186

Conclusion

▪ The ideas of FastSLAM can also be applied in the
context of grid maps

▪ Utilizing accurate sensor observation leads to
good proposals and highly efficient filters

▪ It is similar to scan-matching on a per-particle
base

▪ The number of necessary particles and
re-sampling steps can seriously be reduced

▪ Improved versions of grid-based FastSLAM can
handle larger environments than naïve
implementations in “real time” since they need
one order of magnitude fewer samples

187

More Details on FastSLAM

▪ M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping, AAAI02
(The classic FastSLAM paper with landmarks)

▪ D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efcient FastSLAM
algorithm for generating maps of large-scale cyclic environments from raw
laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

▪ G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with
rao-blackwellized particle filters by adaptive proposals and selective
resampling, ICRA05
(Proposal using laser observation, adaptive resampling)

▪ A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localization
and mapping without predetermined landmarks, IJCAI03 (A representation
to handle big particle sets)

188

189

190

191

192

Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Robot Motion Planning

Introduction to
Mobile Robotics

Slides by Kai Arras Last update July 2011

With material from S. LaValle, JC. Latombe, H. Choset et al., W. Burgard

Robot Motion Planning

J.-C. Latombe (1991):

“…eminently necessary since, by definition,
a robot accomplishes tasks by moving in
the real world.”

Goals

▪ Collision-free trajectories

▪ Robot should reach the goal location
as fast as possible

194

Problem Formulation

▪ The problem of motion planning can be
stated as follows. Given:

▪ A start pose of the robot

▪ A desired goal pose

▪ A geometric description of the robot

▪ A geometric description of the world

▪ Find a path that moves the robot
gradually from start to goal while
never touching any obstacle

195

Problem Formulation

Motion planning is sometimes also called piano mover's problem
196

Piano mover's problem

197

Configuration Space

▪ Although the motion planning problem is
defined in the regular world, it lives in
another space: the configuration space

▪ A robot configuration q is a specification of

the positions of all robot points relative to
a fixed coordinate system

▪ Usually a configuration is expressed as a
vector of positions and orientations

198

Configuration Space

Rigid-body robot example

▪ 3-parameter representation: q = (x,y,)

▪ In 3D, q would be of the form (x,y,z,,b,g)

199

Reference point

x

y


Robot

Reference direction

Configuration Space

▪ Example: circular robot

▪ C-space is obtained by sliding the robot
along the edge of the obstacle regions
"blowing them up" by the robot radius

200

Configuration Space

▪ Example: polygonal robot, translation only

▪ C-space is obtained by sliding the robot
along the edge of the obstacle regions

201

Configuration Space

▪ Example: polygonal robot, translation only

▪ C-space is obtained by sliding the robot
along the edge of the obstacle regions

202

Configuration spaceWork space

Reference point

Configuration Space

▪ Example: polygonal robot, trans+rotation

▪ C-space is obtained by sliding the robot
along the edge of the obstacle regions
in all orientations

203

Configuration Space

Free space and obstacle region

▪ With being the work space,
the set of obstacles, the robot in
configuration

▪ We further define

▪ : start configuration

▪ : goal configuration

204

Then, motion planning amounts to

▪ Finding a continuous path

with

▪ Given this setting,
we can do planning
with the robot being
a point in C-space!

Configuration Space

205

C-Space Discretizations

▪ Continuous terrain needs to be
discretized for path planning

▪ There are two general approaches
to discretize C-spaces:

▪ Combinatorial planning

Characterizes Cfree explicitely by capturing the
connectivity of Cfree into a graph and finds

solutions using search

▪ Sampling-based planning

Uses collision-detection to probe and
incrementally search the C-space for solution

206

Combinatorial Planning

▪ We will look at four combinatorial
planning techniques

▪ Visibility graphs

▪ Voronoi diagrams

▪ Exact cell decomposition

▪ Approximate cell decomposition

▪ They all produce a road map

▪ A road map is a graph in Cfree in which each
vertex is a configuration in Cfree and each edge
is a collision-free path through Cfree

207

Combinatorial Planning

▪ Without loss of generality, we will consider
a problem in with a point robot
that cannot rotate. In this case:

▪ We further assume a polygonal world

208

qI

qG

qI

qG

▪ Idea: construct a path as a polygonal line
connecting qI and qG through vertices of Cobs

▪ Existence proof for such paths, optimality

▪ One of the earliest path planning methods

▪ Best algorithm: O(n2 log n)

Visibility Graphs

209

qI

qG

▪ Defined to be the set of points q whose

cardinality of the set of boundary points of
Cobs with the same distance to q is greater

than 1

▪ Let us decipher
this definition...

▪ Informally:
the place with the
same maximal
clearance from
all nearest obstacles

Generalized Voronoi Diagram

210

qI
qG

qI' qG'

▪ Geometrically:

▪ For a polygonal Cobs, the Voronoi diagram
consists of (n) lines and parabolic segments

▪ Naive algorithm: O(n4), best: O(n log n)

Generalized Voronoi Diagram

211

p

clearance(q)

one closest point

q

q

q

p
p

two closest points

pp

Voronoi Diagram

▪ Voronoi diagrams have been well studied
for (reactive) mobile robot path planning

▪ Fast methods exist to compute and
update the diagram in real-time for low-
dim. C's

▪ Pros: maximize clear-
ance is a good idea for
an uncertain robot

▪ Cons: unnatural at-
traction to open space,
suboptimal paths

▪ Needs extensions 212

Exact Cell Decomposition

▪ Idea: decompose Cfree into non-overlapping

cells, construct connectivity graph to
represent adjacencies, then search

▪ A popular implementation of this idea:

1. Decompose Cfree into trapezoids with vertical

side segments by shooting rays upward and
downward from each polygon vertex

2. Place one vertex in the interior of every
trapezoid, pick e.g. the centroid

3. Place one vertex in every vertical segment

4. Connect the vertices

213

Exact Cell Decomposition

▪ Trapezoidal decomposition (max)

▪ Best known algorithm: O(n log n) where n is
the number of vertices of Cobs

214

(a)

(b)

(c)

(d)

Approximate Cell Decomposition

▪ Exact decomposition methods can be invol-
ved and inefficient for complex problems

▪ Approximate decomposition uses cells with
the same simple predefined shape

215

qI qI

qGqG

Quadtree decomposition

Approximate Cell Decomposition

▪ Exact decomposition methods can be invol-
ved and inefficient for complex problems

▪ Approximate decomposition uses cells with
the same simple predefined shape

▪ Pros:

▪ Iterating the same simple computations

▪ Numerically more stable

▪ Simpler to implement

▪ Can be made complete

216

Combinatorial Planning

Wrap Up

▪ Combinatorial planning techniques are
elegant and complete (they find a
solution if it exists, report failure otherwise)

▪ But: become quickly intractable when
C-space dimensionality increases (or n resp.)

▪ Combinatorial explosion in terms of
facets to represent , , and ,
especially when rotations bring in non-
linearities and make C a nontrivial manifold

➡ Use sampling-based planning
Weaker guarantees but more efficient

217

Sampling-Based Planning

▪ Abandon the concept of explicitly
characterizing Cfree and Cobs and leave the
algorithm in the dark when exploring Cfree

▪ The only light is provided by a collision-
detection algorithm, that probes C to
see whether some configuration lies in Cfree

▪ We will have a look at

▪ Probabilistic road maps (PRM)
[Kavraki et al., 92]

▪ Rapidly exploring random trees (RRT)
[Lavalle and Kuffner, 99]

218

Probabilistic Road Maps

▪ Idea: Take random samples from C,
declare them as vertices if in Cfree, try to

connect nearby vertices with local planner

▪ The local planner checks if line-of-sight is
collision-free (powerful or simple methods)

▪ Options for nearby: k-nearest neighbors
or all neighbors within specified radius

▪ Configurations and connections are added
to graph until roadmap is dense enough

219

Probabilistic Road Maps

▪ Example

220

specified radius

Example local planner

What means "nearby" on a manifold?
Defining a good metric on C is crucial

Probabilistic Road Maps

Good and bad news:

▪ Pros:

▪ Probabilistically complete

▪ Do not construct C-space

▪ Apply easily to high-dim. C's

▪ PRMs have solved previously
unsolved problems

▪ Cons:

▪ Do not work well for some
problems, narrow passages

▪ Not optimal, not complete

221

Cobs

Cobs

Cobs

CobsCobs

Cobs Cobs

qI

qG

qI

qG

Rapidly Exploring Random Trees

▪ Idea: aggressively probe and explore the
C-space by expanding incrementally
from an initial configuration q0

▪ The explored territory is marked by a
tree rooted at q0

222

45 iterations 2345 iterations

From Road Maps to Paths

▪ All methods discussed so far construct a
road map (without considering the query
pair qI and qG)

▪ Once the investment is made, the same
road map can be reused for all queries
(provided world and robot do not change)

1. Find the cell/vertex that contain/is close to qI

and qG (not needed for visibility graphs)

2. Connect qI and qG to the road map

3. Search the road map for a path from qI to qG

223

Sampling-Based Planning

Wrap Up

▪ Sampling-based planners are more efficient in
most practical problems but offer weaker
guarantees

▪ They are probabilistically complete: the
probability tends to 1 that a solution is found if
one exists (otherwise it may still run forever)

▪ Performance degrades in problems with narrow
passages. Subject of active research

▪ Widely used. Problems with high-dimensional
and complex C-spaces are still computationally
hard

224

Potential Field Methods

▪ All techniques discussed so far aim at cap-
turing the connectivity of Cfree into a graph

▪ Potential Field methods follow a
different idea:

The robot, represented as a point in C, is

modeled as a particle under the influence
of a artificial potential field U

U superimposes

▪ Repulsive forces from obstacles

▪ Attractive force from goal

225

Potential Field Methods

▪ Potential function

▪ Simply perform gradient descent

▪ C-pace typically discretized in a grid

226

+ =

Potential Field Methods

▪ Main problems: robot gets stuck in
local minima

▪ Way out: Construct local-minima-free
navigation function ("NF1"), then do
gradient descent (e.g. bushfire from goal)

▪ The gradient of the potential function
defines a vector field (similar to a policy)
that can be used as feedback control
strategy, relevant for an uncertain robot

▪ However, potential fields need to represent
Cfree explicitely. This can be too costly.

227

Robot Motion Planning

▪ Given a road map, let's do search!

228

A* Search

▪ A* is one of the most widely-known
informed search algorithms with many
applications in robotics

▪ Where are we?
A* is an instance of an informed
algorithm for the general problem of
search

▪ In robotics: planning on a
2D occupancy grid map is
a common approach

229

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

▪Uninformed search: besides the problem
definition, no further information about the
domain ("blind search")

▪The only thing one can do is to expand
nodes differently

▪Example algorithms: breadth-first, uniform-
cost, depth-first, bidirectional, etc.

230

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

▪Informed search: further information
about the domain through heuristics

▪Capability to say that a node is "more
promising" than another node

▪Example algorithms: greedy best-first
search, A*, many variants of A*, D*, etc.

231

▪ A* vs. Theta*

Any-Angle A* Examples

232

(len: path length, nhead = # heading changes)

len: 30.0

nhead: 11

len: 28.9

nhead: 5

len: 24.1

nhead: 9

len: 22.9

nhead: 2

D* Search

▪ Problem: In unknown, partially known or
dynamic environments, the planned path
may be blocked and we need to replan

▪ Can this be done efficiently, avoiding to
replan the entire path?

▪ Idea: Incrementally repair path keeping
its modifications local around robot pose

▪ Several approaches implement this idea:

▪ D* (Dynamic A*) [Stentz, ICRA'94, IJCAI'95]

▪ D* Lite [Koenig and Likhachev, AAAI'02]

▪ Field D* [Ferguson and Stentz, JFR'06]

233

D* Family

▪ D* Lite produces the same paths than D*
but is simpler and more efficient

▪ D*/D* Lite are widely used

▪ Field D* was running on Mars rovers
Spirit and Opportunity (retrofitted in yr 3)

234

Tracks left by a drive executed with Field D*

Still in Dynamic Environments...

▪ Do we really need to replan the entire path
for each obstacle on the way?

▪ What if the robot has to react quickly to
unforeseen, fast moving obstacles?

▪ Even D* Lite can be too slow in such a situation

▪ Accounting for the robot shape
(it's not a point)

▪ Accounting for kinematic and dynamic
vehicle constraints, e.g.

▪ Decceleration limits,

▪ Steering angle limits, etc.

235

Collision Avoidance

▪ This can be handled by techniques called
collision avoidance (obstacle avoidance)

▪ A well researched subject, different
approaches exist:

▪ Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

▪ Nearness Diagram Navigation
[Minguez et al., 2001, 2002]

▪ Vector-Field-Histogram+
[Ulrich & Borenstein, 98]

▪ Extended Potential Fields
[Khatib & Chatila, 95]

236

Collision Avoidance

▪ Integration into general motion planning?

▪ It is common to subdivide the problem into
a global and local planning task:

▪ An approximate global planner computes
paths ignoring the kinematic and dynamic
vehicle constraints

▪ An accurate local planner accounts for the
constraints and generates (sets of) feasible
local trajectories ("collision avoidance")

▪ What do we loose? What do we win?

237

Two-layered Architecture

238

Planning

Collision Avoidance

sensor data

map

robot

low frequency

high frequency

sub-goal

motion command

239

240

241

